! radiation_spartacus_lw.F90 - SPARTACUS longwave solver ! (C) Copyright 2014- ECMWF. ! This software is licensed under the terms of the Apache Licence Version 2.0 ! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. ! In applying this licence, ECMWF does not waive the privileges and immunities ! granted to it by virtue of its status as an intergovernmental organisation ! nor does it submit to any jurisdiction. ! Author: Robin Hogan ! Email: r.j.hogan@ecmwf.int ! Modifications ! 2017-04-11 R. Hogan Receive emission/albedo rather than planck/emissivity ! 2017-04-22 R. Hogan Store surface fluxes at all g-points ! 2018-09-03 R. Hogan Security via min_cloud_effective_size ! 2018-10-08 R. Hogan Call calc_region_properties ! 2019-01-12 R. Hogan Use inv_inhom_effective_size if allocated module radiation_spartacus_lw public contains ! Small routine for scaling cloud optical depth in the cloudy ! regions #include "radiation_optical_depth_scaling.h" ! This module contains just one subroutine, the longwave solver ! using the Speedy Algorithm for Radiative Transfer through Cloud ! Sides (SPARTACUS), which can represent 3D effects using a matrix ! form of the two-stream equations. ! Sections: ! 1: Prepare general variables and arrays ! 2: Prepare column-specific variables and arrays ! 3: First loop over layers ! 3.1: Layer-specific initialization ! 3.2: Compute gamma variables ! 3.2a: Clear-sky case ! 3.2b: Cloudy case ! 3.3: Compute reflection, transmission and emission ! 3.3a: g-points with 3D effects ! 3.3b: g-points without 3D effects ! 4: Compute total sources and albedos ! 5: Compute fluxes subroutine solver_spartacus_lw(nlev,istartcol,iendcol, & & config, thermodynamics, cloud, & & od, ssa, g, od_cloud, ssa_cloud, g_cloud, planck_hl, & & emission, albedo, & & flux) use parkind1, only : jprb use yomhook, only : lhook, dr_hook use radiation_io, only : nulout use radiation_config, only : config_type, IPdfShapeGamma use radiation_thermodynamics, only : thermodynamics_type use radiation_cloud, only : cloud_type use radiation_regions, only : calc_region_properties use radiation_overlap, only : calc_overlap_matrices use radiation_flux, only : flux_type, indexed_sum use radiation_matrix use radiation_two_stream, only : calc_two_stream_gammas_lw, & calc_reflectance_transmittance_lw, LwDiffusivityWP use radiation_lw_derivatives, only : calc_lw_derivatives_matrix use radiation_constants, only : Pi, GasConstantDryAir, & AccelDueToGravity implicit none ! Inputs integer, intent(in) :: nlev ! number of model levels integer, intent(in) :: istartcol, iendcol ! range of columns to process type(config_type), intent(in) :: config type(thermodynamics_type),intent(in) :: thermodynamics type(cloud_type), intent(in) :: cloud ! Gas and aerosol optical depth of each layer at each longwave ! g-point real(jprb), intent(in), dimension(config%n_g_lw,nlev,istartcol:iendcol) :: od ! Gas and aerosol single-scattering albedo and asymmetry factor, ! only if longwave scattering by aerosols is to be represented real(jprb), intent(in), & & dimension(config%n_g_lw_if_scattering,nlev,istartcol:iendcol) :: ssa, g ! Cloud and precipitation optical depth of each layer in each ! longwave band real(jprb), intent(in) :: od_cloud(config%n_bands_lw,nlev,istartcol:iendcol) ! Cloud and precipitation single-scattering albedo and asymmetry ! factor, only if longwave scattering by clouds is to be ! represented real(jprb), intent(in), dimension(config%n_bands_lw_if_scattering, & & nlev,istartcol:iendcol) :: ssa_cloud, g_cloud ! Planck function (emitted flux from a black body) at half levels real(jprb), intent(in), dimension(config%n_g_lw,nlev+1,istartcol:iendcol) & & :: planck_hl ! Emission (Planck*emissivity) and albedo (1-emissivity) at the ! surface at each longwave g-point real(jprb), intent(in), dimension(config%n_g_lw, istartcol:iendcol) & & :: emission, albedo ! Output type(flux_type), intent(inout):: flux integer :: nreg, ng integer :: nregActive ! =1 in clear layer, =nreg in a cloudy layer integer :: jcol, jlev, jg, jreg, iband, jreg2 integer :: ng3D ! Number of g-points with small enough gas optical ! depth that 3D effects need to be represented ! Ratio of gas constant for dry air to acceleration due to gravity real(jprb), parameter & & :: R_over_g = GasConstantDryAir / AccelDueToGravity ! Used in computing rates of lateral radiation transfer real(jprb), parameter :: four_over_pi = 4.0_jprb / Pi ! The tangent of the effective zenith angle for diffuse radiation ! that is appropriate for 3D transport real(jprb), parameter :: tan_diffuse_angle_3d = Pi * 0.5_jprb ! Incorrect value of tand(53) used by Hogan & Shonk (2013) ! real(jprb), parameter :: tan_diffuse_angle_3d = 1.32704482162041 ! Optical depth, single scattering albedo and asymmetry factor in ! each region at each g-point real(jprb), dimension(config%n_g_lw, config%nregions) & & :: od_region, ssa_region, g_region ! Scattering optical depths of gases and clouds real(jprb) :: scat_od, scat_od_cloud ! The area fractions of each region real(jprb) :: region_fracs(1:config%nregions,nlev,istartcol:iendcol) ! The scaling used for the optical depth in the cloudy regions real(jprb) :: od_scaling(2:config%nregions,nlev,istartcol:iendcol) ! The length of the interface between regions per unit area of ! gridbox, equal to L_diff^ab in Hogan and Shonk (2013). This is ! actually the effective length oriented to a photon with random ! azimuth angle. The three values are the edge length between ! regions a-b, b-c and a-c. real(jprb) :: edge_length(3) ! Element i,j gives the rate of 3D transfer of diffuse ! radiation from region i to region j, multiplied by the thickness ! of the layer in m real(jprb) :: transfer_rate(config%nregions,config%nregions) ! Directional overlap matrices defined at all layer interfaces ! including top-of-atmosphere and the surface real(jprb), dimension(config%nregions,config%nregions,nlev+1,istartcol:iendcol) & & :: u_matrix, v_matrix ! Two-stream variables real(jprb), dimension(config%n_g_lw, config%nregions) & & :: gamma1, gamma2 ! Matrix Gamma multiplied by the layer thickness z1, so units ! metres. After calling expm, this array contains the matrix ! exponential of the original. real(jprb), dimension(config%n_g_lw, 2*config%nregions, & & 2*config%nregions) :: Gamma_z1 ! Diffuse reflection and transmission matrices of each layer real(jprb), dimension(config%n_g_lw, config%nregions, & & config%nregions, nlev) :: reflectance, transmittance ! Clear-sky diffuse reflection and transmission matrices of each ! layer real(jprb), dimension(config%n_g_lw, nlev) :: ref_clear, trans_clear ! If the Planck term at the top of a layer in each region is the ! vector b0 then the following is vector [-b0; b0]*dz real(jprb), dimension(config%n_g_lw,2*config%nregions) :: planck_top ! The difference between the Planck terms at the bottom and top of ! a layer, doubled as with planck_top; in terms of b' in the ! paper, planck_diff is [-b'; b']*dz*dz real(jprb), dimension(config%n_g_lw,2*config%nregions) :: planck_diff ! Parts of the particular solution associated with the ! inhomogeneous ODE. In terms of quantities from the paper, ! solution0 is [c0;d0] and solution_diff is [c';d']*dz. real(jprb), dimension(config%n_g_lw,2*config%nregions) & & :: solution0, solution_diff ! Used for computing the Planck emission per layer real(jprb), dimension(config%n_g_lw,config%nregions) & & :: tmp_vectors ! The fluxes upwelling from the top of a layer (source_up) and ! downwelling from the bottom of the layer (source_dn) due to ! emission real(jprb), dimension(config%n_g_lw, config%nregions, nlev) & & :: source_up, source_dn ! ...clear-sky equivalents real(jprb), dimension(config%n_g_lw, nlev) & & :: source_up_clear, source_dn_clear ! Upwelling radiation just above a layer interface due to emission ! below that interface, where level index = 1 corresponds to the ! top-of-atmosphere real(jprb), dimension(config%n_g_lw, config%nregions, nlev+1) & & :: total_source ! ...clear-sky equivalent real(jprb), dimension(config%n_g_lw, nlev+1) :: total_source_clear ! As total_source, but just below a layer interface real(jprb), dimension(config%n_g_lw, config%nregions) & & :: total_source_below ! Total albedo of the atmosphere/surface just above a layer ! interface with respect to downwelling diffuse radiation at that ! interface, where level index = 1 corresponds to the ! top-of-atmosphere real(jprb), dimension(config%n_g_lw, config%nregions, & & config%nregions, nlev+1) :: total_albedo ! ...clear-sky equivalent real(jprb), dimension(config%n_g_lw, nlev+1) :: total_albedo_clear ! As total_albedo, but just below a layer interface real(jprb), dimension(config%n_g_lw, config%nregions, config%nregions) & & :: total_albedo_below ! The following is used to store matrices of the form I-A*B that ! are used on the denominator of some expressions real(jprb), dimension(config%n_g_lw, config%nregions, config%nregions) & & :: denominator ! Clear-sky equivalent, but actually its reciprocal to replace ! some divisions by multiplications real(jprb), dimension(config%n_g_lw) :: inv_denom_scalar ! Layer depth (m) real(jprb) :: dz ! Upwelling and downwelling fluxes above/below layer interfaces real(jprb), dimension(config%n_g_lw, config%nregions) & & :: flux_up_above, flux_dn_above, flux_dn_below ! Clear-sky upwelling and downwelling fluxes (which don't ! distinguish between whether they are above/below a layer ! interface) real(jprb), dimension(config%n_g_lw) :: flux_up_clear, flux_dn_clear ! Parameterization of internal flux distribution in a cloud that ! can lead to the flux just about to exit a cloud being different ! from the mean in-cloud value. "lateral_od" is the typical ! absorption optical depth through the cloud in a horizontal ! direction. real(jprb), dimension(config%n_g_lw) :: lateral_od, sqrt_1_minus_ssa real(jprb), dimension(config%n_g_lw) :: side_emiss_thick, side_emiss ! In the optically thin limit, the flux near the edge is greater ! than that in the interior real(jprb), parameter :: side_emiss_thin = 1.4107 real(jprb) :: aspect_ratio ! Keep a count of the number of calls to the two ways of computing ! reflectance/transmittance matrices integer :: n_calls_expm, n_calls_meador_weaver ! Identify clear-sky layers, with pseudo layers for outer space ! and below the ground, both treated as single-region clear skies logical :: is_clear_sky_layer(0:nlev+1) real(jprb) :: hook_handle if (lhook) call dr_hook('radiation_spartacus_lw:solver_spartacus_lw',0,hook_handle) ! -------------------------------------------------------- ! Section 1: Prepare general variables and arrays ! -------------------------------------------------------- ! Copy array dimensions to local variables for convenience nreg = config%nregions ng = config%n_g_lw ! Reset count of number of calls to the two ways to compute ! reflectance/transmission matrices n_calls_expm = 0 n_calls_meador_weaver = 0 ! Initialize dz to avoid compiler warning dz = 1.0_jprb ! Compute the wavelength-independent region fractions and ! optical-depth scalings call calc_region_properties(nlev,nreg,istartcol,iendcol, & & config%i_cloud_pdf_shape == IPdfShapeGamma, & & cloud%fraction, cloud%fractional_std, region_fracs, & & od_scaling, config%cloud_fraction_threshold) ! Compute wavelength-independent overlap matrices u_matrix and v_matrix call calc_overlap_matrices(nlev, nreg, istartcol, iendcol, & & region_fracs, cloud%overlap_param, & & u_matrix, v_matrix, decorrelation_scaling=config%cloud_inhom_decorr_scaling, & & cloud_fraction_threshold=config%cloud_fraction_threshold, & & use_beta_overlap=config%use_beta_overlap, & & cloud_cover=flux%cloud_cover_lw) if (config%iverbose >= 3) then write(nulout,'(a)',advance='no') ' Processing columns' end if ! Main loop over columns DO jcol = istartcol, iendcol ! -------------------------------------------------------- ! Section 2: Prepare column-specific variables and arrays ! -------------------------------------------------------- if (config%iverbose >= 3) then write(nulout,'(a)',advance='no') '.' end if ! Define which layers contain cloud; assume that ! cloud%crop_cloud_fraction has already been called is_clear_sky_layer = .true. DO jlev = 1,nlev if (cloud%fraction(jcol,jlev) > 0.0_jprb) then is_clear_sky_layer(jlev) = .false. end if end do ! -------------------------------------------------------- ! Section 3: First loop over layers ! -------------------------------------------------------- ! In this section the reflectance, transmittance and sources ! are computed for each layer DO jlev = 1,nlev ! Start at top-of-atmosphere ! -------------------------------------------------------- ! Section 3.1: Layer-specific initialization ! -------------------------------------------------------- ! Array-wise assignments gamma1 = 0.0_jprb gamma2 = 0.0_jprb Gamma_z1= 0.0_jprb planck_top = 0.0_jprb planck_diff = 0.0_jprb transfer_rate(:,:) = 0.0_jprb solution0 = 0.0_jprb solution_diff = 0.0_jprb ! Reset clear-sky absorption/scattering properties in each ! region od_region = 0.0_jprb ssa_region = 0.0_jprb ! No Rayleigh scattering in longwave by default g_region = 0.0_jprb ! Set optical depth of clear-sky region (region 1) to the ! gas/aerosol optical depth od_region(1:ng,1) = od(1:ng, jlev, jcol) ! Can't deal with zero gas optical depths, but this is now ! dealt with in radiation_ifsrrtm ! where (od_region(:,1) < 1.0e-15_jprb) od_region(:,1) = 1.0e-15_jprb ! Set clear-sky single-scattering albedo and asymmetry ! factor, if non-zero if (config%do_lw_aerosol_scattering) then ssa_region(1:ng,1) = ssa(1:ng, jlev, jcol) g_region(1:ng,1) = g(1:ng, jlev, jcol) end if ! -------------------------------------------------------- ! Section 3.2: Compute gamma variables ! -------------------------------------------------------- if (is_clear_sky_layer(jlev)) then ! --- Section 3.2a: Clear-sky case -------------------- nregActive = 1 ! Only region 1 (clear-sky) is active ! Compute two-stream variables gamma1 and gamma2 call calc_two_stream_gammas_lw(ng, & & ssa_region(1:ng,1), g_region(1:ng,1), & & gamma1(1:ng,1), gamma2(1:ng,1)) if (config%use_expm_everywhere) then ! Treat cloud-free layer as 3D: the matrix exponential ! "expm" is used as much as possible (provided the ! optical depth is not too high). ng3D is initially ! set to the total number of g-points, then the ! clear-sky optical depths are searched until a value ! exceeds the threshold for treating 3D effects, and ! if found it is reset to that. Note that we are ! assuming that the g-points have been reordered in ! approximate order of gas optical depth. ng3D = ng DO jg = 1, ng if (od_region(jg,1) > config%max_gas_od_3D) then ng3D = jg-1 exit end if end do else ! Otherwise treat cloud-free layer using the classical ! Meador & Weaver formulae for all g-points ng3D = 0 end if else ! --- Section 3.2b: Cloudy case ----------------------- ! Default number of g-points to treat with ! matrix-exponential scheme if (config%use_expm_everywhere) then ng3D = ng ! All g-points else ng3D = 0 ! No g-points end if ! Do we compute 3D effects; note that if we only have one ! region and the sky is overcast then 3D calculations must ! be turned off as there will be only one region if (config%do_3d_effects .AND. & & allocated(cloud%inv_cloud_effective_size) .AND. & & .not. (nreg == 2 .AND. cloud%fraction(jcol,jlev) & & > 1.0_jprb-config%cloud_fraction_threshold)) then if (cloud%inv_cloud_effective_size(jcol,jlev) & & > 0.0_jprb) then ! 3D effects are only simulated if ! inv_cloud_effective_size is defined and greater ! than zero ng3D = ng ! The following is from the hydrostatic equation ! and ideal gas law: dz = dp * R * T / (p * g) dz = R_over_g & & * (thermodynamics%pressure_hl(jcol,jlev+1) & & - thermodynamics%pressure_hl(jcol,jlev)) & & * (thermodynamics%temperature_hl(jcol,jlev) & & + thermodynamics%temperature_hl(jcol,jlev+1)) & & / (thermodynamics%pressure_hl(jcol,jlev) & & + thermodynamics%pressure_hl(jcol,jlev+1)) ! Compute cloud edge length per unit area of gridbox ! from rearranging Hogan & Shonk (2013) Eq. 45, but ! adding a factor of (1-frac) so that a region that ! fully occupies the gridbox (frac=1) has an edge of ! zero. We can therefore use the fraction of clear sky, ! region_fracs(1,jlev,jcol) for convenience instead. The ! pi on the denominator means that this is actually edge ! length with respect to a light ray with a random ! azimuthal direction. edge_length(1) = four_over_pi & & * region_fracs(1,jlev,jcol)*(1.0_jprb-region_fracs(1,jlev,jcol)) & & * min(cloud%inv_cloud_effective_size(jcol,jlev), & & 1.0_jprb / config%min_cloud_effective_size) if (nreg > 2) then ! The corresponding edge length between the two cloudy ! regions is computed in the same way but treating the ! optically denser of the two regions (region 3) as ! the cloud; note that the fraction of this region may ! be less than that of the optically less dense of the ! two regions (region 2). For increased flexibility, ! the user may specify the effective size of ! inhomogeneities separately from the cloud effective ! size. if (allocated(cloud%inv_inhom_effective_size)) then edge_length(2) = four_over_pi & & * region_fracs(3,jlev,jcol)*(1.0_jprb-region_fracs(3,jlev,jcol)) & & * min(cloud%inv_inhom_effective_size(jcol,jlev), & & 1.0_jprb / config%min_cloud_effective_size) else edge_length(2) = four_over_pi & & * region_fracs(3,jlev,jcol)*(1.0_jprb-region_fracs(3,jlev,jcol)) & & * min(cloud%inv_cloud_effective_size(jcol,jlev), & & 1.0_jprb / config%min_cloud_effective_size) end if ! In the case of three regions, some of the cloud ! boundary may go directly to the "thick" region if (config%clear_to_thick_fraction > 0.0_jprb) then edge_length(3) = config%clear_to_thick_fraction & & * min(edge_length(1), edge_length(2)) edge_length(1) = edge_length(1) - edge_length(3) edge_length(2) = edge_length(2) - edge_length(3) else edge_length(3) = 0.0_jprb end if end if DO jreg = 1, nreg-1 ! Compute lateral transfer rate from region jreg to ! jreg+1 following Hogan & Shonk (2013) Eq. 47, but ! multiplied by dz because the transfer rate is ! vertically integrated across the depth of the layer if (region_fracs(jreg,jlev,jcol) > epsilon(1.0_jprb)) then transfer_rate(jreg,jreg+1) = dz & & * edge_length(jreg) & & * tan_diffuse_angle_3d / region_fracs(jreg,jlev,jcol) end if ! Compute transfer rate from region jreg+1 to jreg if (region_fracs(jreg+1,jlev,jcol) > epsilon(1.0_jprb)) then transfer_rate(jreg+1,jreg) = dz & & * edge_length(jreg) & & * tan_diffuse_angle_3d / region_fracs(jreg+1,jlev,jcol) end if end do ! Compute transfer rates directly between regions 1 and ! 3 if (edge_length(3) > 0.0_jprb) then if (region_fracs(1,jlev,jcol) > epsilon(1.0_jprb)) then transfer_rate(1,3) = dz & & * edge_length(3) & & * tan_diffuse_angle_3d / region_fracs(1,jlev,jcol) end if if (region_fracs(3,jlev,jcol) > epsilon(1.0_jprb)) then transfer_rate(3,1) = dz & & * edge_length(3) & & * tan_diffuse_angle_3d / region_fracs(3,jlev,jcol) end if end if ! Don't allow the transfer rate out of a region to be ! equivalent to a loss of exp(-10) through the layer where (transfer_rate > config%max_3d_transfer_rate) transfer_rate = config%max_3d_transfer_rate end where end if ! Cloud has edge length required for 3D effects end if ! Include 3D effects ! In a cloudy layer the number of active regions equals ! the number of regions nregActive = nreg ! Compute scattering properties of the regions at each ! g-point, mapping from the cloud properties ! defined in each band. DO jg = 1,ng ! Mapping from g-point to band iband = config%i_band_from_reordered_g_lw(jg) ! Scattering optical depth of clear-sky region scat_od = od_region(jg,1)*ssa_region(jg,1) ! Loop over cloudy regions DO jreg = 2,nreg ! Add scaled cloud optical depth to clear-sky value od_region(jg,jreg) = od_region(jg,1) & & + od_cloud(iband,jlev,jcol)*od_scaling(jreg,jlev,jcol) if (config%do_lw_cloud_scattering) then ! Compute single-scattering albedo of gas-cloud ! combination scat_od_cloud = od_cloud(iband,jlev,jcol) & & * ssa_cloud(iband,jlev,jcol)*od_scaling(jreg,jlev,jcol) ssa_region(jg,jreg) = (scat_od+scat_od_cloud) & & / od_region(jg,jreg) if (scat_od + scat_od_cloud > 0.0_jprb) then ! Compute asymmetry factor of gas-cloud ! combination g_region(jg,jreg) & & = (scat_od*g_region(jg,1) & & + scat_od_cloud*g_cloud(iband,jlev,jcol)) & & / (scat_od + scat_od_cloud) ! else g_region is already set to zero end if ! else ssa_region is already set to zero end if ! Apply maximum cloud optical depth for stability in the ! 3D case if (od_region(jg,jreg) > config%max_cloud_od) then od_region(jg,jreg) = config%max_cloud_od end if end do ! Calculate two-stream variables gamma1 and gamma2 of ! all regions at once call calc_two_stream_gammas_lw(nreg, & & ssa_region(jg,:), g_region(jg,:), & & gamma1(jg,:), gamma2(jg,:)) ! Loop is in order of g-points with typically ! increasing optical depth: if optical depth of ! clear-sky region exceeds a threshold then turn off ! 3D effects for any further g-points if (ng3D == ng & & .AND. od_region(jg,1) > config%max_gas_od_3D) then ng3D = jg-1 end if end do ! Loop over g points end if ! Cloudy level ! -------------------------------------------------------- ! Section 3.3: Compute reflection, transmission and emission ! -------------------------------------------------------- if (ng3D > 0) then ! --- Section 3.3a: g-points with 3D effects ---------- ! 3D effects need to be represented in "ng3D" of the g ! points. This is done by creating ng3D square matrices ! each of dimension 2*nreg by 2*nreg, computing the matrix ! exponential, then computing the various ! transmission/reflectance matrices from that. DO jreg = 1,nregActive ! Write the diagonal elements of -Gamma1*z1 Gamma_z1(1:ng3D,jreg,jreg) & & = od_region(1:ng3D,jreg)*gamma1(1:ng3D,jreg) ! Write the diagonal elements of +Gamma2*z1 Gamma_z1(1:ng3D,jreg+nreg,jreg) & & = od_region(1:ng3D,jreg)*gamma2(1:ng3D,jreg) ! Write the vectors corresponding to the inhomogeneous ! parts of the matrix ODE planck_top(1:ng3D,nreg+jreg) = od_region(1:ng3D,jreg) & & *(1.0_jprb-ssa_region(1:ng3D,jreg))*region_fracs(jreg,jlev,jcol) & & *planck_hl(1:ng3D,jlev,jcol)*LwDiffusivityWP planck_top(1:ng3D,jreg) = -planck_top(1:ng3D,nreg+jreg) planck_diff(1:ng3D,nreg+jreg) = od_region(1:ng3D,jreg) & & * (1.0_jprb-ssa_region(1:ng3D,jreg))*region_fracs(jreg,jlev,jcol) & & * (planck_hl(1:ng3D,jlev+1,jcol) & & -planck_hl(1:ng3D,jlev,jcol))*LwDiffusivityWP planck_diff(1:ng3D,jreg) = -planck_diff(1:ng3D,nreg+jreg) end do if (nregActive < nreg) then ! To avoid NaNs in some situations we need to put ! non-zeros in the cloudy-sky regions even if the cloud ! fraction is zero DO jreg = nregActive+1,nreg Gamma_z1(1:ng3D,jreg,jreg) = Gamma_z1(1:ng3D,1,1) Gamma_z1(1:ng3D,nreg+jreg,jreg) = Gamma_z1(1:ng3D,nreg+1,1) end do end if ! Parameterization for the effective emissivity of the side ! of the cloud if (config%do_lw_side_emissivity & & .AND. region_fracs(1,jlev,jcol) > 0.0_jprb .AND. region_fracs(2,jlev,jcol) > 0.0_jprb & & .AND. config%do_3d_effects & & .AND. cloud%inv_cloud_effective_size(jcol,jlev) > 0.0_jprb) then aspect_ratio = 1.0_jprb / (min(cloud%inv_cloud_effective_size(jcol,jlev), & & 1.0_jprb / config%min_cloud_effective_size) & & * region_fracs(1,jlev,jcol) * dz) lateral_od(1:ng3D) = (aspect_ratio / (nreg-1.0_jprb)) & & * sum(od_region(1:ng3D,2:nreg)*(1.0_jprb-ssa_region(1:ng3D,2:nreg)),2) sqrt_1_minus_ssa(1:ng3D) = sqrt(1.0_jprb - ssa_region(1:ng3D,2)) side_emiss_thick(1:ng3D) = 2.0_jprb * sqrt_1_minus_ssa(1:ng3D) / & & (sqrt_1_minus_ssa(1:ng3D) & & + sqrt(1.0_jprb-ssa_region(1:ng3D,2)*g_region(1:ng3D,2))) side_emiss(1:ng3D) = (side_emiss_thin - side_emiss_thick(1:ng3D)) & & / (lateral_od(1:ng3D) + 1.0_jprb) & & + side_emiss_thick(1:ng3D) else side_emiss(1:ng3D) = 1.0_jprb end if DO jreg = 1,nregActive-1 ! Add the terms assocated with 3D transport to Gamma1*z1. ! First the rate from region jreg to jreg+1 Gamma_z1(1:ng3D,jreg,jreg) = Gamma_z1(1:ng3D,jreg,jreg) & & + transfer_rate(jreg,jreg+1) Gamma_z1(1:ng3D,jreg+1,jreg) = -transfer_rate(jreg,jreg+1) ! Next the rate from region jreg+1 to jreg if (jreg > 1) then ! Flow between one cloudy region and another Gamma_z1(1:ng3D,jreg+1,jreg+1) = Gamma_z1(1:ng3D,jreg+1,jreg+1) & & + transfer_rate(jreg+1,jreg) Gamma_z1(1:ng3D,jreg,jreg+1) = -transfer_rate(jreg+1,jreg) else ! Only for the lateral transfer between cloud and clear ! skies do we account for the effective emissivity of ! the side of the cloud Gamma_z1(1:ng3D,jreg+1,jreg+1) = Gamma_z1(1:ng3D,jreg+1,jreg+1) & & + side_emiss(1:ng3D) * transfer_rate(jreg+1,jreg) Gamma_z1(1:ng3D,jreg,jreg+1) = -side_emiss(1:ng3D)*transfer_rate(jreg+1,jreg) end if end do ! Possible flow between regions a and c if (edge_length(3) > 0.0_jprb) then Gamma_z1(1:ng3D,1,1) = Gamma_z1(1:ng3D,1,1) & & + transfer_rate(1,3) Gamma_z1(1:ng3D,3,1) = -transfer_rate(1,3) Gamma_z1(1:ng3D,3,3) = Gamma_z1(1:ng3D,3,3) & & + side_emiss(1:ng3D) * transfer_rate(3,1) Gamma_z1(1:ng3D,1,3) = -side_emiss(1:ng3D)*transfer_rate(3,1) end if ! Copy Gamma1*z1 Gamma_z1(1:ng3D,nreg+1:2*nreg,nreg+1:2*nreg) & & = -Gamma_z1(1:ng3D,1:nreg,1:nreg) ! Copy Gamma2*z1 Gamma_z1(1:ng3D,1:nreg,nreg+1:2*nreg) & & = -Gamma_z1(1:ng3D,nreg+1:2*nreg,1:nreg) ! Compute the parts of the particular solution solution_diff(1:ng3D,1:2*nreg) & & = solve_vec(ng,ng3D,2*nreg,Gamma_z1,planck_diff) solution_diff(1:ng3D,1:2*nreg) = - solution_diff(1:ng3D,1:2*nreg) solution0(1:ng3D,1:2*nreg) = solve_vec(ng,ng3D,2*nreg,Gamma_z1, & & solution_diff-planck_top) ! Compute the matrix exponential of Gamma_z1, returning the ! result in-place call expm(ng, ng3D, 2*nreg, Gamma_z1, IMatrixPatternDense) ! Update count of expm calls n_calls_expm = n_calls_expm + ng3D ! Diffuse reflectance matrix reflectance(1:ng3D,:,:,jlev) = -solve_mat(ng,ng3D,nreg, & & Gamma_z1(1:ng3D,1:nreg,1:nreg), & & Gamma_z1(1:ng3D,1:nreg,nreg+1:2*nreg)) ! Diffuse transmission matrix transmittance(1:ng3D,:,:,jlev) = mat_x_mat(ng,ng3D,nreg, & & Gamma_z1(1:ng3D,nreg+1:2*nreg,1:nreg), & & reflectance(1:ng3D,:,:,jlev)) & & + Gamma_z1(1:ng3D,nreg+1:2*nreg,nreg+1:2*nreg) ! Upward and downward sources due to emission within the ! layer tmp_vectors(1:ng3D,:) = solution0(1:ng3D,1:nreg) & & + solution_diff(1:ng3D,1:nreg) & & - mat_x_vec(ng,ng3D,nreg,Gamma_z1(:,1:nreg,nreg+1:2*nreg), & & solution0(:,nreg+1:2*nreg)) source_up(1:ng3D,:,jlev) = solution0(1:ng3D,1:nreg) & & - solve_vec(ng,ng3D,nreg,Gamma_z1(:,1:nreg,1:nreg), & & tmp_vectors) tmp_vectors(1:ng3D,:) = source_up(1:ng3D,:,jlev) & & - solution0(1:ng3D,1:nreg) source_dn(1:ng3D,:,jlev) = mat_x_vec(ng,ng3D,nreg,& & Gamma_z1(:,nreg+1:2*nreg,1:nreg),tmp_vectors) & & + solution0(1:ng3D,nreg+1:2*nreg) & & - mat_x_vec(ng,ng3D,nreg, & & Gamma_z1(:,nreg+1:2*nreg,nreg+1:2*nreg), & & solution0(:,nreg+1:2*nreg)) & & + solution_diff(1:ng3D,nreg+1:2*nreg) end if ! we are treating 3D effects for some g points ! --- Section 3.3b: g-points without 3D effects ---------- ! Compute reflectance, transmittance and upward and downward ! sources for clear skies, using the Meador-Weaver formulas ! for reflectance and transmittance, and equivalent solutions ! to the coupled ODEs for the sources. call calc_reflectance_transmittance_lw(ng, & & od_region(1:ng,1), & & gamma1(1:ng,1), gamma2(1:ng,1), & & planck_hl(1:ng,jlev,jcol), planck_hl(1:ng,jlev+1,jcol), & & ref_clear(1:ng,jlev), trans_clear(1:ng,jlev), & & source_up_clear(1:ng,jlev), source_dn_clear(1:ng,jlev)) n_calls_meador_weaver = n_calls_meador_weaver + ng if (ng3D < ng) then ! Some of the g points are to be treated using the ! conventional plane-parallel method. First zero the ! relevant parts of the arrays reflectance (ng3D+1:ng,:,:,jlev) = 0.0_jprb transmittance(ng3D+1:ng,:,:,jlev) = 0.0_jprb source_up (ng3D+1:ng,:,jlev) = 0.0_jprb source_dn (ng3D+1:ng,:,jlev) = 0.0_jprb ! Since there is no lateral transport, the clear-sky parts ! of the arrays can be copied from the clear-sky arrays reflectance(ng3D+1:ng,1,1,jlev) = ref_clear(ng3D+1:ng,jlev) transmittance(ng3D+1:ng,1,1,jlev) = trans_clear(ng3D+1:ng,jlev) source_up(ng3D+1:ng,1,jlev) = region_fracs(1,jlev,jcol)*source_up_clear(ng3D+1:ng,jlev) source_dn(ng3D+1:ng,1,jlev) = region_fracs(1,jlev,jcol)*source_dn_clear(ng3D+1:ng,jlev) ! Compute reflectance, transmittance and upward and downward ! sources, for each cloudy region, using the Meador-Weaver ! formulas for reflectance and transmittance, and equivalent ! solutions to the coupled ODEs for the sources. DO jreg = 2, nregActive call calc_reflectance_transmittance_lw(ng-ng3D, & & od_region(ng3D+1:ng,jreg), & & gamma1(ng3D+1:ng,jreg), gamma2(ng3D+1:ng,jreg), & & region_fracs(jreg,jlev,jcol)*planck_hl(ng3D+1:ng,jlev,jcol), & & region_fracs(jreg,jlev,jcol)*planck_hl(ng3D+1:ng,jlev+1,jcol), & & reflectance(ng3D+1:ng,jreg,jreg,jlev), & & transmittance(ng3D+1:ng,jreg,jreg,jlev), & & source_up(ng3D+1:ng,jreg,jlev), & & source_dn(ng3D+1:ng,jreg,jlev)) end do n_calls_meador_weaver & & = n_calls_meador_weaver + (ng-ng3D)*(nregActive-1) end if end do ! Loop over levels ! -------------------------------------------------------- ! Section 4: Compute total sources and albedos ! -------------------------------------------------------- total_albedo(:,:,:,:) = 0.0_jprb total_source(:,:,:) = 0.0_jprb if (config%do_clear) then total_albedo_clear(:,:) = 0.0_jprb total_source_clear(:,:) = 0.0_jprb end if ! Calculate the upwelling radiation emitted by the surface, and ! copy the surface albedo into total_albedo DO jreg = 1,nreg DO jg = 1,ng ! region_fracs(jreg,nlev,jcol) is the fraction of each ! region in the lowest model level total_source(jg,jreg,nlev+1) = region_fracs(jreg,nlev,jcol)*emission(jg,jcol) total_albedo(jg,jreg,jreg,nlev+1) = albedo(jg,jcol) end do end do ! Equivalent surface values for computing clear-sky fluxes if (config%do_clear) then DO jg = 1,ng total_source_clear(jg,nlev+1) = emission(jg,jcol) end do ! In the case of surface albedo there is no dependence on ! cloud fraction so we can copy the all-sky value total_albedo_clear(1:ng,nlev+1) = total_albedo(1:ng,1,1,nlev+1) end if ! Loop back up through the atmosphere computing the total albedo ! and the total upwelling due to emission below each level DO jlev = nlev,1,-1 if (config%do_clear) then ! Use adding method for clear-sky arrays; note that there ! is no need to consider "above" and "below" quantities ! since with no cloud overlap to worry about, these are ! the same inv_denom_scalar(:) = 1.0_jprb & & / (1.0_jprb - total_albedo_clear(:,jlev+1)*ref_clear(:,jlev)) total_albedo_clear(:,jlev) = ref_clear(:,jlev) & & + trans_clear(:,jlev)*trans_clear(:,jlev)*total_albedo_clear(:,jlev+1) & & * inv_denom_scalar(:) total_source_clear(:,jlev) = source_up_clear(:,jlev) & & + trans_clear(:,jlev)*(total_source_clear(:,jlev+1) & & + total_albedo_clear(:,jlev+1)*source_dn_clear(:,jlev)) & & * inv_denom_scalar(:) end if if (is_clear_sky_layer(jlev)) then ! Clear-sky layer: use scalar adding method inv_denom_scalar(:) = 1.0_jprb & & / (1.0_jprb - total_albedo(:,1,1,jlev+1)*reflectance(:,1,1,jlev)) total_albedo_below = 0.0_jprb total_albedo_below(:,1,1) = reflectance(:,1,1,jlev) & & + transmittance(:,1,1,jlev) * transmittance(:,1,1,jlev) & & * total_albedo(:,1,1,jlev+1) * inv_denom_scalar(:) total_source_below = 0.0_jprb total_source_below(:,1) = source_up(:,1,jlev) & & + transmittance(:,1,1,jlev)*(total_source(:,1,jlev+1) & & + total_albedo(:,1,1,jlev+1)*source_dn(:,1,jlev)) & & * inv_denom_scalar(:) else if (config%do_3d_effects .or. & & config%do_3d_lw_multilayer_effects) then ! Cloudy layer: use matrix adding method denominator = identity_minus_mat_x_mat(ng,ng,nreg,& & total_albedo(:,:,:,jlev+1), reflectance(:,:,:,jlev)) total_albedo_below = reflectance(:,:,:,jlev) & & + mat_x_mat(ng,ng,nreg,transmittance(:,:,:,jlev), & & solve_mat(ng,ng,nreg,denominator, & & mat_x_mat(ng,ng,nreg,total_albedo(:,:,:,jlev+1), & & transmittance(:,:,:,jlev)))) total_source_below = source_up(:,:,jlev) & & + mat_x_vec(ng,ng,nreg,transmittance(:,:,:,jlev), & & solve_vec(ng,ng,nreg,denominator, & & total_source(:,:,jlev+1) + mat_x_vec(ng,ng,nreg, & & total_albedo(:,:,:,jlev+1),source_dn(:,:,jlev)))) else ! Cloudy layer for which reflectance, transmittance and ! total_albedo matrices are diagonal total_albedo_below = 0.0_jprb total_source_below = 0.0_jprb DO jreg = 1,nreg inv_denom_scalar(:) = 1.0_jprb / (1.0_jprb & & - total_albedo(:,jreg,jreg,jlev+1)*reflectance(:,jreg,jreg,jlev)) total_albedo_below(:,jreg,jreg) = reflectance(:,jreg,jreg,jlev) & & + transmittance(:,jreg,jreg,jlev)*transmittance(:,jreg,jreg,jlev) & & * total_albedo(:,jreg,jreg,jlev+1) & & * inv_denom_scalar(:) total_source_below(:,jreg) = source_up(:,jreg,jlev) & & + transmittance(:,jreg,jreg,jlev)*(total_source(:,jreg,jlev+1) & & + total_albedo(:,jreg,jreg,jlev+1)*source_dn(:,jreg,jlev)) & & * inv_denom_scalar(:) end do end if ! Account for cloud overlap when converting albedo and ! source below a layer interface to the equivalent values ! just above if (is_clear_sky_layer(jlev) .AND. is_clear_sky_layer(jlev-1)) then ! If both layers are cloud free, this is trivial... total_albedo(:,:,:,jlev) = 0.0_jprb total_albedo(:,1,1,jlev) = total_albedo_below(:,1,1) total_source(:,:,jlev) = 0.0_jprb total_source(:,1,jlev) = total_source_below(:,1) else total_source(:,:,jlev) = singlemat_x_vec(ng,ng,nreg,& & u_matrix(:,:,jlev,jcol), total_source_below) ! if (config%do_3d_effects .or. config%do_3d_lw_multilayer_effects) then if (config%do_3d_lw_multilayer_effects) then ! Use the overlap matrices u_matrix and v_matrix total_albedo(:,:,:,jlev) = singlemat_x_mat(ng,ng,nreg,& & u_matrix(:,:,jlev,jcol), & & mat_x_singlemat(ng,ng,nreg,total_albedo_below,& & v_matrix(:,:,jlev,jcol))) else total_albedo(:,:,:,jlev) = 0.0_jprb ! "total_albedo" is diagonal and we wish to exclude ! anomalous horizontal transport described by Shonk & ! Hogan (2008). Therefore, the operation we perform is ! essentially diag(total_albedo) = matmul(transpose(v_matrix), ! diag(total_albedo_below)). DO jreg = 1,nreg DO jreg2 = 1,nreg total_albedo(:,jreg,jreg,jlev) & & = total_albedo(:,jreg,jreg,jlev) & & + total_albedo_below(:,jreg2,jreg2) & & * v_matrix(jreg2,jreg,jlev,jcol) end do end do end if end if end do ! Reverse loop over levels ! -------------------------------------------------------- ! Section 5: Compute fluxes ! -------------------------------------------------------- ! Top-of-atmosphere fluxes into the regions of the top-most ! layer: zero since we assume no extraterrestrial longwave ! radiation (the shortwave scheme accounts for solar radiation ! in the "longwave" part of the spectrum) flux_dn_below = 0.0_jprb flux%lw_dn(jcol,1) = 0.0_jprb if (config%do_clear) then flux_dn_clear = 0.0_jprb flux%lw_dn_clear(jcol,1) = 0.0_jprb end if ! Store the outgoing longwave radiation at top-of-atmosphere flux%lw_up(jcol,1) = sum(sum(total_source(:,:,1),1)) if (config%do_clear) then flux%lw_up_clear(jcol,1) = sum(total_source_clear(:,1)) end if if (config%do_save_spectral_flux) then call indexed_sum(sum(total_source(:,:,1),2), & & config%i_spec_from_reordered_g_lw, & & flux%lw_up_band(:,jcol,1)) flux%lw_dn_band(:,jcol,1) = 0.0_jprb if (config%do_clear) then call indexed_sum(total_source_clear(:,1), & & config%i_spec_from_reordered_g_lw, & & flux%lw_up_clear_band(:,jcol,1)) flux%lw_dn_clear_band(:,jcol,1) = 0.0_jprb end if end if ! Final loop back down through the atmosphere to compute fluxes DO jlev = 1,nlev if (config%do_clear) then ! Scalar operations for clear-sky fluxes flux_dn_clear(:) = (trans_clear(:,jlev)*flux_dn_clear(:) & + ref_clear(:,jlev)*total_source_clear(:,jlev+1) & + source_dn_clear(:,jlev)) & / (1.0_jprb - ref_clear(:,jlev)*total_albedo_clear(:,jlev+1)) flux_up_clear(:) = total_source_clear(:,jlev+1) & + total_albedo_clear(:,jlev+1)*flux_dn_clear(:) end if if (is_clear_sky_layer(jlev)) then ! Scalar operations for clear-sky layer flux_dn_above(:,1) = (transmittance(:,1,1,jlev)*flux_dn_below(:,1) & & + reflectance(:,1,1,jlev)*total_source(:,1,jlev+1) & & + source_dn(:,1,jlev)) & & / (1.0_jprb - reflectance(:,1,1,jlev)*total_albedo(:,1,1,jlev+1)) flux_dn_above(:,2:nreg) = 0.0_jprb flux_up_above(:,1) = total_source(:,1,jlev+1) & & + total_albedo(:,1,1,jlev+1)*flux_dn_above(:,1) flux_up_above(:,2:nreg) = 0.0_jprb else if (config%do_3d_effects .or. config%do_3d_lw_multilayer_effects) then ! Matrix operations for cloudy layer denominator = identity_minus_mat_x_mat(ng,ng,nreg,reflectance(:,:,:,jlev), & & total_albedo(:,:,:,jlev+1)) flux_dn_above = solve_vec(ng,ng,nreg,denominator, & & mat_x_vec(ng,ng,nreg,transmittance(:,:,:,jlev),flux_dn_below) & & + mat_x_vec(ng,ng,nreg,reflectance(:,:,:,jlev), & & total_source(:,:,jlev+1)) & & + source_dn(:,:,jlev)) flux_up_above = mat_x_vec(ng,ng,nreg,total_albedo(:,:,:,jlev+1), & & flux_dn_above) + total_source(:,:,jlev+1) else DO jreg = 1,nreg ! Scalar operations for all regions, requiring that ! reflectance, transmittance and total_albedo are diagonal flux_dn_above(:,jreg) = (transmittance(:,jreg,jreg,jlev)*flux_dn_below(:,jreg) & & + reflectance(:,jreg,jreg,jlev)*total_source(:,jreg,jlev+1) & & + source_dn(:,jreg,jlev)) & & / (1.0_jprb - reflectance(:,jreg,jreg,jlev) & & * total_albedo(:,jreg,jreg,jlev+1)) flux_up_above(:,jreg) = total_source(:,jreg,jlev+1) & & + total_albedo(:,jreg,jreg,jlev+1)*flux_dn_above(:,jreg) end do end if ! Account for overlap rules in translating fluxes just above ! a layer interface to the values just below if (is_clear_sky_layer(jlev) .AND. is_clear_sky_layer(jlev+1)) then flux_dn_below = flux_dn_above else flux_dn_below = singlemat_x_vec(ng,ng,nreg,v_matrix(:,:,jlev+1,jcol), & & flux_dn_above) end if ! Store the broadband fluxes flux%lw_up(jcol,jlev+1) = sum(sum(flux_up_above,1)) flux%lw_dn(jcol,jlev+1) = sum(sum(flux_dn_above,1)) if (config%do_clear) then flux%lw_up_clear(jcol,jlev+1) = sum(flux_up_clear) flux%lw_dn_clear(jcol,jlev+1) = sum(flux_dn_clear) end if if (config%do_save_spectral_flux) then call indexed_sum(sum(flux_up_above,2), & & config%i_spec_from_reordered_g_lw, & & flux%lw_up_band(:,jcol,jlev+1)) call indexed_sum(sum(flux_dn_above,2), & & config%i_spec_from_reordered_g_lw, & & flux%lw_dn_band(:,jcol,jlev+1)) if (config%do_clear) then call indexed_sum(flux_up_clear, & & config%i_spec_from_reordered_g_lw, & & flux%lw_up_clear_band(:,jcol,jlev+1)) call indexed_sum(flux_dn_clear, & & config%i_spec_from_reordered_g_lw, & & flux%lw_dn_clear_band(:,jcol,jlev+1)) end if end if end do ! Final loop over levels ! Store surface spectral downwelling fluxes, which at this point ! are at the surface flux%lw_dn_surf_g(:,jcol) = sum(flux_dn_above,2) if (config%do_clear) then flux%lw_dn_surf_clear_g(:,jcol) = flux_dn_clear end if ! Compute the longwave derivatives needed by Hogan and Bozzo ! (2015) approximate radiation update scheme if (config%do_lw_derivatives) then ! Note that at this point flux_up_above contains the spectral ! fluxes into the regions of the lowest layer; we sum over ! regions first to provide a simple spectral flux upwelling ! from the surface call calc_lw_derivatives_matrix(ng, nlev, nreg, jcol, transmittance, & & u_matrix(:,:,:,jcol), sum(flux_up_above,2), flux%lw_derivatives) end if end do ! Loop over columns if (config%iverbose >= 3) then write(nulout,*) end if ! Report number of calls to each method of solving single-layer ! two-stream equations if (config%iverbose >= 4) then write(nulout,'(a,i0)') ' Matrix-exponential calls: ', n_calls_expm write(nulout,'(a,i0)') ' Meador-Weaver calls: ', n_calls_meador_weaver end if if (lhook) call dr_hook('radiation_spartacus_lw:solver_spartacus_lw',1,hook_handle) end subroutine solver_spartacus_lw end module radiation_spartacus_lw