MODULE lmdz_thermcell_main ! $Id: lmdz_thermcell_main.F90 5158 2024-08-02 12:12:03Z abarral $ ! A REGARDER !!!!!!!!!!!!!!!!! ! ATTENTION : zpspsk est inout et out mais c'est pas forcement pour de bonnes raisons (FH, 2023) ! ATTENTION : dans thermcell_env, on condense potentiellement de l'eau. Mais comme on ne mélange pas l'eau liquide supposant qu'il n'y en n'a pas, c'est potentiellement un souci CONTAINS SUBROUTINE thermcell_main(itap, ngrid, nlay, ptimestep & , pplay,pplev, pphi, debut & , puwind, pvwind,ptemp, p_o, ptemp_env, po_env & , pduadj,pdvadj, pdtadj, pdoadj & , fm0, entr0,detr0, zqta, zqla, lmax & , ratqscth,ratqsdiff, zqsatth & , zmax0, f0, zw2,fraca, ztv & , zpspsk, ztla, zthl,ztva & , pcon, rhobarz, wth3, wmax_sec,lalim, fm, alim_star, zmax, zcong & #ifdef ISO ,xtpo,xtpdoadj & #endif ) ! USE necessaires pour les lignes importees de thermcell_env USE lmdz_thermcell_ini, ONLY: thermcell_ini, dqimpl, dvdq, prt_level, lunout, prt_level USE lmdz_thermcell_ini, ONLY: iflag_thermals_closure, iflag_thermals_ed, tau_thermals, r_aspect_thermals USE lmdz_thermcell_ini, ONLY: iflag_thermals_down, fact_thermals_down USE lmdz_thermcell_ini, ONLY: iflag_thermals_tenv USE lmdz_thermcell_ini, ONLY: RD, RG USE lmdz_thermcell_down, ONLY: thermcell_updown_dq USE lmdz_thermcell_closure, ONLY: thermcell_closure USE lmdz_thermcell_dq, ONLY: thermcell_dq USE lmdz_thermcell_dry, ONLY: thermcell_dry USE lmdz_thermcell_dv2, ONLY: thermcell_dv2 USE lmdz_thermcell_env, ONLY: thermcell_env USE lmdz_thermcell_flux2, ONLY: thermcell_flux2 USE lmdz_thermcell_height, ONLY: thermcell_height USE lmdz_thermcell_plume, ONLY: thermcell_plume USE lmdz_thermcell_plume_6A, ONLY: thermcell_plume_6A, thermcell_plume_5B ! USE necessaires pour les lignes importees de thermcell_env USE lmdz_thermcell_ini, ONLY: RLvCp, RKAPPA, RETV USE lmdz_thermcell_qsat, ONLY: thermcell_qsat USE lmdz_abort_physic, ONLY: abort_physic #ifdef ISO USE infotrac_phy, ONLY: ntiso #ifdef ISOVERIF USE isotopes_mod, ONLY: iso_eau,iso_HDO USE isotopes_verif_mod, ONLY: iso_verif_egalite, & iso_verif_aberrant_encadre #endif #endif IMPLICIT NONE !======================================================================= ! Auteurs: Frederic Hourdin, Catherine Rio, Anne Mathieu ! Version du 09.02.07 ! Calcul du transport vertical dans la couche limite en presence ! de "thermiques" explicitement representes avec processus nuageux ! Reecriture a partir d'un listing papier a Habas, le 14/02/00 ! le thermique est suppose homogene et dissipe par melange avec ! son environnement. la longueur l_mix controle l'efficacite du ! melange ! Le calcul du transport des differentes especes se fait en prenant ! en compte: ! 1. un flux de masse montant ! 2. un flux de masse descendant ! 3. un entrainement ! 4. un detrainement ! Modif 2013/01/04 (FH hourdin@lmd.jussieu.fr) ! Introduction of an implicit computation of vertical advection in ! the environment of thermal plumes in thermcell_dq ! impl = 0 : explicit, 1 : implicit, -1 : old version ! controled by iflag_thermals = ! 15, 16 run with impl=-1 : numerical convergence with NPv3 ! 17, 18 run with impl=1 : more stable ! 15 and 17 correspond to the activation of the stratocumulus "bidouille" ! Using ! abort_physic ! iso_verif_aberrant_encadre ! iso_verif_egalite ! test_ltherm ! thermcell_closure ! thermcell_dq ! thermcell_dry ! thermcell_dv2 ! thermcell_env ! thermcell_flux2 ! thermcell_height ! thermcell_plume ! thermcell_plume_5B ! thermcell_plume_6A !======================================================================= !----------------------------------------------------------------------- ! declarations: ! ------------- ! arguments: ! ---------- INTEGER, INTENT(IN) :: itap, ngrid, nlay REAL, INTENT(IN) :: ptimestep REAL, INTENT(IN), DIMENSION(ngrid, nlay) :: ptemp, puwind, pvwind, pplay, pphi, ptemp_env, po_env ! ATTENTION : zpspsk est inout et out mais c'est pas forcement pour de bonnes raisons (FH, 2023) REAL, INTENT(IN), DIMENSION(ngrid, nlay) :: p_o REAL, INTENT(OUT), DIMENSION(ngrid, nlay) :: zpspsk REAL, INTENT(IN), DIMENSION(ngrid, nlay + 1) :: pplev INTEGER, INTENT(OUT), DIMENSION(ngrid) :: lmax REAL, INTENT(OUT), DIMENSION(ngrid, nlay) :: pdtadj, pduadj, pdvadj, pdoadj, entr0, detr0 REAL, INTENT(OUT), DIMENSION(ngrid, nlay) :: ztla, zqla, zqta, zqsatth, zthl REAL, INTENT(OUT), DIMENSION(ngrid, nlay + 1) :: fm0, zw2, fraca REAL, INTENT(INOUT), DIMENSION(ngrid) :: zmax0, f0 REAL, INTENT(OUT), DIMENSION(ngrid, nlay) :: ztva, ztv logical, INTENT(IN) :: debut REAL, INTENT(OUT), DIMENSION(ngrid, nlay) :: ratqscth, ratqsdiff REAL, INTENT(OUT), DIMENSION(ngrid) :: pcon REAL, INTENT(OUT), DIMENSION(ngrid, nlay) :: rhobarz, wth3 REAL, INTENT(OUT), DIMENSION(ngrid) :: wmax_sec INTEGER, INTENT(OUT), DIMENSION(ngrid) :: lalim REAL, INTENT(OUT), DIMENSION(ngrid, nlay + 1) :: fm REAL, INTENT(OUT), DIMENSION(ngrid, nlay) :: alim_star REAL, INTENT(OUT), DIMENSION(ngrid) :: zmax, zcong ! local: ! ------ INTEGER, save :: igout = 1 !$OMP THREADPRIVATE(igout) INTEGER, save :: lunout1 = 6 !$OMP THREADPRIVATE(lunout1) INTEGER, save :: lev_out = 10 !$OMP THREADPRIVATE(lev_out) REAL lambda, zf, zf2, var, vardiff, CHI INTEGER ig, k, l, ierr, ll LOGICAL sorties REAL, DIMENSION(ngrid) :: linter, zmix, zmax_sec, lintercong INTEGER, DIMENSION(ngrid) :: lmin, lmix, lmix_bis, nivcon, lcong REAL, DIMENSION(ngrid, nlay) :: ztva_est REAL, DIMENSION(ngrid, nlay) :: deltaz, zlay, zdthladj, zu, zv, z_o, zl, zva, zua, z_oa REAL, DIMENSION(ngrid, nlay) :: ztemp_env ! temperarure liquide de l'environnement REAL, DIMENSION(ngrid, nlay) :: zta, zha, q2, wq, wthl, wthv, thetath2, wth2 REAL, DIMENSION(ngrid, nlay) :: rho, masse REAL, DIMENSION(ngrid, nlay + 1) :: zw_est, zlev REAL, DIMENSION(ngrid) :: wmax, wmax_tmp REAL, DIMENSION(ngrid, nlay + 1) :: f_star REAL, DIMENSION(ngrid, nlay) :: entr, detr, entr_star, detr_star, alim_star_clos REAL, DIMENSION(ngrid, nlay) :: zqsat, csc REAL, DIMENSION(ngrid) :: zcon, zcon2, alim_star_tot, f REAL, DIMENSION(ngrid, nlay) :: entrdn, detrdn logical, DIMENSION(ngrid, nlay) :: mask CHARACTER (LEN = 20) :: modname = 'thermcell_main' CHARACTER (LEN = 80) :: abort_message #ifdef ISO REAL xtpo(ntiso,ngrid,nlay),xtpdoadj(ntiso,ngrid,nlay) REAL xtzo(ntiso,ngrid,nlay) REAL xtpdoadj_tmp(ngrid,nlay) REAL xtpo_tmp(ngrid,nlay) REAL xtzo_tmp(ngrid,nlay) INTEGER ixt #endif !----------------------------------------------------------------------- ! initialisation: ! --------------- fm = 0. ; entr = 0. ; detr = 0. IF (prt_level>=1) PRINT*, 'thermcell_main V4' sorties = .TRUE. IF(ngrid/=ngrid) THEN PRINT* PRINT*, 'STOP dans convadj' PRINT*, 'ngrid =', ngrid PRINT*, 'ngrid =', ngrid ENDIF !PRINT*,'thermcell_main debut' ! WRITE(lunout,*)'WARNING thermcell_main f0=max(f0,1.e-2)' DO ig = 1, ngrid f0(ig) = max(f0(ig), 1.e-2) zmax0(ig) = max(zmax0(ig), 40.) !IMmarche pas ?! if (f0(ig)<1.e-2) f0(ig)=1.e-2 enddo IF (prt_level>=20) THEN DO ig = 1, ngrid PRINT*, 'th_main ig f0', ig, f0(ig) enddo endif !----------------------------------------------------------------------- ! Calcul de T,q,ql a partir de Tl et qT dans l environnement ! -------------------------------------------------------------------- ! On condense l'eau liquide si besoin. ! En fait on arrive ici d'habitude (jusque 6A) après réévaporation ! Dans une nouvelle mouture, on passe les profiles ! avant la couche limite : iflag_thermals_tenv=1 ! dés le début de la physique : iflag_thermals_tenv=2 ! Mais même pour 2) on ne veut sans doute pas réévaporer. ! On veut comparer thetav dans le thermique, après condensation, ! avec le theta_v effectif de l'environnement. IF (iflag_thermals_tenv - 10 * (iflag_thermals_tenv / 10) == 0) THEN CALL thermcell_env(ngrid, nlay, p_o, ptemp_env, puwind, pvwind, pplay, & pplev, z_o, ztemp_env, zl, ztv, zthl, zu, zv, zpspsk, zqsat, lcong, lintercong, lev_out) else ! Chantier en cours : ne pas effacer (Fredho). 15 septembre 2023 ! Dans la version originale de thermcell_env, on condense l'eau de l'environnement ! pour calculer une temperature potentielle liquide. ! On en déduit un Theta v. ! ... ! contenu de thermcell_env ! SUBROUTINE thermcell_env(ngrid,nlay,po,pt,pu,pv,pplay, & ! & pplev,zo,zh,zl,ztv,zthl,zu,zv,zpspsk,pqsat,lev_out) ! contenu thermcell_env : CALL thermcell_qsat(ngrid*nlay,mask,pplev,pt,po,pqsat) ! contenu thermcell_env : do ll=1,nlay ! contenu thermcell_env : do ig=1,ngrid ! contenu thermcell_env : zl(ig,ll) = max(0.,po(ig,ll)-pqsat(ig,ll)) ! contenu thermcell_env : zh(ig,ll) = pt(ig,ll)+RLvCp*zl(ig,ll) ! T = Tl + Lv/Cp ql ! contenu thermcell_env : zo(ig,ll) = po(ig,ll)-zl(ig,ll) ! contenu thermcell_env : enddo ! contenu thermcell_env : enddo ! contenu thermcell_env : do ll=1,nlay ! contenu thermcell_env : do ig=1,ngrid ! contenu thermcell_env : zpspsk(ig,ll)=(pplay(ig,ll)/100000.)**RKAPPA ! contenu thermcell_env : zu(ig,ll)=pu(ig,ll) ! contenu thermcell_env : zv(ig,ll)=pv(ig,ll) ! contenu thermcell_env : ztv(ig,ll)=zh(ig,ll)/zpspsk(ig,ll) ! contenu thermcell_env : ztv(ig,ll)=ztv(ig,ll)*(1.+RETV*(zo(ig,ll))-zl(ig,ll)) ! contenu thermcell_env : zthl(ig,ll)=pt(ig,ll)/zpspsk(ig,ll) ! contenu thermcell_env : enddo ! contenu thermcell_env : enddo DO l = 1, nlay DO ig = 1, ngrid zl(ig, l) = 0. zu(ig, l) = puwind(ig, l) zv(ig, l) = pvwind(ig, l) ztemp_env(ig, l) = ptemp_env(ig, l) zpspsk(ig, l) = (pplay(ig, l) / 100000.)**RKAPPA ztv(ig, l) = ztemp_env(ig, l) / zpspsk(ig, l) ztv(ig, l) = ztv(ig, l) * (1. + RETV * po_env(ig, l)) zthl(ig, l) = ptemp(ig, l) / zpspsk(ig, l) mask(ig, l) = .TRUE. enddo enddo CALL thermcell_qsat(ngrid * nlay, mask, pplev, ptemp_env, p_o, zqsat) endif IF (prt_level>=1) PRINT*, 'thermcell_main apres thermcell_env' !------------------------------------------------------------------------ ! -------------------- ! + + + + + + + + + + + ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz ! wh,wt,wo ... ! + + + + + + + + + + + zh,zu,zv,z_o,rho ! -------------------- zlev(1) ! \\\\\\\\\\\\\\\\\\\\ !----------------------------------------------------------------------- ! Calcul des altitudes des couches !----------------------------------------------------------------------- DO l = 2, nlay zlev(:, l) = 0.5 * (pphi(:, l) + pphi(:, l - 1)) / RG enddo zlev(:, 1) = 0. zlev(:, nlay + 1) = (2. * pphi(:, nlay) - pphi(:, nlay - 1)) / RG DO l = 1, nlay zlay(:, l) = pphi(:, l) / RG enddo DO l = 1, nlay deltaz(:, l) = zlev(:, l + 1) - zlev(:, l) enddo !----------------------------------------------------------------------- ! Calcul des densites et masses !----------------------------------------------------------------------- rho(:, :) = pplay(:, :) / (zpspsk(:, :) * RD * ztv(:, :)) IF (prt_level>=10) WRITE(lunout, *) 'WARNING thermcell_main rhobarz(:,1)=rho(:,1)' rhobarz(:, 1) = rho(:, 1) DO l = 2, nlay rhobarz(:, l) = 0.5 * (rho(:, l) + rho(:, l - 1)) enddo DO l = 1, nlay masse(:, l) = (pplev(:, l) - pplev(:, l + 1)) / RG enddo IF (prt_level>=1) PRINT*, 'thermcell_main apres initialisation' !------------------------------------------------------------------ ! /|\ ! -------- | F_k+1 ------- ! ----> D_k ! /|\ <---- E_k , A_k ! -------- | F_k --------- ! ----> D_k-1 ! <---- E_k-1 , A_k-1 ! --------------------------- ! ----- F_lmax+1=0 ---------- \ ! lmax (zmax) | ! --------------------------- | ! | ! --------------------------- | ! | ! --------------------------- | ! | ! --------------------------- | ! | ! --------------------------- | ! | E ! --------------------------- | D ! | ! --------------------------- | ! | ! --------------------------- \ | ! lalim | | ! --------------------------- | | ! | | ! --------------------------- | | ! | A | ! --------------------------- | | ! | | ! --------------------------- | | ! lmin (=1 pour le moment) | | ! ----- F_lmin=0 ------------ / / ! --------------------------- ! ////////////////////////// !============================================================================= ! Calculs initiaux ne faisant pas intervenir les changements de phase !============================================================================= !------------------------------------------------------------------ ! 1. alim_star est le profil vertical de l'alimentation a la base du ! panache thermique, calcule a partir de la flotabilite de l'air sec ! 2. lmin et lalim sont les indices inferieurs et superieurs de alim_star !------------------------------------------------------------------ entr_star = 0. ; detr_star = 0. ; alim_star = 0. ; alim_star_tot = 0. lmin = 1 !----------------------------------------------------------------------------- ! 3. wmax_sec et zmax_sec sont les vitesses et altitudes maximum d'un ! panache sec conservatif (e=d=0) alimente selon alim_star ! Il s'agit d'un calcul de type CAPE ! zmax_sec est utilise pour determiner la geometrie du thermique. !------------------------------------------------------------------------------ !--------------------------------------------------------------------------------- !calcul du melange et des variables dans le thermique !-------------------------------------------------------------------------------- IF (prt_level>=1) PRINT*, 'avant thermcell_plume ', lev_out !===================================================================== ! Old version of thermcell_plume in thermcell_plume_6A.F90 ! It includes both thermcell_plume_6A and thermcell_plume_5B corresponding ! to the 5B and 6A versions used for CMIP5 and CMIP6. ! The latest was previously named thermcellV1_plume. ! The new thermcell_plume is a clean version (removing obsolete ! options) of thermcell_plume_6A. ! The 3 versions are controled by ! flag_thermals_ed <= 9 thermcell_plume_6A ! <= 19 thermcell_plume_5B ! else thermcell_plume (default 20 for convergence with 6A) ! Fredho !===================================================================== IF (iflag_thermals_ed<=9) THEN ! PRINT*,'THERM NOUVELLE/NOUVELLE Arnaud' CALL thermcell_plume_6A(itap, ngrid, nlay, ptimestep, ztv, zthl, p_o, zl, rhobarz, & zlev, pplev, pphi, zpspsk, alim_star, alim_star_tot, & lalim, f0, detr_star, entr_star, f_star, csc, ztva, & ztla, zqla, zqta, zha, zw2, zw_est, ztva_est, zqsatth, lmix, lmix_bis, linter & , lev_out, lunout1, igout) elseif (iflag_thermals_ed<=19) THEN ! PRINT*,'THERM RIO et al 2010, version d Arnaud' CALL thermcell_plume_5B(itap, ngrid, nlay, ptimestep, ztv, zthl, p_o, zl, rhobarz, & zlev, pplev, pphi, zpspsk, alim_star, alim_star_tot, & lalim, f0, detr_star, entr_star, f_star, csc, ztva, & ztla, zqla, zqta, zha, zw2, zw_est, ztva_est, zqsatth, lmix, lmix_bis, linter & , lev_out, lunout1, igout) else CALL thermcell_plume(itap, ngrid, nlay, ptimestep, ztv, zthl, p_o, zl, rhobarz, & zlev, pplev, pphi, zpspsk, alim_star, alim_star_tot, & lalim, f0, detr_star, entr_star, f_star, csc, ztva, & ztla, zqla, zqta, zha, zw2, zw_est, ztva_est, zqsatth, lmix, lmix_bis, linter & , lev_out, lunout1, igout) endif IF (prt_level>=1) PRINT*, 'apres thermcell_plume ', lev_out CALL test_ltherm(ngrid, nlay, pplay, lalim, ztv, p_o, ztva, zqla, f_star, zw2, 'thermcell_plum lalim ') CALL test_ltherm(ngrid, nlay, pplay, lmix, ztv, p_o, ztva, zqla, f_star, zw2, 'thermcell_plum lmix ') IF (prt_level>=1) PRINT*, 'thermcell_main apres thermcell_plume' IF (prt_level>=10) THEN WRITE(lunout1, *) 'Dans thermcell_main 2' WRITE(lunout1, *) 'lmin ', lmin(igout) WRITE(lunout1, *) 'lalim ', lalim(igout) WRITE(lunout1, *) ' ig l alim_star entr_star detr_star f_star ' WRITE(lunout1, '(i6,i4,4e15.5)') (igout, l, alim_star(igout, l), entr_star(igout, l), detr_star(igout, l) & , f_star(igout, l + 1), l = 1, nint(linter(igout)) + 5) endif !------------------------------------------------------------------------------- ! Calcul des caracteristiques du thermique:zmax,zmix,wmax !------------------------------------------------------------------------------- CALL thermcell_height(ngrid, nlay, lalim, lmin, linter, lcong, lintercong, lmix, zw2, & zlev, lmax, zmax, zmax0, zmix, wmax, zcong) ! Attention, w2 est transforme en sa racine carree dans cette routine ! Le probleme vient du fait que linter et lmix sont souvent egaux a 1. wmax_tmp = 0. DO l = 1, nlay wmax_tmp(:) = max(wmax_tmp(:), zw2(:, l)) enddo ! PRINT*,"ZMAX ",lalim,lmin,linter,lmix,lmax,zmax,zmax0,zmix,wmax CALL test_ltherm(ngrid, nlay, pplay, lalim, ztv, p_o, ztva, zqla, f_star, zw2, 'thermcell_heig lalim ') CALL test_ltherm(ngrid, nlay, pplay, lmin, ztv, p_o, ztva, zqla, f_star, zw2, 'thermcell_heig lmin ') CALL test_ltherm(ngrid, nlay, pplay, lmix, ztv, p_o, ztva, zqla, f_star, zw2, 'thermcell_heig lmix ') CALL test_ltherm(ngrid, nlay, pplay, lmax, ztv, p_o, ztva, zqla, f_star, zw2, 'thermcell_heig lmax ') IF (prt_level>=1) PRINT*, 'thermcell_main apres thermcell_height' !------------------------------------------------------------------------------- ! Fermeture,determination de f !------------------------------------------------------------------------------- CALL thermcell_dry(ngrid, nlay, zlev, pphi, ztv, alim_star, & lalim, lmin, zmax_sec, wmax_sec) CALL test_ltherm(ngrid, nlay, pplay, lmin, ztv, p_o, ztva, zqla, f_star, zw2, 'thermcell_dry lmin ') CALL test_ltherm(ngrid, nlay, pplay, lalim, ztv, p_o, ztva, zqla, f_star, zw2, 'thermcell_dry lalim ') IF (prt_level>=1) PRINT*, 'thermcell_main apres thermcell_dry' IF (prt_level>=10) THEN WRITE(lunout1, *) 'Dans thermcell_main 1b' WRITE(lunout1, *) 'lmin ', lmin(igout) WRITE(lunout1, *) 'lalim ', lalim(igout) WRITE(lunout1, *) ' ig l alim_star entr_star detr_star f_star ' WRITE(lunout1, '(i6,i4,e15.5)') (igout, l, alim_star(igout, l) & , l = 1, lalim(igout) + 4) endif ! Choix de la fonction d'alimentation utilisee pour la fermeture. ! Apparemment sans importance alim_star_clos(:, :) = alim_star(:, :) alim_star_clos(:, :) = entr_star(:, :) + alim_star(:, :) !CR Appel de la fermeture seche IF (iflag_thermals_closure==1) THEN CALL thermcell_closure(ngrid, nlay, r_aspect_thermals, ptimestep, rho, & zlev, lalim, alim_star_clos, zmax_sec, wmax_sec, f) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! Appel avec les zmax et wmax tenant compte de la condensation ! Semble moins bien marcher ELSE IF (iflag_thermals_closure==2) THEN CALL thermcell_closure(ngrid, nlay, r_aspect_thermals, ptimestep, rho, & zlev, lalim, alim_star, zmax, wmax, f) endif !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! IF(prt_level>=1)PRINT*, 'thermcell_closure apres thermcell_closure' IF (tau_thermals>1.) THEN lambda = exp(-ptimestep / tau_thermals) f0 = (1. - lambda) * f + lambda * f0 else f0 = f endif ! Test valable seulement en 1D mais pas genant IF (.NOT. (f0(1)>=0.)) THEN abort_message = '.NOT. (f0(1).ge.0.)' CALL abort_physic (modname, abort_message, 1) endif !------------------------------------------------------------------------------- !deduction des flux CALL thermcell_flux2(ngrid, nlay, ptimestep, masse, & lalim, lmax, alim_star, & entr_star, detr_star, f, rhobarz, zlev, zw2, fm, entr, & detr, zqla, lev_out, lunout1, igout) !IM 060508 & detr,zqla,zmax,lev_out,lunout,igout) IF (prt_level>=1) PRINT*, 'thermcell_main apres thermcell_flux' CALL test_ltherm(ngrid, nlay, pplay, lalim, ztv, p_o, ztva, zqla, f_star, zw2, 'thermcell_flux lalim ') CALL test_ltherm(ngrid, nlay, pplay, lmax, ztv, p_o, ztva, zqla, f_star, zw2, 'thermcell_flux lmax ') !------------------------------------------------------------------ ! On ne prend pas directement les profils issus des calculs precedents ! mais on s'autorise genereusement une relaxation vers ceci avec ! une constante de temps tau_thermals (typiquement 1800s). !------------------------------------------------------------------ IF (tau_thermals>1.) THEN lambda = exp(-ptimestep / tau_thermals) fm0 = (1. - lambda) * fm + lambda * fm0 entr0 = (1. - lambda) * entr + lambda * entr0 detr0 = (1. - lambda) * detr + lambda * detr0 else fm0 = fm entr0 = entr detr0 = detr endif !------------------------------------------------------------------ ! Calcul de la fraction de l'ascendance !------------------------------------------------------------------ DO ig = 1, ngrid fraca(ig, 1) = 0. fraca(ig, nlay + 1) = 0. enddo DO l = 2, nlay DO ig = 1, ngrid IF (zw2(ig, l)>1.e-10) THEN fraca(ig, l) = fm(ig, l) / (rhobarz(ig, l) * zw2(ig, l)) else fraca(ig, l) = 0. endif enddo enddo !c------------------------------------------------------------------ ! calcul du transport vertical !------------------------------------------------------------------ IF (iflag_thermals_down > 0) THEN IF (debut) PRINT*, 'WARNING !!! routine thermcell_down en cours de developpement' entrdn = fact_thermals_down * detr0 detrdn = fact_thermals_down * entr0 ! we want to transport potential temperature, total water and momentum CALL thermcell_updown_dq(ngrid, nlay, ptimestep, lmax, entr0, detr0, entrdn, detrdn, masse, zthl, zdthladj) CALL thermcell_updown_dq(ngrid, nlay, ptimestep, lmax, entr0, detr0, entrdn, detrdn, masse, p_o, pdoadj) CALL thermcell_updown_dq(ngrid, nlay, ptimestep, lmax, entr0, detr0, entrdn, detrdn, masse, zu, pduadj) CALL thermcell_updown_dq(ngrid, nlay, ptimestep, lmax, entr0, detr0, entrdn, detrdn, masse, zv, pdvadj) ELSE !-------------------------------------------------------------- ! Temperature potentielle liquide effectivement mélangée par les thermiques DO ll = 1, nlay DO ig = 1, ngrid zthl(ig, ll) = ptemp(ig, ll) / zpspsk(ig, ll) enddo enddo CALL thermcell_dq(ngrid, nlay, dqimpl, ptimestep, fm0, entr0, masse, & zthl, zdthladj, zta, lev_out) DO ll = 1, nlay DO ig = 1, ngrid z_o(ig, ll) = p_o(ig, ll) enddo enddo CALL thermcell_dq(ngrid, nlay, dqimpl, ptimestep, fm0, entr0, masse, & z_o, pdoadj, z_oa, lev_out) #ifdef ISO ! C Risi: on utilise directement la meme routine DO ixt=1,ntiso DO ll=1,nlay DO ig=1,ngrid xtpo_tmp(ig,ll)=xtpo(ixt,ig,ll) xtzo_tmp(ig,ll)=xtzo(ixt,ig,ll) enddo enddo CALL thermcell_dq(ngrid,nlay,dqimpl,ptimestep,fm0,entr0,masse, & xtpo_tmp,xtpdoadj_tmp,xtzo_tmp,lev_out) DO ll=1,nlay DO ig=1,ngrid xtpdoadj(ixt,ig,ll)=xtpdoadj_tmp(ig,ll) enddo enddo enddo #endif #ifdef ISO #ifdef ISOVERIF DO ll=1,nlay DO ig=1,ngrid IF (iso_eau.gt.0) THEN CALL iso_verif_egalite(xtpo(iso_eau,ig,ll), & p_o(ig,ll),'thermcell_main 594') CALL iso_verif_egalite(xtpdoadj(iso_eau,ig,ll), & pdoadj(ig,ll),'thermcell_main 596') endif IF (iso_HDO.gt.0) THEN CALL iso_verif_aberrant_encadre(xtpo(iso_hdo,ig,ll) & /p_o(ig,ll),'thermcell_main 610') endif enddo enddo !DO ll=1,nlay WRITE(*,*) 'thermcell_main 600 tmp: apres thermcell_dq' #endif #endif !------------------------------------------------------------------ ! calcul du transport vertical du moment horizontal !------------------------------------------------------------------ !IM 090508 IF (dvdq == 0) THEN ! Calcul du transport de V tenant compte d'echange par gradient ! de pression horizontal avec l'environnement CALL thermcell_dv2(ngrid, nlay, ptimestep, fm0, entr0, masse & ! & ,fraca*dvdq,zmax & , fraca, zmax & , zu, zv, pduadj, pdvadj, zua, zva, lev_out) else ! calcul purement conservatif pour le transport de V CALL thermcell_dq(ngrid, nlay, dqimpl, ptimestep, fm0, entr0, masse & , zu, pduadj, zua, lev_out) CALL thermcell_dq(ngrid, nlay, dqimpl, ptimestep, fm0, entr0, masse & , zv, pdvadj, zva, lev_out) endif ENDIF ! PRINT*,'13 OK convect8' DO l = 1, nlay DO ig = 1, ngrid pdtadj(ig, l) = zdthladj(ig, l) * zpspsk(ig, l) enddo enddo IF (prt_level>=1) PRINT*, '14 OK convect8' !------------------------------------------------------------------ ! Calculs de diagnostiques pour les sorties !------------------------------------------------------------------ !calcul de fraca pour les sorties IF (sorties) THEN IF (prt_level>=1) PRINT*, '14a OK convect8' ! calcul du niveau de condensation ! initialisation DO ig = 1, ngrid nivcon(ig) = 0 zcon(ig) = 0. enddo !nouveau calcul DO ig = 1, ngrid ! WARNING !!! verifier que c'est bien ztemp_env qu'on veut là CHI = ztemp_env(ig, 1) / (1669.0 - 122.0 * z_o(ig, 1) / zqsat(ig, 1) - ztemp_env(ig, 1)) pcon(ig) = pplay(ig, 1) * (z_o(ig, 1) / zqsat(ig, 1))**CHI enddo !IM do k=1,nlay DO k = 1, nlay - 1 DO ig = 1, ngrid IF ((pcon(ig)<=pplay(ig, k)) & .AND.(pcon(ig)>pplay(ig, k + 1))) THEN zcon2(ig) = zlay(ig, k) - (pcon(ig) - pplay(ig, k)) / (RG * rho(ig, k)) / 100. endif enddo enddo !IM ierr = 0 DO ig = 1, ngrid IF (pcon(ig)<=pplay(ig, nlay)) THEN zcon2(ig) = zlay(ig, nlay) - (pcon(ig) - pplay(ig, nlay)) / (RG * rho(ig, nlay)) / 100. ierr = 1 endif enddo ! if (ierr==1) THEN ! abort_message = 'thermcellV0_main: les thermiques vont trop haut ' ! CALL abort_physic (modname,abort_message,1) ! endif IF (prt_level>=1) PRINT*, '14b OK convect8' DO k = nlay, 1, -1 DO ig = 1, ngrid IF (zqla(ig, k)>1e-10) THEN nivcon(ig) = k zcon(ig) = zlev(ig, k) endif enddo enddo IF (prt_level>=1) PRINT*, '14c OK convect8' !calcul des moments !initialisation DO l = 1, nlay DO ig = 1, ngrid q2(ig, l) = 0. wth2(ig, l) = 0. wth3(ig, l) = 0. ratqscth(ig, l) = 0. ratqsdiff(ig, l) = 0. enddo enddo IF (prt_level>=1) PRINT*, '14d OK convect8' IF (prt_level>=10)WRITE(lunout, *) & 'WARNING thermcell_main wth2=0. si zw2 > 1.e-10' DO l = 1, nlay DO ig = 1, ngrid zf = fraca(ig, l) zf2 = zf / (1. - zf) thetath2(ig, l) = zf2 * (ztla(ig, l) - zthl(ig, l))**2 IF(zw2(ig, l)>1.e-10) THEN wth2(ig, l) = zf2 * (zw2(ig, l))**2 else wth2(ig, l) = 0. endif wth3(ig, l) = zf2 * (1 - 2. * fraca(ig, l)) / (1 - fraca(ig, l)) & * zw2(ig, l) * zw2(ig, l) * zw2(ig, l) q2(ig, l) = zf2 * (zqta(ig, l) * 1000. - p_o(ig, l) * 1000.)**2 !test: on calcul q2/p_o=ratqsc ratqscth(ig, l) = sqrt(max(q2(ig, l), 1.e-6) / (p_o(ig, l) * 1000.)) enddo enddo !calcul des flux: q, thetal et thetav DO l = 1, nlay DO ig = 1, ngrid wq(ig, l) = fraca(ig, l) * zw2(ig, l) * (zqta(ig, l) * 1000. - p_o(ig, l) * 1000.) wthl(ig, l) = fraca(ig, l) * zw2(ig, l) * (ztla(ig, l) - zthl(ig, l)) wthv(ig, l) = fraca(ig, l) * zw2(ig, l) * (ztva(ig, l) - ztv(ig, l)) enddo enddo !calcul du ratqscdiff IF (prt_level>=1) PRINT*, '14e OK convect8' var = 0. vardiff = 0. ratqsdiff(:, :) = 0. DO l = 1, nlay DO ig = 1, ngrid IF (l<=lalim(ig)) THEN var = var + alim_star(ig, l) * zqta(ig, l) * 1000. endif enddo enddo IF (prt_level>=1) PRINT*, '14f OK convect8' DO l = 1, nlay DO ig = 1, ngrid IF (l<=lalim(ig)) THEN zf = fraca(ig, l) zf2 = zf / (1. - zf) vardiff = vardiff + alim_star(ig, l) * (zqta(ig, l) * 1000. - var)**2 endif enddo enddo IF (prt_level>=1) PRINT*, '14g OK convect8' DO l = 1, nlay DO ig = 1, ngrid ratqsdiff(ig, l) = sqrt(vardiff) / (p_o(ig, l) * 1000.) enddo enddo endif IF (prt_level>=1) PRINT*, 'thermcell_main FIN OK' !PRINT*,'thermcell_main fin' END SUBROUTINE thermcell_main !============================================================================= !///////////////////////////////////////////////////////////////////////////// !============================================================================= SUBROUTINE test_ltherm(ngrid, nlay, pplay, long, ztv, p_o, ztva, & ! in zqla, f_star, zw2, comment) ! in !============================================================================= USE lmdz_thermcell_ini, ONLY: prt_level IMPLICIT NONE INTEGER i, k, ngrid, nlay REAL, INTENT(IN), DIMENSION(ngrid, nlay) :: pplay, ztv, p_o, ztva, zqla REAL, INTENT(IN), DIMENSION(ngrid, nlay) :: f_star, zw2 INTEGER, INTENT(IN), DIMENSION(ngrid) :: long REAL seuil CHARACTER*21 comment seuil = 0.25 IF (prt_level>=1) THEN PRINT*, 'WARNING !!! TEST ', comment endif return ! test sur la hauteur des thermiques ... DO i = 1, ngrid !IMtemp if (pplay(i,long(i)).lt.seuil*pplev(i,1)) THEN IF (prt_level>=10) THEN PRINT*, 'WARNING ', comment, ' au point ', i, ' K= ', long(i) PRINT*, ' K P(MB) THV(K) Qenv(g/kg)THVA QLA(g/kg) F* W2' DO k = 1, nlay WRITE(6, '(i3,7f10.3)') k, pplay(i, k), ztv(i, k), 1000 * p_o(i, k), ztva(i, k), 1000 * zqla(i, k), f_star(i, k), zw2(i, k) enddo endif enddo RETURN end ! nrlmd le 10/04/2012 Transport de la TKE par le thermique moyen pour la fermeture en ALP ! On transporte pbl_tke pour donner therm_tke ! Copie conforme de la SUBROUTINE DTKE dans physiq.F ecrite par Frederic Hourdin !======================================================================= !/////////////////////////////////////////////////////////////////////// !======================================================================= SUBROUTINE thermcell_tke_transport(& ngrid, nlay, ptimestep, fm0, entr0, rg, pplev, & ! in therm_tke_max) ! out USE lmdz_thermcell_ini, ONLY: prt_level IMPLICIT NONE !======================================================================= ! Calcul du transport verticale dans la couche limite en presence ! de "thermiques" explicitement representes ! calcul du dq/dt une fois qu'on connait les ascendances !======================================================================= INTEGER ngrid, nlay REAL, INTENT(IN) :: ptimestep REAL, INTENT(IN), DIMENSION(ngrid, nlay + 1) :: fm0, pplev REAL, INTENT(IN), DIMENSION(ngrid, nlay) :: entr0 REAL, INTENT(IN) :: rg REAL, INTENT(OUT), DIMENSION(ngrid, nlay) :: therm_tke_max REAL detr0(ngrid, nlay) REAL masse0(ngrid, nlay) REAL masse(ngrid, nlay), fm(ngrid, nlay + 1) REAL entr(ngrid, nlay) REAL q(ngrid, nlay) INTEGER lev_out ! niveau pour les print REAL qa(ngrid, nlay), detr(ngrid, nlay), wqd(ngrid, nlay + 1) INTEGER ig, k lev_out = 0 IF (prt_level>=1) PRINT*, 'Q2 THERMCEL_DQ 0' ! calcul du detrainement DO k = 1, nlay detr0(:, k) = fm0(:, k) - fm0(:, k + 1) + entr0(:, k) masse0(:, k) = (pplev(:, k) - pplev(:, k + 1)) / RG enddo ! Decalage vertical des entrainements et detrainements. masse(:, 1) = 0.5 * masse0(:, 1) entr(:, 1) = 0.5 * entr0(:, 1) detr(:, 1) = 0.5 * detr0(:, 1) fm(:, 1) = 0. DO k = 1, nlay - 1 masse(:, k + 1) = 0.5 * (masse0(:, k) + masse0(:, k + 1)) entr(:, k + 1) = 0.5 * (entr0(:, k) + entr0(:, k + 1)) detr(:, k + 1) = 0.5 * (detr0(:, k) + detr0(:, k + 1)) fm(:, k + 1) = fm(:, k) + entr(:, k) - detr(:, k) enddo fm(:, nlay + 1) = 0. q(:, :) = therm_tke_max(:, :) !!! nrlmd le 16/09/2010 DO ig = 1, ngrid qa(ig, 1) = q(ig, 1) enddo !!! IF (1==1) THEN DO k = 2, nlay DO ig = 1, ngrid IF ((fm(ig, k + 1) + detr(ig, k)) * ptimestep> & 1.e-5 * masse(ig, k)) THEN qa(ig, k) = (fm(ig, k) * qa(ig, k - 1) + entr(ig, k) * q(ig, k)) & / (fm(ig, k + 1) + detr(ig, k)) else qa(ig, k) = q(ig, k) endif IF (qa(ig, k)<0.) THEN ! PRINT*,'qa<0!!!' endif IF (q(ig, k)<0.) THEN ! PRINT*,'q<0!!!' endif enddo enddo ! Calcul du flux subsident DO k = 2, nlay DO ig = 1, ngrid wqd(ig, k) = fm(ig, k) * q(ig, k) IF (wqd(ig, k)<0.) THEN ! PRINT*,'wqd<0!!!' endif enddo enddo DO ig = 1, ngrid wqd(ig, 1) = 0. wqd(ig, nlay + 1) = 0. enddo ! Calcul des tendances DO k = 1, nlay DO ig = 1, ngrid q(ig, k) = q(ig, k) + (detr(ig, k) * qa(ig, k) - entr(ig, k) * q(ig, k) & - wqd(ig, k) + wqd(ig, k + 1)) & * ptimestep / masse(ig, k) enddo enddo endif therm_tke_max(:, :) = q(:, :) RETURN !!! fin nrlmd le 10/04/2012 end END MODULE lmdz_thermcell_main