! radiation_matrix.F90 - SPARTACUS matrix operations ! (C) Copyright 2014- ECMWF. ! This software is licensed under the terms of the Apache Licence Version 2.0 ! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. ! In applying this licence, ECMWF does not waive the privileges and immunities ! granted to it by virtue of its status as an intergovernmental organisation ! nor does it submit to any jurisdiction. ! Author: Robin Hogan ! Email: r.j.hogan@ecmwf.int ! Modifications ! 2018-10-15 R. Hogan Added fast_expm_exchange_[23] ! This module provides the neccessary mathematical functions for the ! SPARTACUS radiation scheme: matrix multiplication, matrix solvers ! and matrix exponentiation, but (a) multiple matrices are operated on ! at once with array access indended to facilitate vectorization, and ! (b) optimization for 2x2 and 3x3 matrices. There is probably ! considerable scope for further optimization. Note that this module ! is not used by the McICA solver. module radiation_matrix use parkind1, only : jprb implicit none public ! Codes to describe sparseness pattern, where the SHORTWAVE ! pattern is of the form: ! (x x x) ! (x x x) ! (0 0 x) ! where each element may itself be a square matrix. integer, parameter :: IMatrixPatternDense = 0 integer, parameter :: IMatrixPatternShortwave = 1 public :: mat_x_vec, singlemat_x_vec, mat_x_mat, & & singlemat_x_mat, mat_x_singlemat, & & identity_minus_mat_x_mat, solve_vec, solve_mat, expm, & & fast_expm_exchange_2, fast_expm_exchange_3 private :: solve_vec_2, solve_vec_3, solve_mat_2, & & solve_mat_3, lu_factorization, lu_substitution, solve_mat_n, & & diag_mat_right_divide_3 interface fast_expm_exchange module procedure fast_expm_exchange_2, fast_expm_exchange_3 end interface fast_expm_exchange contains ! --- MATRIX-VECTOR MULTIPLICATION --- !--------------------------------------------------------------------- ! Treat A as n m-by-m square matrices (with the n dimension varying ! fastest) and b as n m-element vectors, and perform matrix-vector ! multiplications on first iend pairs function mat_x_vec(n,iend,m,A,b,do_top_left_only_in) use yomhook, only : lhook, dr_hook integer, intent(in) :: n, m, iend real(jprb), intent(in), dimension(:,:,:) :: A real(jprb), intent(in), dimension(:,:) :: b logical, intent(in), optional :: do_top_left_only_in real(jprb), dimension(iend,m):: mat_x_vec integer :: j1, j2 logical :: do_top_left_only real(jprb) :: hook_handle if (lhook) call dr_hook('radiation_matrix:mat_x_vec',0,hook_handle) if (present(do_top_left_only_in)) then do_top_left_only = do_top_left_only_in else do_top_left_only = .false. end if ! Array-wise assignment mat_x_vec = 0.0_jprb if (do_top_left_only) then mat_x_vec(1:iend,1) = A(1:iend,1,1)*b(1:iend,1) else DO j1 = 1,m DO j2 = 1,m mat_x_vec(1:iend,j1) = mat_x_vec(1:iend,j1) & & + A(1:iend,j1,j2)*b(1:iend,j2) end do end do end if if (lhook) call dr_hook('radiation_matrix:mat_x_vec',1,hook_handle) end function mat_x_vec !--------------------------------------------------------------------- ! Treat A as an m-by-m square matrix and b as n m-element vectors ! (with the n dimension varying fastest), and perform matrix-vector ! multiplications on first iend pairs function singlemat_x_vec(n,iend,m,A,b) use yomhook, only : lhook, dr_hook integer, intent(in) :: n, m, iend real(jprb), intent(in), dimension(m,m) :: A real(jprb), intent(in), dimension(:,:) :: b real(jprb), dimension(iend,m) :: singlemat_x_vec integer :: j1, j2 real(jprb) :: hook_handle if (lhook) call dr_hook('radiation_matrix:single_mat_x_vec',0,hook_handle) ! Array-wise assignment singlemat_x_vec = 0.0_jprb DO j1 = 1,m DO j2 = 1,m singlemat_x_vec(1:iend,j1) = singlemat_x_vec(1:iend,j1) & & + A(j1,j2)*b(1:iend,j2) end do end do if (lhook) call dr_hook('radiation_matrix:single_mat_x_vec',1,hook_handle) end function singlemat_x_vec ! --- SQUARE MATRIX-MATRIX MULTIPLICATION --- !--------------------------------------------------------------------- ! Treat A and B each as n m-by-m square matrices (with the n ! dimension varying fastest) and perform matrix multiplications on ! all n matrix pairs function mat_x_mat(n,iend,m,A,B,i_matrix_pattern) use yomhook, only : lhook, dr_hook integer, intent(in) :: n, m, iend integer, intent(in), optional :: i_matrix_pattern real(jprb), intent(in), dimension(:,:,:) :: A, B real(jprb), dimension(iend,m,m) :: mat_x_mat integer :: j1, j2, j3 integer :: mblock, m2block integer :: i_actual_matrix_pattern real(jprb) :: hook_handle if (lhook) call dr_hook('radiation_matrix:mat_x_mat',0,hook_handle) if (present(i_matrix_pattern)) then i_actual_matrix_pattern = i_matrix_pattern else i_actual_matrix_pattern = IMatrixPatternDense end if ! Array-wise assignment mat_x_mat = 0.0_jprb if (i_actual_matrix_pattern == IMatrixPatternShortwave) then ! Matrix has a sparsity pattern ! (C D E) ! A = (F G H) ! (0 0 I) mblock = m/3 m2block = 2*mblock ! Do the top-left (C, D, F, G) DO j2 = 1,m2block DO j1 = 1,m2block DO j3 = 1,m2block mat_x_mat(1:iend,j1,j2) = mat_x_mat(1:iend,j1,j2) & & + A(1:iend,j1,j3)*B(1:iend,j3,j2) end do end do end do DO j2 = m2block+1,m ! Do the top-right (E & H) DO j1 = 1,m2block DO j3 = 1,m mat_x_mat(1:iend,j1,j2) = mat_x_mat(1:iend,j1,j2) & & + A(1:iend,j1,j3)*B(1:iend,j3,j2) end do end do ! Do the bottom-right (I) DO j1 = m2block+1,m DO j3 = m2block+1,m mat_x_mat(1:iend,j1,j2) = mat_x_mat(1:iend,j1,j2) & & + A(1:iend,j1,j3)*B(1:iend,j3,j2) end do end do end do else ! Ordinary dense matrix DO j2 = 1,m DO j1 = 1,m DO j3 = 1,m mat_x_mat(1:iend,j1,j2) = mat_x_mat(1:iend,j1,j2) & & + A(1:iend,j1,j3)*B(1:iend,j3,j2) end do end do end do end if if (lhook) call dr_hook('radiation_matrix:mat_x_mat',1,hook_handle) end function mat_x_mat !--------------------------------------------------------------------- ! Treat A as an m-by-m matrix and B as n m-by-m square matrices ! (with the n dimension varying fastest) and perform matrix ! multiplications on the first iend matrix pairs function singlemat_x_mat(n,iend,m,A,B) use yomhook, only : lhook, dr_hook integer, intent(in) :: n, m, iend real(jprb), intent(in), dimension(m,m) :: A real(jprb), intent(in), dimension(:,:,:) :: B real(jprb), dimension(iend,m,m) :: singlemat_x_mat integer :: j1, j2, j3 real(jprb) :: hook_handle if (lhook) call dr_hook('radiation_matrix:singlemat_x_mat',0,hook_handle) ! Array-wise assignment singlemat_x_mat = 0.0_jprb DO j2 = 1,m DO j1 = 1,m DO j3 = 1,m singlemat_x_mat(1:iend,j1,j2) = singlemat_x_mat(1:iend,j1,j2) & & + A(j1,j3)*B(1:iend,j3,j2) end do end do end do if (lhook) call dr_hook('radiation_matrix:singlemat_x_mat',1,hook_handle) end function singlemat_x_mat !--------------------------------------------------------------------- ! Treat B as an m-by-m matrix and A as n m-by-m square matrices ! (with the n dimension varying fastest) and perform matrix ! multiplications on the first iend matrix pairs function mat_x_singlemat(n,iend,m,A,B) use yomhook, only : lhook, dr_hook integer, intent(in) :: n, m, iend real(jprb), intent(in), dimension(:,:,:) :: A real(jprb), intent(in), dimension(m,m) :: B real(jprb), dimension(iend,m,m) :: mat_x_singlemat integer :: j1, j2, j3 real(jprb) :: hook_handle if (lhook) call dr_hook('radiation_matrix:mat_x_singlemat',0,hook_handle) ! Array-wise assignment mat_x_singlemat = 0.0_jprb DO j2 = 1,m DO j1 = 1,m DO j3 = 1,m mat_x_singlemat(1:iend,j1,j2) = mat_x_singlemat(1:iend,j1,j2) & & + A(1:iend,j1,j3)*B(j3,j2) end do end do end do if (lhook) call dr_hook('radiation_matrix:mat_x_singlemat',1,hook_handle) end function mat_x_singlemat !--------------------------------------------------------------------- ! Compute I-A*B where I is the identity matrix and A & B are n ! m-by-m square matrices function identity_minus_mat_x_mat(n,iend,m,A,B,i_matrix_pattern) use yomhook, only : lhook, dr_hook integer, intent(in) :: n, m, iend integer, intent(in), optional :: i_matrix_pattern real(jprb), intent(in), dimension(:,:,:) :: A, B real(jprb), dimension(iend,m,m) :: identity_minus_mat_x_mat integer :: j real(jprb) :: hook_handle if (lhook) call dr_hook('radiation_matrix:identity_mat_x_mat',0,hook_handle) if (present(i_matrix_pattern)) then identity_minus_mat_x_mat = mat_x_mat(n,iend,m,A,B,i_matrix_pattern) else identity_minus_mat_x_mat = mat_x_mat(n,iend,m,A,B) end if identity_minus_mat_x_mat = - identity_minus_mat_x_mat DO j = 1,m identity_minus_mat_x_mat(1:iend,j,j) & & = 1.0_jprb + identity_minus_mat_x_mat(1:iend,j,j) end do if (lhook) call dr_hook('radiation_matrix:identity_mat_x_mat',1,hook_handle) end function identity_minus_mat_x_mat ! --- REPEATEDLY SQUARE A MATRIX --- !--------------------------------------------------------------------- ! Square m-by-m matrix "A" nrepeat times. A will be corrupted by ! this function. function repeated_square(m,A,nrepeat,i_matrix_pattern) integer, intent(in) :: m, nrepeat real(jprb), intent(inout) :: A(m,m) integer, intent(in), optional :: i_matrix_pattern real(jprb) :: repeated_square(m,m) integer :: j1, j2, j3, j4 integer :: mblock, m2block integer :: i_actual_matrix_pattern if (present(i_matrix_pattern)) then i_actual_matrix_pattern = i_matrix_pattern else i_actual_matrix_pattern = IMatrixPatternDense end if if (i_actual_matrix_pattern == IMatrixPatternShortwave) then ! Matrix has a sparsity pattern ! (C D E) ! A = (F G H) ! (0 0 I) mblock = m/3 m2block = 2*mblock DO j4 = 1,nrepeat repeated_square = 0.0_jprb ! Do the top-left (C, D, F & G) DO j2 = 1,m2block DO j1 = 1,m2block DO j3 = 1,m2block repeated_square(j1,j2) = repeated_square(j1,j2) & & + A(j1,j3)*A(j3,j2) end do end do end do DO j2 = m2block+1, m ! Do the top-right (E & H) DO j1 = 1,m2block DO j3 = 1,m repeated_square(j1,j2) = repeated_square(j1,j2) & & + A(j1,j3)*A(j3,j2) end do end do ! Do the bottom-right (I) DO j1 = m2block+1, m DO j3 = m2block+1,m repeated_square(j1,j2) = repeated_square(j1,j2) & & + A(j1,j3)*A(j3,j2) end do end do end do if (j4 < nrepeat) then A = repeated_square end if end do else ! Ordinary dense matrix DO j4 = 1,nrepeat repeated_square = 0.0_jprb DO j2 = 1,m DO j1 = 1,m DO j3 = 1,m repeated_square(j1,j2) = repeated_square(j1,j2) & & + A(j1,j3)*A(j3,j2) end do end do end do if (j4 < nrepeat) then A = repeated_square end if end do end if end function repeated_square ! --- SOLVE LINEAR EQUATIONS --- !--------------------------------------------------------------------- ! Solve Ax=b to obtain x. Version optimized for 2x2 matrices using ! Cramer's method: "A" contains n 2x2 matrices and "b" contains n ! 2-element vectors; returns A^-1 b. pure subroutine solve_vec_2(n,iend,A,b,x) integer, intent(in) :: n, iend real(jprb), intent(in) :: A(:,:,:) real(jprb), intent(in) :: b(:,:) real(jprb), intent(out) :: x(:,:) real(jprb) :: inv_det(iend) inv_det = 1.0_jprb / ( A(1:iend,1,1)*A(1:iend,2,2) & & - A(1:iend,1,2)*A(1:iend,2,1)) x(1:iend,1) = inv_det*(A(1:iend,2,2)*b(1:iend,1)-A(1:iend,1,2)*b(1:iend,2)) x(1:iend,2) = inv_det*(A(1:iend,1,1)*b(1:iend,2)-A(1:iend,2,1)*b(1:iend,1)) end subroutine solve_vec_2 !--------------------------------------------------------------------- ! Solve AX=B to obtain X, i.e. the matrix right-hand-side version of ! solve_vec_2, with A, X and B all containing n 2x2 matrices; ! returns A^-1 B using Cramer's method. pure subroutine solve_mat_2(n,iend,A,B,X) integer, intent(in) :: n, iend real(jprb), intent(in) :: A(:,:,:) real(jprb), intent(in) :: B(:,:,:) real(jprb), intent(out) :: X(:,:,:) real(jprb) :: inv_det(iend) inv_det = 1.0_jprb / ( A(1:iend,1,1)*A(1:iend,2,2) & & - A(1:iend,1,2)*A(1:iend,2,1)) X(1:iend,1,1) = inv_det*( A(1:iend,2,2)*B(1:iend,1,1) & & -A(1:iend,1,2)*B(1:iend,2,1)) X(1:iend,2,1) = inv_det*( A(1:iend,1,1)*B(1:iend,2,1) & & -A(1:iend,2,1)*B(1:iend,1,1)) X(1:iend,1,2) = inv_det*( A(1:iend,2,2)*B(1:iend,1,2) & & -A(1:iend,1,2)*B(1:iend,2,2)) X(1:iend,2,2) = inv_det*( A(1:iend,1,1)*B(1:iend,2,2) & & -A(1:iend,2,1)*B(1:iend,1,2)) end subroutine solve_mat_2 !--------------------------------------------------------------------- ! Solve Ax=b optimized for 3x3 matrices, using LU ! factorization and substitution without pivoting. pure subroutine solve_vec_3(n,iend,A,b,x) integer, intent(in) :: n, iend real(jprb), intent(in) :: A(:,:,:) real(jprb), intent(in) :: b(:,:) real(jprb), intent(out) :: x(:,:) real(jprb), dimension(iend) :: L21, L31, L32 real(jprb), dimension(iend) :: U22, U23, U33 real(jprb), dimension(iend) :: y2, y3 ! Some compilers unfortunately don't support assocate ! associate (U11 => A(:,1,1), U12 => A(:,1,2), U13 => A(1,3), & ! y1 => b(:,1), x1 => solve_vec3(:,1), & ! x2 => solve_vec3(:,2), x3 => solve_vec3(:,3)) ! LU decomposition: ! ( 1 ) (U11 U12 U13) ! A = (L21 1 ) * ( U22 U23) ! (L31 L32 1) ( U33) L21 = A(1:iend,2,1) / A(1:iend,1,1) L31 = A(1:iend,3,1) / A(1:iend,1,1) U22 = A(1:iend,2,2) - L21*A(1:iend,1,2) U23 = A(1:iend,2,3) - L21*A(1:iend,1,3) L32 =(A(1:iend,3,2) - L31*A(1:iend,1,2)) / U22 U33 = A(1:iend,3,3) - L31*A(1:iend,1,3) - L32*U23 ! Solve Ly = b by forward substitution y2 = b(1:iend,2) - L21*b(1:iend,1) y3 = b(1:iend,3) - L31*b(1:iend,1) - L32*y2 ! Solve Ux = y by back substitution x(1:iend,3) = y3/U33 x(1:iend,2) = (y2 - U23*x(1:iend,3)) / U22 x(1:iend,1) = (b(1:iend,1) - A(1:iend,1,2)*x(1:iend,2) & & - A(1:iend,1,3)*x(1:iend,3)) / A(1:iend,1,1) ! end associate end subroutine solve_vec_3 !--------------------------------------------------------------------- ! Solve AX=B optimized for 3x3 matrices, using LU factorization and ! substitution with no pivoting. pure subroutine solve_mat_3(n,iend,A,B,X) integer, intent(in) :: n, iend real(jprb), intent(in) :: A(:,:,:) real(jprb), intent(in) :: B(:,:,:) real(jprb), intent(out) :: X(:,:,:) real(jprb), dimension(iend) :: L21, L31, L32 real(jprb), dimension(iend) :: U22, U23, U33 real(jprb), dimension(iend) :: y2, y3 integer :: j ! associate (U11 => A(:,1,1), U12 => A(:,1,2), U13 => A(1,3)) ! LU decomposition: ! ( 1 ) (U11 U12 U13) ! A = (L21 1 ) * ( U22 U23) ! (L31 L32 1) ( U33) L21 = A(1:iend,2,1) / A(1:iend,1,1) L31 = A(1:iend,3,1) / A(1:iend,1,1) U22 = A(1:iend,2,2) - L21*A(1:iend,1,2) U23 = A(1:iend,2,3) - L21*A(1:iend,1,3) L32 =(A(1:iend,3,2) - L31*A(1:iend,1,2)) / U22 U33 = A(1:iend,3,3) - L31*A(1:iend,1,3) - L32*U23 DO j = 1,3 ! Solve Ly = B(:,:,j) by forward substitution ! y1 = B(:,1,j) y2 = B(1:iend,2,j) - L21*B(1:iend,1,j) y3 = B(1:iend,3,j) - L31*B(1:iend,1,j) - L32*y2 ! Solve UX(:,:,j) = y by back substitution X(1:iend,3,j) = y3 / U33 X(1:iend,2,j) = (y2 - U23*X(1:iend,3,j)) / U22 X(1:iend,1,j) = (B(1:iend,1,j) - A(1:iend,1,2)*X(1:iend,2,j) & & - A(1:iend,1,3)*X(1:iend,3,j)) / A(1:iend,1,1) end do end subroutine solve_mat_3 !--------------------------------------------------------------------- ! Return X = B A^-1 = (A^-T B)^T optimized for 3x3 matrices, where B ! is a diagonal matrix, using LU factorization and substitution with ! no pivoting. pure subroutine diag_mat_right_divide_3(n,iend,A,B,X) integer, intent(in) :: n, iend real(jprb), intent(in) :: A(iend,3,3) real(jprb), intent(in) :: B(iend,3) real(jprb), intent(out) :: X(n,3,3) real(jprb), dimension(iend) :: L21, L31, L32 real(jprb), dimension(iend) :: U22, U23, U33 real(jprb), dimension(iend) :: y2, y3 ! associate (U11 => A(:,1,1), U12 => A(:,1,2), U13 => A(1,3)) ! LU decomposition of the *transpose* of A: ! ( 1 ) (U11 U12 U13) ! A^T = (L21 1 ) * ( U22 U23) ! (L31 L32 1) ( U33) L21 = A(1:iend,1,2) / A(1:iend,1,1) L31 = A(1:iend,1,3) / A(1:iend,1,1) U22 = A(1:iend,2,2) - L21*A(1:iend,2,1) U23 = A(1:iend,3,2) - L21*A(1:iend,3,1) L32 =(A(1:iend,2,3) - L31*A(1:iend,2,1)) / U22 U33 = A(1:iend,3,3) - L31*A(1:iend,3,1) - L32*U23 ! Solve X(1,:) = A^-T ( B(1) ) ! ( 0 ) ! ( 0 ) ! Solve Ly = B(:,:,j) by forward substitution ! y1 = B(:,1) y2 = - L21*B(1:iend,1) y3 = - L31*B(1:iend,1) - L32*y2 ! Solve UX(:,:,j) = y by back substitution X(1:iend,1,3) = y3 / U33 X(1:iend,1,2) = (y2 - U23*X(1:iend,1,3)) / U22 X(1:iend,1,1) = (B(1:iend,1) - A(1:iend,2,1)*X(1:iend,1,2) & & - A(1:iend,3,1)*X(1:iend,1,3)) / A(1:iend,1,1) ! Solve X(2,:) = A^-T ( 0 ) ! ( B(2) ) ! ( 0 ) ! Solve Ly = B(:,:,j) by forward substitution ! y1 = 0 ! y2 = B(1:iend,2) y3 = - L32*B(1:iend,2) ! Solve UX(:,:,j) = y by back substitution X(1:iend,2,3) = y3 / U33 X(1:iend,2,2) = (B(1:iend,2) - U23*X(1:iend,2,3)) / U22 X(1:iend,2,1) = (-A(1:iend,2,1)*X(1:iend,2,2) & & -A(1:iend,3,1)*X(1:iend,2,3)) / A(1:iend,1,1) ! Solve X(3,:) = A^-T ( 0 ) ! ( 0 ) ! ( B(3) ) ! Solve Ly = B(:,:,j) by forward substitution ! y1 = 0 ! y2 = 0 ! y3 = B(1:iend,3) ! Solve UX(:,:,j) = y by back substitution X(1:iend,3,3) = B(1:iend,3) / U33 X(1:iend,3,2) = -U23*X(1:iend,3,3) / U22 X(1:iend,3,1) = (-A(1:iend,2,1)*X(1:iend,3,2) & & - A(1:iend,3,1)*X(1:iend,3,3)) / A(1:iend,1,1) end subroutine diag_mat_right_divide_3 !--------------------------------------------------------------------- ! Treat A as n m-by-m matrices and return the LU factorization of A ! compressed into a single matrice (with L below the diagonal and U ! on and above the diagonal; the diagonal elements of L are 1). No ! pivoting is performed. pure subroutine lu_factorization(n, iend, m, A, LU) integer, intent(in) :: n, m, iend real(jprb), intent(in) :: A(:,:,:) real(jprb), intent(out) :: LU(iend,m,m) real(jprb) :: s(iend) integer :: j1, j2, j3 ! This routine is adapted from an in-place one, so we first copy ! the input into the output. LU(1:iend,1:m,1:m) = A(1:iend,1:m,1:m) DO j2 = 1, m DO j1 = 1, j2-1 s = LU(1:iend,j1,j2) DO j3 = 1, j1-1 s = s - LU(1:iend,j1,j3) * LU(1:iend,j3,j2) end do LU(1:iend,j1,j2) = s end do DO j1 = j2, m s = LU(1:iend,j1,j2) DO j3 = 1, j2-1 s = s - LU(1:iend,j1,j3) * LU(1:iend,j3,j2) end do LU(1:iend,j1,j2) = s end do if (j2 /= m) then s = 1.0_jprb / LU(1:iend,j2,j2) DO j1 = j2+1, m LU(1:iend,j1,j2) = LU(1:iend,j1,j2) * s end do end if end do end subroutine lu_factorization !--------------------------------------------------------------------- ! Treat LU as an LU-factorization of an original matrix A, and ! return x where Ax=b. LU consists of n m-by-m matrices and b as n ! m-element vectors. pure subroutine lu_substitution(n,iend,m,LU,b,x) ! CHECK: dimensions should be ":"? integer, intent(in) :: n, m, iend real(jprb), intent(in) :: LU(iend,m,m) real(jprb), intent(in) :: b(:,:) real(jprb), intent(out):: x(iend,m) integer :: j1, j2 x(1:iend,1:m) = b(1:iend,1:m) ! First solve Ly=b DO j2 = 2, m DO j1 = 1, j2-1 x(1:iend,j2) = x(1:iend,j2) - x(1:iend,j1)*LU(1:iend,j2,j1) end do end do ! Now solve Ux=y DO j2 = m, 1, -1 DO j1 = j2+1, m x(1:iend,j2) = x(1:iend,j2) - x(1:iend,j1)*LU(1:iend,j2,j1) end do x(1:iend,j2) = x(1:iend,j2) / LU(1:iend,j2,j2) end do end subroutine lu_substitution !--------------------------------------------------------------------- ! Return matrix X where AX=B. LU, A, X, B all consist of n m-by-m ! matrices. pure subroutine solve_mat_n(n,iend,m,A,B,X) integer, intent(in) :: n, m, iend real(jprb), intent(in) :: A(:,:,:) real(jprb), intent(in) :: B(:,:,:) real(jprb), intent(out):: X(iend,m,m) real(jprb) :: LU(iend,m,m) integer :: j call lu_factorization(n,iend,m,A,LU) DO j = 1, m call lu_substitution(n,iend,m,LU,B(1:,1:m,j),X(1:iend,1:m,j)) ! call lu_substitution(n,iend,m,LU,B(1:n,1:m,j),X(1:iend,1:m,j)) end do end subroutine solve_mat_n !--------------------------------------------------------------------- ! Solve Ax=b, where A consists of n m-by-m matrices and x and b ! consist of n m-element vectors. For m=2 or m=3, this function ! calls optimized versions, otherwise it uses general LU ! decomposition without pivoting. function solve_vec(n,iend,m,A,b) use yomhook, only : lhook, dr_hook integer, intent(in) :: n, m, iend real(jprb), intent(in) :: A(:,:,:) real(jprb), intent(in) :: b(:,:) real(jprb) :: solve_vec(iend,m) real(jprb) :: LU(iend,m,m) real(jprb) :: hook_handle if (lhook) call dr_hook('radiation_matrix:solve_vec',0,hook_handle) if (m == 2) then call solve_vec_2(n,iend,A,b,solve_vec) elseif (m == 3) then call solve_vec_3(n,iend,A,b,solve_vec) else call lu_factorization(n,iend,m,A,LU) call lu_substitution(n,iend,m,LU,b,solve_vec) end if if (lhook) call dr_hook('radiation_matrix:solve_vec',1,hook_handle) end function solve_vec !--------------------------------------------------------------------- ! Solve AX=B, where A, X and B consist of n m-by-m matrices. For m=2 ! or m=3, this function calls optimized versions, otherwise it uses ! general LU decomposition without pivoting. function solve_mat(n,iend,m,A,B) use yomhook, only : lhook, dr_hook integer, intent(in) :: n, m, iend real(jprb), intent(in) :: A(:,:,:) real(jprb), intent(in) :: B(:,:,:) real(jprb) :: solve_mat(iend,m,m) real(jprb) :: hook_handle if (lhook) call dr_hook('radiation_matrix:solve_mat',0,hook_handle) if (m == 2) then call solve_mat_2(n,iend,A,B,solve_mat) elseif (m == 3) then call solve_mat_3(n,iend,A,B,solve_mat) else call solve_mat_n(n,iend,m,A,B,solve_mat) end if if (lhook) call dr_hook('radiation_matrix:solve_mat',1,hook_handle) end function solve_mat ! --- MATRIX EXPONENTIATION --- !--------------------------------------------------------------------- ! Perform matrix exponential of n m-by-m matrices stored in A (where ! index n varies fastest) using the Higham scaling and squaring ! method. The result is placed in A. This routine is intended for ! speed so is accurate only to single precision. For simplicity and ! to aid vectorization, the Pade approximant of order 7 is used for ! all input matrices, perhaps leading to a few too many ! multiplications for matrices with a small norm. subroutine expm(n,iend,m,A,i_matrix_pattern) use yomhook, only : lhook, dr_hook integer, intent(in) :: n, m, iend real(jprb), intent(inout) :: A(n,m,m) integer, intent(in) :: i_matrix_pattern real(jprb), parameter :: theta(3) = (/4.258730016922831e-01_jprb, & & 1.880152677804762e+00_jprb, & & 3.925724783138660e+00_jprb/) real(jprb), parameter :: c(8) = (/17297280.0_jprb, 8648640.0_jprb, & & 1995840.0_jprb, 277200.0_jprb, 25200.0_jprb, & & 1512.0_jprb, 56.0_jprb, 1.0_jprb/) real(jprb), dimension(iend,m,m) :: A2, A4, A6 real(jprb), dimension(iend,m,m) :: U, V real(jprb) :: normA(iend), sum_column(iend) integer :: j1, j2, j3 real(jprb) :: frac(iend) integer :: expo(iend) real(jprb) :: scaling(iend) real(jprb) :: hook_handle if (lhook) call dr_hook('radiation_matrix:expm',0,hook_handle) normA = 0.0_jprb ! Compute the 1-norms of A DO j3 = 1,m sum_column(:) = 0.0_jprb DO j2 = 1,m DO j1 = 1,iend sum_column(j1) = sum_column(j1) + abs(A(j1,j2,j3)) end do end do DO j1 = 1,iend if (sum_column(j1) > normA(j1)) then normA(j1) = sum_column(j1) end if end do end do frac = fraction(normA/theta(3)) expo = exponent(normA/theta(3)) where (frac == 0.5_jprb) expo = expo - 1 end where where (expo < 0) expo = 0 end where ! Scale the input matrices by a power of 2 scaling = 2.0_jprb**(-expo) DO j3 = 1,m DO j2 = 1,m A(1:iend,j2,j3) = A(1:iend,j2,j3) * scaling end do end do ! Pade approximant of degree 7 A2 = mat_x_mat(n,iend,m,A, A, i_matrix_pattern) A4 = mat_x_mat(n,iend,m,A2,A2,i_matrix_pattern) A6 = mat_x_mat(n,iend,m,A2,A4,i_matrix_pattern) V = c(8)*A6 + c(6)*A4 + c(4)*A2 DO j3 = 1,m V(:,j3,j3) = V(:,j3,j3) + c(2) end do U = mat_x_mat(n,iend,m,A,V,i_matrix_pattern) V = c(7)*A6 + c(5)*A4 + c(3)*A2 ! Add a multiple of the identity matrix DO j3 = 1,m V(:,j3,j3) = V(:,j3,j3) + c(1) end do V = V-U U = 2.0_jprb*U A(1:iend,1:m,1:m) = solve_mat(n,iend,m,V,U) ! Add the identity matrix DO j3 = 1,m A(1:iend,j3,j3) = A(1:iend,j3,j3) + 1.0_jprb end do ! Loop through the matrices DO j1 = 1,iend if (expo(j1) > 0) then ! Square matrix j1 expo(j1) times A(j1,:,:) = repeated_square(m,A(j1,:,:),expo(j1),i_matrix_pattern) end if end do if (lhook) call dr_hook('radiation_matrix:expm',1,hook_handle) end subroutine expm !--------------------------------------------------------------------- ! Return the matrix exponential of n 2x2 matrices representing ! conservative exchange between SPARTACUS regions, where the ! matrices have the structure ! (-a b) ! ( a -b) ! and a and b are assumed to be positive or zero. The solution uses ! Putzer's algorithm - see the appendix of Hogan et al. (GMD 2018) subroutine fast_expm_exchange_2(n,iend,a,b,R) use yomhook, only : lhook, dr_hook integer, intent(in) :: n, iend real(jprb), dimension(n), intent(in) :: a, b real(jprb), dimension(n,2,2), intent(out) :: R real(jprb), dimension(iend) :: factor real(jprb) :: hook_handle if (lhook) call dr_hook('radiation_matrix:fast_expm_exchange_2',0,hook_handle) ! Security to ensure that if a==b==0 then the identity matrix is returned factor = (1.0_jprb - exp(-(a(1:iend)+b(1:iend))))/max(1.0e-12_jprb,a(1:iend)+b(1:iend)) R(1:iend,1,1) = 1.0_jprb - factor*a(1:iend) R(1:iend,2,1) = factor*a(1:iend) R(1:iend,1,2) = factor*b(1:iend) R(1:iend,2,2) = 1.0_jprb - factor*b(1:iend) if (lhook) call dr_hook('radiation_matrix:fast_expm_exchange_2',1,hook_handle) end subroutine fast_expm_exchange_2 !--------------------------------------------------------------------- ! Return the matrix exponential of n 3x3 matrices representing ! conservative exchange between SPARTACUS regions, where the ! matrices have the structure ! (-a b 0) ! ( a -b-c d) ! ( 0 c -d) ! and a-d are assumed to be positive or zero. The solution uses the ! diagonalization method and is a slight generalization of the ! solution provided in the appendix of Hogan et al. (GMD 2018), ! which assumed c==d. subroutine fast_expm_exchange_3(n,iend,a,b,c,d,R) use yomhook, only : lhook, dr_hook real(jprb), parameter :: my_epsilon = 1.0e-12_jprb integer, intent(in) :: n, iend real(jprb), dimension(n), intent(in) :: a, b, c, d real(jprb), dimension(n,3,3), intent(out) :: R ! Eigenvectors real(jprb), dimension(iend,3,3) :: V ! Non-zero Eigenvalues real(jprb), dimension(iend) :: lambda1, lambda2 ! Diagonal matrix of the exponential of the eigenvalues real(jprb), dimension(iend,3) :: diag ! Result of diag right-divided by V real(jprb), dimension(iend,3,3) :: diag_rdivide_V ! Intermediate arrays real(jprb), dimension(iend) :: tmp1, tmp2 integer :: j1, j2 real(jprb) :: hook_handle if (lhook) call dr_hook('radiation_matrix:fast_expm_exchange_3',0,hook_handle) ! Eigenvalues tmp1 = 0.5_jprb * (a(1:iend)+b(1:iend)+c(1:iend)+d(1:iend)) tmp2 = sqrt(tmp1*tmp1 - (a(1:iend)*c(1:iend) + a(1:iend)*d(1:iend) + b(1:iend)*d(1:iend))) lambda1 = -tmp1 + tmp2 lambda2 = -tmp1 - tmp2 ! Eigenvectors, with securities such taht if a--d are all zero ! then V is non-singular and the identity matrix is returned in R; ! note that lambdaX is typically negative so we need a ! sign-preserving security V(1:iend,1,1) = max(my_epsilon, b(1:iend)) & & / sign(max(my_epsilon, abs(a(1:iend) + lambda1)), a(1:iend) + lambda1) V(1:iend,1,2) = b(1:iend) & & / sign(max(my_epsilon, abs(a(1:iend) + lambda2)), a(1:iend) + lambda2) V(1:iend,1,3) = b(1:iend) / max(my_epsilon, a(1:iend)) V(1:iend,2,:) = 1.0_jprb V(1:iend,3,1) = c(1:iend) & & / sign(max(my_epsilon, abs(d(1:iend) + lambda1)), d(1:iend) + lambda1) V(1:iend,3,2) = c(1:iend) & & / sign(max(my_epsilon, abs(d(1:iend) + lambda2)), d(1:iend) + lambda2) V(1:iend,3,3) = max(my_epsilon, c(1:iend)) / max(my_epsilon, d(1:iend)) diag(:,1) = exp(lambda1) diag(:,2) = exp(lambda2) diag(:,3) = 1.0_jprb ! Compute diag_rdivide_V = diag * V^-1 call diag_mat_right_divide_3(iend,iend,V,diag,diag_rdivide_V) ! Compute V * diag_rdivide_V DO j1 = 1,3 DO j2 = 1,3 R(1:iend,j2,j1) = V(1:iend,j2,1)*diag_rdivide_V(1:iend,1,j1) & & + V(1:iend,j2,2)*diag_rdivide_V(1:iend,2,j1) & & + V(1:iend,j2,3)*diag_rdivide_V(1:iend,3,j1) end do end do if (lhook) call dr_hook('radiation_matrix:fast_expm_exchange_3',1,hook_handle) end subroutine fast_expm_exchange_3 ! generic :: fast_expm_exchange => fast_expm_exchange_2, fast_expm_exchange_3 end module radiation_matrix