! $Id: nuage.F 1183 2009-06-16 15:38:46Z snguyen $ ! SUBROUTINE nuage (paprs, pplay, . t, pqlwp, pclc, pcltau, pclemi, . pch, pcl, pcm, pct, pctlwp, e ok_aie, e mass_solu_aero, mass_solu_aero_pi, e bl95_b0, bl95_b1, s cldtaupi, re, fl) USE dimphy IMPLICIT none c====================================================================== c Auteur(s): Z.X. Li (LMD/CNRS) date: 19930910 c Objet: Calculer epaisseur optique et emmissivite des nuages c====================================================================== c Arguments: c t-------input-R-temperature c pqlwp---input-R-eau liquide nuageuse dans l'atmosphere (kg/kg) c pclc----input-R-couverture nuageuse pour le rayonnement (0 a 1) c ok_aie--input-L-apply aerosol indirect effect or not c mass_solu_aero-----input-R-total mass concentration for all soluble aerosols[ug/m^3] c mass_solu_aero_pi--input-R-dito, pre-industrial value c bl95_b0-input-R-a parameter, may be varied for tests (s-sea, l-land) c bl95_b1-input-R-a parameter, may be varied for tests ( -"- ) c c cldtaupi-output-R-pre-industrial value of cloud optical thickness, c needed for the diagnostics of the aerosol indirect c radiative forcing (see radlwsw) c re------output-R-Cloud droplet effective radius multiplied by fl [um] c fl------output-R-Denominator to re, introduced to avoid problems in c the averaging of the output. fl is the fraction of liquid c water clouds within a grid cell c c pcltau--output-R-epaisseur optique des nuages c pclemi--output-R-emissivite des nuages (0 a 1) c====================================================================== C #include "YOMCST.h" c cym#include "dimensions.h" cym#include "dimphy.h" REAL paprs(klon,klev+1), pplay(klon,klev) REAL t(klon,klev) c REAL pclc(klon,klev) REAL pqlwp(klon,klev) REAL pcltau(klon,klev), pclemi(klon,klev) c REAL pct(klon), pctlwp(klon), pch(klon), pcl(klon), pcm(klon) c LOGICAL lo c REAL cetahb, cetamb PARAMETER (cetahb = 0.45, cetamb = 0.80) C INTEGER i, k REAL zflwp, zradef, zfice, zmsac c REAL radius, rad_froid, rad_chaud, rad_chau1, rad_chau2 PARAMETER (rad_chau1=13.0, rad_chau2=9.0, rad_froid=35.0) ccc PARAMETER (rad_chaud=15.0, rad_froid=35.0) c sintex initial PARAMETER (rad_chaud=10.0, rad_froid=30.0) REAL coef, coef_froi, coef_chau PARAMETER (coef_chau=0.13, coef_froi=0.09) REAL seuil_neb, t_glace PARAMETER (seuil_neb=0.001, t_glace=273.0-15.0) INTEGER nexpo ! exponentiel pour glace/eau PARAMETER (nexpo=6) cjq for the aerosol indirect effect cjq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003 cjq LOGICAL ok_aie ! Apply AIE or not? REAL mass_solu_aero(klon, klev) ! total mass concentration for all soluble aerosols[ug m-3] REAL mass_solu_aero_pi(klon, klev) ! - " - pre-industrial value REAL cdnc(klon, klev) ! cloud droplet number concentration [m-3] REAL re(klon, klev) ! cloud droplet effective radius [um] REAL cdnc_pi(klon, klev) ! cloud droplet number concentration [m-3] (pi value) REAL re_pi(klon, klev) ! cloud droplet effective radius [um] (pi value) REAL fl(klon, klev) ! xliq * rneb (denominator to re; fraction of liquid water clouds within the grid cell) REAL bl95_b0, bl95_b1 ! Parameter in B&L 95-Formula REAL cldtaupi(klon, klev) ! pre-industrial cloud opt thickness for diag cjq-end ccc PARAMETER (nexpo=1) c c Calculer l'epaisseur optique et l'emmissivite des nuages c DO k = 1, klev DO i = 1, klon rad_chaud = rad_chau1 IF (k.LE.3) rad_chaud = rad_chau2 pclc(i,k) = MAX(pclc(i,k), seuil_neb) zflwp = 1000.*pqlwp(i,k)/RG/pclc(i,k) . *(paprs(i,k)-paprs(i,k+1)) zfice = 1.0 - (t(i,k)-t_glace) / (273.13-t_glace) zfice = MIN(MAX(zfice,0.0),1.0) zfice = zfice**nexpo IF (ok_aie) THEN ! Formula "D" of Boucher and Lohmann, Tellus, 1995 ! cdnc(i,k) = 10.**(bl95_b0+bl95_b1* . log(MAX(mass_solu_aero(i,k),1.e-4))/log(10.))*1.e6 !-m-3 ! Cloud droplet number concentration (CDNC) is restricted ! to be within [20, 1000 cm^3] ! cdnc(i,k)=MIN(1000.e6,MAX(20.e6,cdnc(i,k))) cdnc_pi(i,k) = 10.**(bl95_b0+bl95_b1* . log(MAX(mass_solu_aero_pi(i,k),1.e-4))/log(10.))*1.e6 !-m-3 cdnc_pi(i,k)=MIN(1000.e6,MAX(20.e6,cdnc_pi(i,k))) ! ! ! air density: pplay(i,k) / (RD * zT(i,k)) ! factor 1.1: derive effective radius from volume-mean radius ! factor 1000 is the water density ! _chaud means that this is the CDR for liquid water clouds ! rad_chaud = . 1.1 * ( (pqlwp(i,k) * pplay(i,k) / (RD * T(i,k)) ) . / (4./3. * RPI * 1000. * cdnc(i,k)) )**(1./3.) ! ! Convert to um. CDR shall be at least 3 um. ! rad_chaud = MAX(rad_chaud*1.e6, 3.) ! For output diagnostics ! ! Cloud droplet effective radius [um] ! ! we multiply here with f * xl (fraction of liquid water ! clouds in the grid cell) to avoid problems in the ! averaging of the output. ! In the output of IOIPSL, derive the real cloud droplet ! effective radius as re/fl ! fl(i,k) = pclc(i,k)*(1.-zfice) re(i,k) = rad_chaud*fl(i,k) ! Pre-industrial cloud opt thickness ! ! "radius" is calculated as rad_chaud above (plus the ! ice cloud contribution) but using cdnc_pi instead of ! cdnc. radius = MAX(1.1e6 * ( (pqlwp(i,k)*pplay(i,k)/(RD*T(i,k))) . / (4./3.*RPI*1000.*cdnc_pi(i,k)) )**(1./3.), . 3.) * (1.-zfice) + rad_froid * zfice cldtaupi(i,k) = 3.0/2.0 * zflwp / radius . ENDIF ! ok_aie radius = rad_chaud * (1.-zfice) + rad_froid * zfice coef = coef_chau * (1.-zfice) + coef_froi * zfice pcltau(i,k) = 3.0/2.0 * zflwp / radius pclemi(i,k) = 1.0 - EXP( - coef * zflwp) lo = (pclc(i,k) .LE. seuil_neb) IF (lo) pclc(i,k) = 0.0 IF (lo) pcltau(i,k) = 0.0 IF (lo) pclemi(i,k) = 0.0 IF (.NOT.ok_aie) cldtaupi(i,k)=pcltau(i,k) ENDDO ENDDO ccc DO k = 1, klev ccc DO i = 1, klon ccc t(i,k) = t(i,k) ccc pclc(i,k) = MAX( 1.e-5 , pclc(i,k) ) ccc lo = pclc(i,k) .GT. (2.*1.e-5) ccc zflwp = pqlwp(i,k)*1000.*(paprs(i,k)-paprs(i,k+1)) ccc . /(rg*pclc(i,k)) ccc zradef = 10.0 + (1.-sigs(k))*45.0 ccc pcltau(i,k) = 1.5 * zflwp / zradef ccc zfice=1.0-MIN(MAX((t(i,k)-263.)/(273.-263.),0.0),1.0) ccc zmsac = 0.13*(1.0-zfice) + 0.08*zfice ccc pclemi(i,k) = 1.-EXP(-zmsac*zflwp) ccc if (.NOT.lo) pclc(i,k) = 0.0 ccc if (.NOT.lo) pcltau(i,k) = 0.0 ccc if (.NOT.lo) pclemi(i,k) = 0.0 ccc ENDDO ccc ENDDO cccccc print*, 'pas de nuage dans le rayonnement' cccccc DO k = 1, klev cccccc DO i = 1, klon cccccc pclc(i,k) = 0.0 cccccc pcltau(i,k) = 0.0 cccccc pclemi(i,k) = 0.0 cccccc ENDDO cccccc ENDDO C C COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS C DO i = 1, klon pct(i)=1.0 pch(i)=1.0 pcm(i) = 1.0 pcl(i) = 1.0 pctlwp(i) = 0.0 ENDDO C DO k = klev, 1, -1 DO i = 1, klon pctlwp(i) = pctlwp(i) . + pqlwp(i,k)*(paprs(i,k)-paprs(i,k+1))/RG pct(i) = pct(i)*(1.0-pclc(i,k)) if (pplay(i,k).LE.cetahb*paprs(i,1)) . pch(i) = pch(i)*(1.0-pclc(i,k)) if (pplay(i,k).GT.cetahb*paprs(i,1) .AND. . pplay(i,k).LE.cetamb*paprs(i,1)) . pcm(i) = pcm(i)*(1.0-pclc(i,k)) if (pplay(i,k).GT.cetamb*paprs(i,1)) . pcl(i) = pcl(i)*(1.0-pclc(i,k)) ENDDO ENDDO C DO i = 1, klon pct(i)=1.-pct(i) pch(i)=1.-pch(i) pcm(i)=1.-pcm(i) pcl(i)=1.-pcl(i) ENDDO C RETURN END SUBROUTINE diagcld1(paprs,pplay,rain,snow,kbot,ktop, . diafra,dialiq) use dimphy IMPLICIT none c c Laurent Li (LMD/CNRS), le 12 octobre 1998 c (adaptation du code ECMWF) c c Dans certains cas, le schema pronostique des nuages n'est c pas suffisament performant. On a donc besoin de diagnostiquer c ces nuages. Je dois avouer que c'est une frustration. c cym#include "dimensions.h" cym#include "dimphy.h" #include "YOMCST.h" c c Arguments d'entree: REAL paprs(klon,klev+1) ! pression (Pa) a inter-couche REAL pplay(klon,klev) ! pression (Pa) au milieu de couche REAL t(klon,klev) ! temperature (K) REAL q(klon,klev) ! humidite specifique (Kg/Kg) REAL rain(klon) ! pluie convective (kg/m2/s) REAL snow(klon) ! neige convective (kg/m2/s) INTEGER ktop(klon) ! sommet de la convection INTEGER kbot(klon) ! bas de la convection c c Arguments de sortie: REAL diafra(klon,klev) ! fraction nuageuse diagnostiquee REAL dialiq(klon,klev) ! eau liquide nuageuse c c Constantes ajustables: REAL CANVA, CANVB, CANVH PARAMETER (CANVA=2.0, CANVB=0.3, CANVH=0.4) REAL CCA, CCB, CCC PARAMETER (CCA=0.125, CCB=1.5, CCC=0.8) REAL CCFCT, CCSCAL PARAMETER (CCFCT=0.400) PARAMETER (CCSCAL=1.0E+11) REAL CETAHB, CETAMB PARAMETER (CETAHB=0.45, CETAMB=0.80) REAL CCLWMR PARAMETER (CCLWMR=1.E-04) REAL ZEPSCR PARAMETER (ZEPSCR=1.0E-10) c c Variables locales: INTEGER i, k REAL zcc(klon) c c Initialisation: c DO k = 1, klev DO i = 1, klon diafra(i,k) = 0.0 dialiq(i,k) = 0.0 ENDDO ENDDO c DO i = 1, klon ! Calculer la fraction nuageuse zcc(i) = 0.0 IF((rain(i)+snow(i)).GT.0.) THEN zcc(i)= CCA * LOG(MAX(ZEPSCR,(rain(i)+snow(i))*CCSCAL))-CCB zcc(i)= MIN(CCC,MAX(0.0,zcc(i))) ENDIF ENDDO c DO i = 1, klon ! pour traiter les enclumes diafra(i,ktop(i)) = MAX(diafra(i,ktop(i)),zcc(i)*CCFCT) IF ((zcc(i).GE.CANVH) .AND. . (pplay(i,ktop(i)).LE.CETAHB*paprs(i,1))) . diafra(i,ktop(i)) = MAX(diafra(i,ktop(i)), . MAX(zcc(i)*CCFCT,CANVA*(zcc(i)-CANVB))) dialiq(i,ktop(i))=CCLWMR*diafra(i,ktop(i)) ENDDO c DO k = 1, klev ! nuages convectifs (sauf enclumes) DO i = 1, klon IF (k.LT.ktop(i) .AND. k.GE.kbot(i)) THEN diafra(i,k)=MAX(diafra(i,k),zcc(i)*CCFCT) dialiq(i,k)=CCLWMR*diafra(i,k) ENDIF ENDDO ENDDO c RETURN END SUBROUTINE diagcld2(paprs,pplay,t,q, diafra,dialiq) use dimphy IMPLICIT none c cym#include "dimensions.h" cym#include "dimphy.h" #include "YOMCST.h" c c Arguments d'entree: REAL paprs(klon,klev+1) ! pression (Pa) a inter-couche REAL pplay(klon,klev) ! pression (Pa) au milieu de couche REAL t(klon,klev) ! temperature (K) REAL q(klon,klev) ! humidite specifique (Kg/Kg) c c Arguments de sortie: REAL diafra(klon,klev) ! fraction nuageuse diagnostiquee REAL dialiq(klon,klev) ! eau liquide nuageuse c REAL CETAMB PARAMETER (CETAMB=0.80) REAL CLOIA, CLOIB, CLOIC, CLOID PARAMETER (CLOIA=1.0E+02, CLOIB=-10.00, CLOIC=-0.6, CLOID=5.0) ccc PARAMETER (CLOIA=1.0E+02, CLOIB=-10.00, CLOIC=-0.9, CLOID=5.0) REAL RGAMMAS PARAMETER (RGAMMAS=0.05) REAL CRHL PARAMETER (CRHL=0.15) ccc PARAMETER (CRHL=0.70) REAL t_coup PARAMETER (t_coup=234.0) c c Variables locales: INTEGER i, k, kb, invb(klon) REAL zqs, zrhb, zcll, zdthmin(klon), zdthdp REAL zdelta, zcor c c Fonctions thermodynamiques: #include "YOETHF.h" #include "FCTTRE.h" c c Initialisation: c DO k = 1, klev DO i = 1, klon diafra(i,k) = 0.0 dialiq(i,k) = 0.0 ENDDO ENDDO c DO i = 1, klon invb(i) = klev zdthmin(i)=0.0 ENDDO DO k = 2, klev/2-1 DO i = 1, klon zdthdp = (t(i,k)-t(i,k+1))/(pplay(i,k)-pplay(i,k+1)) . - RD * 0.5*(t(i,k)+t(i,k+1))/RCPD/paprs(i,k+1) zdthdp = zdthdp * CLOIA IF (pplay(i,k).GT.CETAMB*paprs(i,1) .AND. . zdthdp.LT.zdthmin(i) ) THEN zdthmin(i) = zdthdp invb(i) = k ENDIF ENDDO ENDDO DO i = 1, klon kb=invb(i) IF (thermcep) THEN zdelta=MAX(0.,SIGN(1.,RTT-t(i,kb))) zqs= R2ES*FOEEW(t(i,kb),zdelta)/pplay(i,kb) zqs=MIN(0.5,zqs) zcor=1./(1.-RETV*zqs) zqs=zqs*zcor ELSE IF (t(i,kb) .LT. t_coup) THEN zqs = qsats(t(i,kb)) / pplay(i,kb) ELSE zqs = qsatl(t(i,kb)) / pplay(i,kb) ENDIF ENDIF zcll = CLOIB * zdthmin(i) + CLOIC zcll = MIN(1.0,MAX(0.0,zcll)) zrhb= q(i,kb)/zqs IF (zcll.GT.0.0.AND.zrhb.LT.CRHL) . zcll=zcll*(1.-(CRHL-zrhb)*CLOID) zcll=MIN(1.0,MAX(0.0,zcll)) diafra(i,kb) = MAX(diafra(i,kb),zcll) dialiq(i,kb)= diafra(i,kb) * RGAMMAS*zqs ENDDO c RETURN END