SUBROUTINE SRTM_SETCOEF & & ( KLEV , KNMOL ,& & PAVEL , PTAVEL , PZ , PTZ , PTBOUND ,& & PCOLDRY , PWKL ,& & KLAYTROP, KLAYSWTCH, KLAYLOW ,& & PCO2MULT, PCOLCH4 , PCOLCO2 , PCOLH2O , PCOLMOL , PCOLN2O , PCOLO2 , PCOLO3 ,& & PFORFAC , PFORFRAC , KINDFOR , PSELFFAC, PSELFFRAC, KINDSELF ,& & PFAC00 , PFAC01 , PFAC10 , PFAC11 ,& & KJP , KJT , KJT1 & & ) ! J. Delamere, AER, Inc. (version 2.5, 02/04/01) ! Modifications: ! JJMorcrette 030224 rewritten / adapted to ECMWF F90 system ! M.Hamrud 01-Oct-2003 CY28 Cleaning ! Purpose: For a given atmosphere, calculate the indices and ! fractions related to the pressure and temperature interpolations. USE PARKIND1 ,ONLY : JPIM ,JPRB USE YOMHOOK ,ONLY : LHOOK, DR_HOOK USE PARSRTM , ONLY : JPLAY USE YOESRTWN, ONLY : PREFLOG, TREF !! USE YOESWN , ONLY : NDBUG IMPLICIT NONE !-- Input arguments INTEGER(KIND=JPIM),INTENT(IN) :: KLEV INTEGER(KIND=JPIM) :: KNMOL ! Argument NOT used REAL(KIND=JPRB) ,INTENT(IN) :: PAVEL(JPLAY) REAL(KIND=JPRB) ,INTENT(IN) :: PTAVEL(JPLAY) REAL(KIND=JPRB) :: PZ(0:JPLAY) ! Argument NOT used REAL(KIND=JPRB) ,INTENT(IN) :: PTZ(0:JPLAY) REAL(KIND=JPRB) ,INTENT(IN) :: PTBOUND REAL(KIND=JPRB) ,INTENT(IN) :: PCOLDRY(JPLAY) REAL(KIND=JPRB) ,INTENT(IN) :: PWKL(35,JPLAY) INTEGER(KIND=JPIM),INTENT(OUT) :: KLAYTROP INTEGER(KIND=JPIM),INTENT(OUT) :: KLAYSWTCH INTEGER(KIND=JPIM),INTENT(OUT) :: KLAYLOW REAL(KIND=JPRB) ,INTENT(OUT) :: PCO2MULT(JPLAY) REAL(KIND=JPRB) ,INTENT(OUT) :: PCOLCH4(JPLAY) REAL(KIND=JPRB) ,INTENT(OUT) :: PCOLCO2(JPLAY) REAL(KIND=JPRB) ,INTENT(OUT) :: PCOLH2O(JPLAY) REAL(KIND=JPRB) ,INTENT(OUT) :: PCOLMOL(JPLAY) REAL(KIND=JPRB) ,INTENT(OUT) :: PCOLN2O(JPLAY) REAL(KIND=JPRB) ,INTENT(OUT) :: PCOLO2(JPLAY) REAL(KIND=JPRB) ,INTENT(OUT) :: PCOLO3(JPLAY) REAL(KIND=JPRB) ,INTENT(OUT) :: PFORFAC(JPLAY) REAL(KIND=JPRB) ,INTENT(OUT) :: PFORFRAC(JPLAY) INTEGER(KIND=JPIM),INTENT(OUT) :: KINDFOR(JPLAY) REAL(KIND=JPRB) ,INTENT(OUT) :: PSELFFAC(JPLAY) REAL(KIND=JPRB) ,INTENT(OUT) :: PSELFFRAC(JPLAY) INTEGER(KIND=JPIM),INTENT(OUT) :: KINDSELF(JPLAY) REAL(KIND=JPRB) ,INTENT(OUT) :: PFAC00(JPLAY) REAL(KIND=JPRB) ,INTENT(OUT) :: PFAC01(JPLAY) REAL(KIND=JPRB) ,INTENT(OUT) :: PFAC10(JPLAY) REAL(KIND=JPRB) ,INTENT(OUT) :: PFAC11(JPLAY) INTEGER(KIND=JPIM),INTENT(OUT) :: KJP(JPLAY) INTEGER(KIND=JPIM),INTENT(OUT) :: KJT(JPLAY) INTEGER(KIND=JPIM),INTENT(OUT) :: KJT1(JPLAY) !-- Output arguments !-- local integers INTEGER(KIND=JPIM) :: I_NLAYERS, INDBOUND, INDLEV0, JK INTEGER(KIND=JPIM) :: JP1 !-- local reals REAL(KIND=JPRB) :: Z_STPFAC, Z_TBNDFRAC, Z_T0FRAC, Z_PLOG, Z_FP, Z_FT, Z_FT1, Z_WATER, Z_SCALEFAC REAL(KIND=JPRB) :: Z_FACTOR, Z_CO2REG, Z_COMPFP REAL(KIND=JPRB) :: ZHOOK_HANDLE IF (LHOOK) CALL DR_HOOK('SRTM_SETCOEF',0,ZHOOK_HANDLE) I_NLAYERS = KLEV Z_STPFAC = 296._JPRB/1013._JPRB INDBOUND = PTBOUND - 159._JPRB Z_TBNDFRAC = PTBOUND - INT(PTBOUND) INDLEV0 = PTZ(0) - 159._JPRB Z_T0FRAC = PTZ(0) - INT(PTZ(0)) KLAYTROP = 0 KLAYSWTCH = 0 KLAYLOW = 0 !IF (NDBUG.LE.3) THEN ! PRINT *,'-------- Computed in SETCOEF --------' ! print 8990 8990 format(18x,' T PFAC00, 01, 10, 11 PCO2MULT MOL & & CH4 CO2 H2O N2O O2 O3 SFAC & & SFRAC FFAC FFRAC ISLF IFOR') !END IF DO JK = 1, I_NLAYERS ! Find the two reference pressures on either side of the ! layer pressure. Store them in JP and JP1. Store in FP the ! fraction of the difference (in ln(pressure)) between these ! two values that the layer pressure lies. Z_PLOG = LOG(PAVEL(JK)) KJP(JK) = INT(36. - 5*(Z_PLOG+0.04)) IF (KJP(JK) < 1) THEN KJP(JK) = 1 ELSEIF (KJP(JK) > 58) THEN KJP(JK) = 58 ENDIF JP1 = KJP(JK) + 1 Z_FP = 5. * (PREFLOG(KJP(JK)) - Z_PLOG) ! Determine, for each reference pressure (JP and JP1), which ! reference temperature (these are different for each ! reference pressure) is nearest the layer temperature but does ! not exceed it. Store these indices in JT and JT1, resp. ! Store in FT (resp. FT1) the fraction of the way between JT ! (JT1) and the next highest reference temperature that the ! layer temperature falls. KJT(JK) = INT(3. + (PTAVEL(JK)-TREF(KJP(JK)))/15.) IF (KJT(JK) < 1) THEN KJT(JK) = 1 ELSEIF (KJT(JK) > 4) THEN KJT(JK) = 4 ENDIF Z_FT = ((PTAVEL(JK)-TREF(KJP(JK)))/15.) - REAL(KJT(JK)-3) KJT1(JK) = INT(3. + (PTAVEL(JK)-TREF(JP1))/15.) IF (KJT1(JK) < 1) THEN KJT1(JK) = 1 ELSEIF (KJT1(JK) > 4) THEN KJT1(JK) = 4 ENDIF Z_FT1 = ((PTAVEL(JK)-TREF(JP1))/15.) - REAL(KJT1(JK)-3) Z_WATER = PWKL(1,JK)/PCOLDRY(JK) Z_SCALEFAC = PAVEL(JK) * Z_STPFAC / PTAVEL(JK) ! If the pressure is less than ~100mb, perform a different ! set of species interpolations. IF (Z_PLOG <= 4.56) GO TO 5300 KLAYTROP = KLAYTROP + 1 IF (Z_PLOG >= 6.62) KLAYLOW = KLAYLOW + 1 ! Set up factors needed to separately include the water vapor ! foreign-continuum in the calculation of absorption coefficient. PFORFAC(JK) = Z_SCALEFAC / (1.+Z_WATER) Z_FACTOR = (332.0-PTAVEL(JK))/36.0 KINDFOR(JK) = MIN(2, MAX(1, INT(Z_FACTOR))) PFORFRAC(JK) = Z_FACTOR - REAL(KINDFOR(JK)) ! Set up factors needed to separately include the water vapor ! self-continuum in the calculation of absorption coefficient. PSELFFAC(JK) = Z_WATER * PFORFAC(JK) Z_FACTOR = (PTAVEL(JK)-188.0)/7.2 KINDSELF(JK) = MIN(9, MAX(1, INT(Z_FACTOR)-7)) PSELFFRAC(JK) = Z_FACTOR - REAL(KINDSELF(JK) + 7) ! Calculate needed column amounts. PCOLH2O(JK) = 1.E-20 * PWKL(1,JK) PCOLCO2(JK) = 1.E-20 * PWKL(2,JK) PCOLO3(JK) = 1.E-20 * PWKL(3,JK) ! COLO3(LAY) = 0. ! COLO3(LAY) = colo3(lay)/1.16 PCOLN2O(JK) = 1.E-20 * PWKL(4,JK) PCOLCH4(JK) = 1.E-20 * PWKL(6,JK) PCOLO2(JK) = 1.E-20 * PWKL(7,JK) PCOLMOL(JK) = 1.E-20 * PCOLDRY(JK) + PCOLH2O(JK) ! colco2(lay) = 0. ! colo3(lay) = 0. ! coln2o(lay) = 0. ! colch4(lay) = 0. ! colo2(lay) = 0. ! colmol(lay) = 0. IF (PCOLCO2(JK) == 0.) PCOLCO2(JK) = 1.E-32 * PCOLDRY(JK) IF (PCOLN2O(JK) == 0.) PCOLN2O(JK) = 1.E-32 * PCOLDRY(JK) IF (PCOLCH4(JK) == 0.) PCOLCH4(JK) = 1.E-32 * PCOLDRY(JK) IF (PCOLO2(JK) == 0.) PCOLO2(JK) = 1.E-32 * PCOLDRY(JK) ! Using E = 1334.2 cm-1. Z_CO2REG = 3.55E-24 * PCOLDRY(JK) PCO2MULT(JK)= (PCOLCO2(JK) - Z_CO2REG) * & & 272.63*EXP(-1919.4/PTAVEL(JK))/(8.7604E-4*PTAVEL(JK)) GO TO 5400 ! Above LAYTROP. 5300 CONTINUE ! Set up factors needed to separately include the water vapor ! foreign-continuum in the calculation of absorption coefficient. PFORFAC(JK) = Z_SCALEFAC / (1.+Z_WATER) Z_FACTOR = (PTAVEL(JK)-188.0)/36.0 KINDFOR(JK) = 3 PFORFRAC(JK) = Z_FACTOR - 1.0 ! Calculate needed column amounts. PCOLH2O(JK) = 1.E-20 * PWKL(1,JK) PCOLCO2(JK) = 1.E-20 * PWKL(2,JK) PCOLO3(JK) = 1.E-20 * PWKL(3,JK) PCOLN2O(JK) = 1.E-20 * PWKL(4,JK) PCOLCH4(JK) = 1.E-20 * PWKL(6,JK) PCOLO2(JK) = 1.E-20 * PWKL(7,JK) PCOLMOL(JK) = 1.E-20 * PCOLDRY(JK) + PCOLH2O(JK) IF (PCOLCO2(JK) == 0.) PCOLCO2(JK) = 1.E-32 * PCOLDRY(JK) IF (PCOLN2O(JK) == 0.) PCOLN2O(JK) = 1.E-32 * PCOLDRY(JK) IF (PCOLCH4(JK) == 0.) PCOLCH4(JK) = 1.E-32 * PCOLDRY(JK) IF (PCOLO2(JK) == 0.) PCOLO2(JK) = 1.E-32 * PCOLDRY(JK) Z_CO2REG = 3.55E-24 * PCOLDRY(JK) PCO2MULT(JK)= (PCOLCO2(JK) - Z_CO2REG) * & & 272.63*EXP(-1919.4/PTAVEL(JK))/(8.7604E-4*PTAVEL(JK)) PSELFFAC(JK) =0.0_JPRB PSELFFRAC(JK)=0.0_JPRB KINDSELF(JK) = 0 5400 CONTINUE ! We have now isolated the layer ln pressure and temperature, ! between two reference pressures and two reference temperatures ! (for each reference pressure). We multiply the pressure ! fraction FP with the appropriate temperature fractions to get ! the factors that will be needed for the interpolation that yields ! the optical depths (performed in routines TAUGBn for band n). Z_COMPFP = 1. - Z_FP PFAC10(JK) = Z_COMPFP * Z_FT PFAC00(JK) = Z_COMPFP * (1. - Z_FT) PFAC11(JK) = Z_FP * Z_FT1 PFAC01(JK) = Z_FP * (1. - Z_FT1) ! IF (NDBUG.LE.3) THEN ! print 9000,LAY,LAYTROP,JP(LAY),JT(LAY),JT1(LAY),TAVEL(LAY) & ! &,FAC00(LAY),FAC01(LAY),FAC10(LAY),FAC11(LAY) & ! &,CO2MULT(LAY),COLMOL(LAY),COLCH4(LAY),COLCO2(LAY),COLH2O(LAY) & ! &,COLN2O(LAY),COLO2(LAY),COLO3(LAY),SELFFAC(LAY),SELFFRAC(LAY) & ! &,FORFAC(LAY),FORFRAC(LAY),INDSELF(LAY),INDFOR(LAY) 9000 format(1x,2I3,3I4,F6.1,4F7.2,12E9.2,2I5) ! END IF ENDDO !----------------------------------------------------------------------- IF (LHOOK) CALL DR_HOOK('SRTM_SETCOEF',1,ZHOOK_HANDLE) END SUBROUTINE SRTM_SETCOEF