MODULE climb_qbs_mod ! Module to solve the verctical diffusion of blowing snow; USE dimphy IMPLICIT NONE SAVE PRIVATE PUBLIC :: climb_qbs_down, climb_qbs_up REAL, DIMENSION(:, :), ALLOCATABLE :: gamaqbs !$OMP THREADPRIVATE(gamaqbs) REAL, DIMENSION(:, :), ALLOCATABLE :: Ccoef_QBS, Dcoef_QBS !$OMP THREADPRIVATE(Ccoef_QBS, Dcoef_QBS) REAL, DIMENSION(:), ALLOCATABLE :: Acoef_QBS, Bcoef_QBS !$OMP THREADPRIVATE(Acoef_QBS, Bcoef_QBS) REAL, DIMENSION(:, :), ALLOCATABLE :: Kcoefqbs !$OMP THREADPRIVATE(Kcoefqbs) CONTAINS !**************************************************************************************** SUBROUTINE climb_qbs_down(knon, coefqbs, paprs, pplay, & delp, temp, qbs, dtime, & Ccoef_QBS_out, Dcoef_QBS_out, & Kcoef_qbs_out, gama_qbs_out, & Acoef_QBS_out, Bcoef_QBS_out) ! This routine calculates recursivly the coefficients C and D ! for the quantity X=[QBS] in equation X(k) = C(k) + D(k)*X(k-1), where k is ! the index of the vertical layer. ! Input arguments !**************************************************************************************** USE lmdz_compbl, ONLY: iflag_pbl, iflag_pbl_split, iflag_order2_sollw, ifl_pbltree USE lmdz_yomcst IMPLICIT NONE INTEGER, INTENT(IN) :: knon REAL, DIMENSION(klon, klev), INTENT(IN) :: coefqbs REAL, DIMENSION(klon, klev), INTENT(IN) :: pplay REAL, DIMENSION(klon, klev + 1), INTENT(IN) :: paprs REAL, DIMENSION(klon, klev), INTENT(IN) :: delp REAL, DIMENSION(klon, klev), INTENT(IN) :: temp REAL, DIMENSION(klon, klev), INTENT(IN) :: qbs REAL, INTENT(IN) :: dtime ! Output arguments !**************************************************************************************** REAL, DIMENSION(klon), INTENT(OUT) :: Acoef_QBS_out REAL, DIMENSION(klon), INTENT(OUT) :: Bcoef_QBS_out REAL, DIMENSION(klon, klev), INTENT(OUT) :: Ccoef_QBS_out REAL, DIMENSION(klon, klev), INTENT(OUT) :: Dcoef_QBS_out REAL, DIMENSION(klon, klev), INTENT(OUT) :: Kcoef_qbs_out REAL, DIMENSION(klon, klev), INTENT(OUT) :: gama_qbs_out ! Local variables !**************************************************************************************** LOGICAL, SAVE :: first = .TRUE. !$OMP THREADPRIVATE(first) REAL, DIMENSION(klon) :: psref REAL :: delz, pkh INTEGER :: k, i, ierr !**************************************************************************************** ! 1) ! Allocation at first time step only !**************************************************************************************** IF (first) THEN first = .FALSE. ALLOCATE(Ccoef_QBS(klon, klev), STAT = ierr) IF (ierr /= 0) PRINT*, ' pb in allloc Ccoef_QBS, ierr=', ierr ALLOCATE(Dcoef_QBS(klon, klev), STAT = ierr) IF (ierr /= 0) PRINT*, ' pb in allloc Dcoef_QBS, ierr=', ierr ALLOCATE(Acoef_QBS(klon), Bcoef_QBS(klon), STAT = ierr) IF (ierr /= 0) PRINT*, ' pb in allloc Acoef_BS and Bcoef_BS, ierr=', ierr ALLOCATE(Kcoefqbs(klon, klev), STAT = ierr) IF (ierr /= 0) PRINT*, ' pb in allloc Kcoefqbs, ierr=', ierr ALLOCATE(gamaqbs(1:klon, 2:klev), STAT = ierr) IF (ierr /= 0) PRINT*, ' pb in allloc gamaqbs, ierr=', ierr END IF !**************************************************************************************** ! 2) ! Definition of the coeficient K !**************************************************************************************** Kcoefqbs(:, :) = 0.0 DO k = 2, klev DO i = 1, knon Kcoefqbs(i, k) = & coefqbs(i, k) * RG * RG * dtime / (pplay(i, k - 1) - pplay(i, k)) & * (paprs(i, k) * 2 / (temp(i, k) + temp(i, k - 1)) / RD)**2 ENDDO ENDDO !**************************************************************************************** ! 3) ! Calculation of gama for "Q" and "H" !**************************************************************************************** ! surface pressure is used as reference psref(:) = paprs(:, 1) ! definition of gama IF (iflag_pbl == 1) THEN gamaqbs(:, :) = 0.0 ! conversion de gama DO k = 2, klev DO i = 1, knon delz = RD * (temp(i, k - 1) + temp(i, k)) / & 2.0 / RG / paprs(i, k) * (pplay(i, k - 1) - pplay(i, k)) pkh = (psref(i) / paprs(i, k))**RKAPPA ! convertie gradient verticale de contenu en neige soufflee en difference de neige soufflee entre centre de couches gamaqbs(i, k) = gamaqbs(i, k) * delz ENDDO ENDDO ELSE gamaqbs(:, :) = 0.0 ENDIF !**************************************************************************************** ! 4) ! Calculte the coefficients C and D for specific content of blowing snow, qbs !**************************************************************************************** CALL calc_coef_qbs(knon, Kcoefqbs(:, :), gamaqbs(:, :), delp(:, :), qbs(:, :), & Ccoef_QBS(:, :), Dcoef_QBS(:, :), Acoef_QBS, Bcoef_QBS) !**************************************************************************************** ! 5) ! Return the first layer in output variables !**************************************************************************************** Acoef_QBS_out = Acoef_QBS Bcoef_QBS_out = Bcoef_QBS !**************************************************************************************** ! 6) ! If Pbl is split, return also the other layers in output variables !**************************************************************************************** IF (mod(iflag_pbl_split, 10) >=1) THEN DO k = 1, klev DO i = 1, klon Ccoef_QBS_out(i, k) = Ccoef_QBS(i, k) Dcoef_QBS_out(i, k) = Dcoef_QBS(i, k) Kcoef_qbs_out(i, k) = Kcoefqbs(i, k) IF (k==1) THEN gama_qbs_out(i, k) = 0. ELSE gama_qbs_out(i, k) = gamaqbs(i, k) ENDIF ENDDO ENDDO !!! ENDIF ! (mod(iflag_pbl_split,2) .ge.1) !!! END SUBROUTINE climb_qbs_down !**************************************************************************************** SUBROUTINE calc_coef_qbs(knon, Kcoef, gama, delp, X, Ccoef, Dcoef, Acoef, Bcoef) ! Calculate the coefficients C and D in : X(k) = C(k) + D(k)*X(k-1) ! where X is QQBS, and k the vertical level k=1,klev USE lmdz_yomcst IMPLICIT NONE ! Input arguments !**************************************************************************************** INTEGER, INTENT(IN) :: knon REAL, DIMENSION(klon, klev), INTENT(IN) :: Kcoef, delp REAL, DIMENSION(klon, klev), INTENT(IN) :: X REAL, DIMENSION(klon, 2:klev), INTENT(IN) :: gama ! Output arguments !**************************************************************************************** REAL, DIMENSION(klon), INTENT(OUT) :: Acoef, Bcoef REAL, DIMENSION(klon, klev), INTENT(OUT) :: Ccoef, Dcoef ! Local variables !**************************************************************************************** INTEGER :: k, i REAL :: buf !**************************************************************************************** ! Niveau au sommet, k=klev !**************************************************************************************** Ccoef(:, :) = 0.0 Dcoef(:, :) = 0.0 DO i = 1, knon buf = delp(i, klev) + Kcoef(i, klev) Ccoef(i, klev) = (X(i, klev) * delp(i, klev) - Kcoef(i, klev) * gama(i, klev)) / buf Dcoef(i, klev) = Kcoef(i, klev) / buf END DO !**************************************************************************************** ! Niveau (klev-1) <= k <= 2 !**************************************************************************************** DO k = (klev - 1), 2, -1 DO i = 1, knon buf = delp(i, k) + Kcoef(i, k) + Kcoef(i, k + 1) * (1. - Dcoef(i, k + 1)) Ccoef(i, k) = (X(i, k) * delp(i, k) + Kcoef(i, k + 1) * Ccoef(i, k + 1) + & Kcoef(i, k + 1) * gama(i, k + 1) - Kcoef(i, k) * gama(i, k)) / buf Dcoef(i, k) = Kcoef(i, k) / buf END DO END DO !**************************************************************************************** ! Niveau k=1 !**************************************************************************************** DO i = 1, knon buf = delp(i, 1) + Kcoef(i, 2) * (1. - Dcoef(i, 2)) Acoef(i) = (X(i, 1) * delp(i, 1) + Kcoef(i, 2) * (gama(i, 2) + Ccoef(i, 2))) / buf Bcoef(i) = -1. * RG / buf END DO END SUBROUTINE calc_coef_qbs !**************************************************************************************** SUBROUTINE climb_qbs_up(knon, dtime, qbs_old, & flx_qbs1, paprs, pplay, & Acoef_QBS_in, Bcoef_QBS_in, & Ccoef_QBS_in, Dcoef_QBS_in, & Kcoef_qbs_in, gama_qbs_in, & flux_qbs, d_qbs) ! This routine calculates the flux and tendency of the specific content of blowing snow qbs ! The quantity qbs is calculated according to ! X(k) = C(k) + D(k)*X(k-1) for X=[qbs], where the coefficients ! C and D are known from before and k is index of the vertical layer. ! Input arguments !**************************************************************************************** USE lmdz_compbl, ONLY: iflag_pbl, iflag_pbl_split, iflag_order2_sollw, ifl_pbltree USE lmdz_yomcst IMPLICIT NONE INTEGER, INTENT(IN) :: knon REAL, INTENT(IN) :: dtime REAL, DIMENSION(klon, klev), INTENT(IN) :: qbs_old REAL, DIMENSION(klon), INTENT(IN) :: flx_qbs1 REAL, DIMENSION(klon, klev + 1), INTENT(IN) :: paprs REAL, DIMENSION(klon, klev), INTENT(IN) :: pplay !!! nrlmd le 02/05/2011 REAL, DIMENSION(klon), INTENT(IN) :: Acoef_QBS_in, Bcoef_QBS_in REAL, DIMENSION(klon, klev), INTENT(IN) :: Ccoef_QBS_in, Dcoef_QBS_in REAL, DIMENSION(klon, klev), INTENT(IN) :: Kcoef_qbs_in, gama_qbs_in !!! ! Output arguments !**************************************************************************************** REAL, DIMENSION(klon, klev), INTENT(OUT) :: flux_qbs, d_qbs ! Local variables !**************************************************************************************** LOGICAL, SAVE :: last = .FALSE. REAL, DIMENSION(klon, klev) :: qbs_new REAL, DIMENSION(klon) :: psref INTEGER :: k, i, ierr !**************************************************************************************** ! 1) ! Definition of some variables REAL, DIMENSION(klon, klev) :: zairm !**************************************************************************************** flux_qbs(:, :) = 0.0 d_qbs(:, :) = 0.0 psref(1:knon) = paprs(1:knon, 1) IF (mod(iflag_pbl_split, 10) >=1) THEN DO i = 1, knon Acoef_QBS(i) = Acoef_QBS_in(i) Bcoef_QBS(i) = Bcoef_QBS_in(i) ENDDO DO k = 1, klev DO i = 1, knon Ccoef_QBS(i, k) = Ccoef_QBS_in(i, k) Dcoef_QBS(i, k) = Dcoef_QBS_in(i, k) Kcoefqbs(i, k) = Kcoef_qbs_in(i, k) IF (k>1) THEN gamaqbs(i, k) = gama_qbs_in(i, k) ENDIF ENDDO ENDDO !!! ENDIF ! (mod(iflag_pbl_split,2) .ge.1) !!! !**************************************************************************************** ! 2) ! Calculation of QBS !**************************************************************************************** !- First layer qbs_new(1:knon, 1) = Acoef_QBS(1:knon) + Bcoef_QBS(1:knon) * flx_qbs1(1:knon) * dtime !- All the other layers DO k = 2, klev DO i = 1, knon qbs_new(i, k) = Ccoef_QBS(i, k) + Dcoef_QBS(i, k) * qbs_new(i, k - 1) END DO END DO !**************************************************************************************** ! 3) ! Calculation of the flux for QBS !**************************************************************************************** !- The flux at first layer, k=1 flux_qbs(1:knon, 1) = flx_qbs1(1:knon) !- The flux at all layers above surface DO k = 2, klev DO i = 1, knon flux_qbs(i, k) = (Kcoefqbs(i, k) / RG / dtime) * & (qbs_new(i, k) - qbs_new(i, k - 1) + gamaqbs(i, k)) END DO END DO !**************************************************************************************** ! 4) ! Calculation of tendency for QBS !**************************************************************************************** DO k = 1, klev DO i = 1, knon d_qbs(i, k) = qbs_new(i, k) - qbs_old(i, k) zairm(i, k) = (paprs(i, k) - paprs(i, k + 1)) / rg END DO END DO !**************************************************************************************** ! Some deallocations !**************************************************************************************** IF (last) THEN DEALLOCATE(Ccoef_QBS, Dcoef_QBS, stat = ierr) IF (ierr /= 0) PRINT*, ' pb in dealllocate Ccoef_QBS, Dcoef_QBS, ierr=', ierr DEALLOCATE(Acoef_QBS, Bcoef_QBS, stat = ierr) IF (ierr /= 0) PRINT*, ' pb in dealllocate Acoef_QBS, Bcoef_QBS, ierr=', ierr DEALLOCATE(gamaqbs, stat = ierr) IF (ierr /= 0) PRINT*, ' pb in dealllocate gamaqbs, ierr=', ierr DEALLOCATE(Kcoefqbs, stat = ierr) IF (ierr /= 0) PRINT*, ' pb in dealllocate Kcoefqbs, ierr=', ierr END IF END SUBROUTINE climb_qbs_up !**************************************************************************************** END MODULE climb_qbs_mod