MODULE lmdz_advtrac IMPLICIT NONE; PRIVATE PUBLIC advtrac CONTAINS SUBROUTINE advtrac(pbaru, pbarv, p, masse, q, iapptrac, teta, flxw, pk) ! Auteur : F. Hourdin ! Modif. P. Le Van (20/12/97) ! F. Codron (10/99) ! D. Le Croller (07/2001) ! M.A Filiberti (04/2002) USE lmdz_infotrac, ONLY: nqtot, tracers, isoCheck USE control_mod, ONLY: iapp_tracvl, day_step USE comconst_mod, ONLY: dtvr USE lmdz_cppkeys_wrapper, ONLY: CPPKEY_DEBUGIO USE lmdz_strings, ONLY: int2str USE lmdz_libmath, ONLY: minmax USE lmdz_iniprint, ONLY: lunout, prt_level USE lmdz_ssum_scopy, ONLY: scopy USE lmdz_comdissip, ONLY: coefdis, tetavel, tetatemp, gamdissip, niterdis USE lmdz_comgeom2 USE lmdz_groupe, ONLY: groupe USE lmdz_dimensions, ONLY: iim, jjm, llm, ndm USE lmdz_paramet USE lmdz_check_isotopes, ONLY: check_isotopes_seq IMPLICIT NONE !--------------------------------------------------------------------------- ! Arguments !--------------------------------------------------------------------------- INTEGER, INTENT(OUT) :: iapptrac REAL, INTENT(IN) :: pbaru(ip1jmp1, llm) REAL, INTENT(IN) :: pbarv(ip1jm, llm) REAL, INTENT(INOUT) :: q(ip1jmp1, llm, nqtot) REAL, INTENT(IN) :: masse(ip1jmp1, llm) REAL, INTENT(IN) :: p(ip1jmp1, llmp1) REAL, INTENT(IN) :: teta(ip1jmp1, llm) REAL, INTENT(IN) :: pk(ip1jmp1, llm) REAL, INTENT(OUT) :: flxw(ip1jmp1, llm) !--------------------------------------------------------------------------- ! Ajout PPM !--------------------------------------------------------------------------- REAL :: massebx(ip1jmp1, llm), masseby(ip1jm, llm) !--------------------------------------------------------------------------- ! Variables locales !--------------------------------------------------------------------------- INTEGER :: ij, l, iq, iadv ! REAL(KIND=KIND(1.d0)) :: t_initial, t_final, tps_cpu REAL :: zdp(ip1jmp1), zdpmin, zdpmax INTEGER, SAVE :: iadvtr = 0 REAL, DIMENSION(ip1jmp1, llm) :: pbaruc, pbarug, massem, wg REAL, DIMENSION(ip1jm, llm) :: pbarvc, pbarvg SAVE massem, pbaruc, pbarvc !--------------------------------------------------------------------------- ! Rajouts pour PPM !--------------------------------------------------------------------------- INTEGER indice, n REAL :: dtbon ! Pas de temps adaptatif pour que CFL<1 REAL :: CFLmaxz, aaa, bbb ! CFL maximum REAL, DIMENSION(iim, jjp1, llm) :: unatppm, vnatppm, fluxwppm REAL :: qppm(iim * jjp1, llm, nqtot) REAL :: psppm(iim, jjp1) ! pression au sol REAL, DIMENSION(llmp1) :: apppm, bpppm LOGICAL, SAVE :: dum = .TRUE., fill = .TRUE. INTEGER, SAVE :: countcfl = 0 REAL, DIMENSION(ip1jmp1, llm) :: cflx, cflz REAL, DIMENSION(ip1jm, llm) :: cfly REAL, DIMENSION(llm), SAVE :: cflxmax, cflymax, cflzmax IF(iadvtr == 0) THEN pbaruc(:, :) = 0 pbarvc(:, :) = 0 END IF !--- Accumulation des flux de masse horizontaux DO l = 1, llm DO ij = 1, ip1jmp1 pbaruc(ij, l) = pbaruc(ij, l) + pbaru(ij, l) END DO DO ij = 1, ip1jm pbarvc(ij, l) = pbarvc(ij, l) + pbarv(ij, l) END DO END DO !--- Selection de la masse instantannee des mailles avant le transport. IF(iadvtr == 0) THEN CALL SCOPY(ip1jmp1 * llm, masse, 1, massem, 1) ! CALL filtreg ( massem ,jjp1, llm,-2, 2, .TRUE., 1 ) END IF iadvtr = iadvtr + 1 iapptrac = iadvtr !--- Test pour savoir si on advecte a ce pas de temps IF(iadvtr /= iapp_tracvl) RETURN ! .. Modif P.Le Van ( 20/12/97 ) .... ! traitement des flux de masse avant advection. ! 1. calcul de w ! 2. groupement des mailles pres du pole. CALL groupe(pbaruc, pbarvc, pbarug, pbarvg, wg) !--- Flux de masse diaganostiques traceurs flxw = wg / REAL(iapp_tracvl) !--- Test sur l'eventuelle creation de valeurs negatives de la masse DO l = 1, llm - 1 DO ij = iip2 + 1, ip1jm zdp(ij) = pbarug(ij - 1, l) - pbarug(ij, l) & - pbarvg(ij - iip1, l) + pbarvg(ij, l) & + wg(ij, l + 1) - wg(ij, l) END DO ! ym ---> pourquoi jjm-1 et non jjm ? a cause du pole ? CALL SCOPY(jjm - 1, zdp(iip1 + iip1), iip1, zdp(iip2), iip1) DO ij = iip2, ip1jm zdp(ij) = zdp(ij) * dtvr / massem(ij, l) END DO CALL minmax (ip1jm - iip1, zdp(iip2), zdpmin, zdpmax) IF(MAX(ABS(zdpmin), ABS(zdpmax)) > 0.5) & WRITE(*, *)'WARNING DP/P l=', l, ' MIN:', zdpmin, ' MAX:', zdpmax END DO !------------------------------------------------------------------------- ! Calcul des criteres CFL en X, Y et Z !------------------------------------------------------------------------- IF(countcfl == 0.) THEN cflxmax(:) = 0. cflymax(:) = 0. cflzmax(:) = 0. END IF countcfl = countcfl + iapp_tracvl cflx(:, :) = 0. cfly(:, :) = 0. cflz(:, :) = 0. DO l = 1, llm DO ij = iip2, ip1jm - 1 IF(pbarug(ij, l)>=0.) THEN cflx(ij, l) = pbarug(ij, l) * dtvr / masse(ij, l) ELSE cflx(ij, l) = -pbarug(ij, l) * dtvr / masse(ij + 1, l) END IF END DO END DO DO l = 1, llm DO ij = iip2, ip1jm - 1, iip1 cflx(ij + iip1, l) = cflx(ij, l) END DO END DO DO l = 1, llm DO ij = 1, ip1jm IF(pbarvg(ij, l)>=0.) THEN cfly(ij, l) = pbarvg(ij, l) * dtvr / masse(ij, l) ELSE cfly(ij, l) = -pbarvg(ij, l) * dtvr / masse(ij + iip1, l) END IF END DO END DO DO l = 2, llm DO ij = 1, ip1jm IF(wg(ij, l) >= 0.) THEN cflz(ij, l) = wg(ij, l) * dtvr / masse(ij, l) ELSE cflz(ij, l) = -wg(ij, l) * dtvr / masse(ij, l - 1) END IF END DO END DO DO l = 1, llm cflxmax(l) = max(cflxmax(l), maxval(cflx(:, l))) cflymax(l) = max(cflymax(l), maxval(cfly(:, l))) cflzmax(l) = max(cflzmax(l), maxval(cflz(:, l))) END DO !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! Par defaut, on sort le diagnostic des CFL tous les jours. ! Si on veut le sortir a chaque pas d'advection en cas de plantage ! IF(countcfl==iapp_tracvl) THEN !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! IF(countcfl==day_step) THEN DO l = 1, llm WRITE(lunout, *) 'L, CFL[xyz]max:', l, cflxmax(l), cflymax(l), cflzmax(l) END DO countcfl = 0 END IF !--------------------------------------------------------------------------- ! Advection proprement dite (Modification Le Croller (07/2001) !--------------------------------------------------------------------------- !--------------------------------------------------------------------------- ! Calcul des moyennes basees sur la masse !--------------------------------------------------------------------------- CALL massbar(massem, massebx, masseby) IF (CPPKEY_DEBUGIO) THEN CALL WriteField_u('massem', massem) CALL WriteField_u('wg', wg) CALL WriteField_u('pbarug', pbarug) CALL WriteField_v('pbarvg', pbarvg) CALL WriteField_u('p_tmp', p) CALL WriteField_u('pk_tmp', pk) CALL WriteField_u('teta_tmp', teta) DO iq = 1, nqtot CALL WriteField_u('q_adv' // trim(int2str(iq)), q(:, :, iq)) END DO END IF IF(isoCheck) WRITE(*, *) 'advtrac 227' CALL check_isotopes_seq(q, ip1jmp1, 'advtrac 162') !------------------------------------------------------------------------- ! Appel des sous programmes d'advection !------------------------------------------------------------------------- DO iq = 1, nqtot ! CALL clock(t_initial) IF(tracers(iq)%parent /= 'air') CYCLE iadv = tracers(iq)%iadv !----------------------------------------------------------------------- SELECT CASE(iadv) !----------------------------------------------------------------------- CASE(0); CYCLE !-------------------------------------------------------------------- CASE(10) !--- Schema de Van Leer I MUSCL !-------------------------------------------------------------------- ! WRITE(*,*) 'advtrac 239: iq,q(1721,19,:)=',iq,q(1721,19,:) CALL vlsplt(q, 2., massem, wg, pbarug, pbarvg, dtvr, iq) !-------------------------------------------------------------------- CASE(14) !--- Schema "pseuDO amont" + test sur humidite specifique !--- pour la vapeur d'eau. F. Codron !-------------------------------------------------------------------- ! WRITE(*,*) 'advtrac 248: iq,q(1721,19,:)=',iq,q(1721,19,:) CALL vlspltqs(q, 2., massem, wg, pbarug, pbarvg, dtvr, p, pk, teta, iq) !-------------------------------------------------------------------- CASE(12) !--- Schema de Frederic Hourdin !-------------------------------------------------------------------- CALL adaptdt(iadv, dtbon, n, pbarug, massem) ! pas de temps adaptatif IF(n > 1) WRITE(*, *) 'WARNING horizontal dt=', dtbon, 'dtvr=', dtvr, 'n=', n DO indice = 1, n CALL advn(q(1, 1, iq), massem, wg, pbarug, pbarvg, dtbon, 1) END DO !-------------------------------------------------------------------- CASE(13) !--- Pas de temps adaptatif !-------------------------------------------------------------------- CALL adaptdt(iadv, dtbon, n, pbarug, massem) IF(n > 1) WRITE(*, *) 'WARNING horizontal dt=', dtbon, 'dtvr=', dtvr, 'n=', n DO indice = 1, n CALL advn(q(1, 1, iq), massem, wg, pbarug, pbarvg, dtbon, 2) END DO !-------------------------------------------------------------------- CASE(20) !--- Schema de pente SLOPES !-------------------------------------------------------------------- CALL pentes_ini (q(1, 1, iq), wg, massem, pbarug, pbarvg, 0) !-------------------------------------------------------------------- CASE(30) !--- Schema de Prather !-------------------------------------------------------------------- ! Pas de temps adaptatif CALL adaptdt(iadv, dtbon, n, pbarug, massem) IF(n > 1) WRITE(*, *) 'WARNING horizontal dt=', dtbon, 'dtvr=', dtvr, 'n=', n CALL prather(q(1, 1, iq), wg, massem, pbarug, pbarvg, n, dtbon) !-------------------------------------------------------------------- CASE(11, 16, 17, 18) !--- Schemas PPM Lin et Rood !-------------------------------------------------------------------- ! Test sur le flux horizontal CALL adaptdt(iadv, dtbon, n, pbarug, massem) ! pas de temps adaptatif IF(n > 1) WRITE(*, *) 'WARNING horizontal dt=', dtbon, 'dtvr=', dtvr, 'n=', n ! Test sur le flux vertical CFLmaxz = 0. DO l = 2, llm DO ij = iip2, ip1jm aaa = wg(ij, l) * dtvr / massem(ij, l) CFLmaxz = max(CFLmaxz, aaa) bbb = -wg(ij, l) * dtvr / massem(ij, l - 1) CFLmaxz = max(CFLmaxz, bbb) END DO END DO IF(CFLmaxz>=1) WRITE(*, *) 'WARNING vertical', 'CFLmaxz=', CFLmaxz !---------------------------------------------------------------- ! Ss-prg interface LMDZ.4->PPM3d (ss-prg de Lin) !---------------------------------------------------------------- CALL interpre(q(1, 1, iq), qppm(1, 1, iq), wg, fluxwppm, massem, & apppm, bpppm, massebx, masseby, pbarug, pbarvg, & unatppm, vnatppm, psppm) !---------------------------------------------------------------- DO indice = 1, n !--- VL (version PPM) horiz. et PPM vert. !---------------------------------------------------------------- SELECT CASE(iadv) !---------------------------------------------------------- CASE(11) !---------------------------------------------------------- CALL ppm3d(1, qppm(1, 1, iq), psppm, psppm, unatppm, vnatppm, fluxwppm, dtbon, & 2, 2, 2, 1, iim, jjp1, 2, llm, apppm, bpppm, 0.01, 6400000, fill, dum, 220.) !---------------------------------------------------------- CASE(16) !--- Monotonic PPM !---------------------------------------------------------- CALL ppm3d(1, qppm(1, 1, iq), psppm, psppm, unatppm, vnatppm, fluxwppm, dtbon, & 3, 3, 3, 1, iim, jjp1, 2, llm, apppm, bpppm, 0.01, 6400000, fill, dum, 220.) !---------------------------------------------------------- CASE(17) !--- Semi monotonic PPM !---------------------------------------------------------- CALL ppm3d(1, qppm(1, 1, iq), psppm, psppm, unatppm, vnatppm, fluxwppm, dtbon, & 4, 4, 4, 1, iim, jjp1, 2, llm, apppm, bpppm, 0.01, 6400000, fill, dum, 220.) !---------------------------------------------------------- CASE(18) !--- Positive Definite PPM !---------------------------------------------------------- CALL ppm3d(1, qppm(1, 1, iq), psppm, psppm, unatppm, vnatppm, fluxwppm, dtbon, & 5, 5, 5, 1, iim, jjp1, 2, llm, apppm, bpppm, 0.01, 6400000, fill, dum, 220.) END SELECT !---------------------------------------------------------------- END DO !---------------------------------------------------------------- ! Ss-prg interface PPM3d-LMDZ.4 !---------------------------------------------------------------- CALL interpost(q(1, 1, iq), qppm(1, 1, iq)) !---------------------------------------------------------------------- END SELECT !---------------------------------------------------------------------- !---------------------------------------------------------------------- ! On impose une seule valeur du traceur au pole Sud j=jjm+1=jjp1 et Nord j=1 !---------------------------------------------------------------------- ! CALL traceurpole(q(1,1,iq),massem) !--- Calcul du temps cpu pour un schema donne ! CALL clock(t_final) !ym tps_cpu=t_final-t_initial !ym cpuadv(iq)=cpuadv(iq)+tps_cpu END DO IF(isoCheck) WRITE(*, *) 'advtrac 402' CALL check_isotopes_seq(q, ip1jmp1, 'advtrac 397') !------------------------------------------------------------------------- ! on reinitialise a zero les flux de masse cumules !------------------------------------------------------------------------- iadvtr = 0 END SUBROUTINE advtrac END MODULE lmdz_advtrac