! $Id$ SUBROUTINE readaerosol_interp(id_aero, itap, pdtphys, r_day, first, pplay, paprs, t_seri, mass_out, pi_mass_out, load_src) ! This routine will return the mass concentration at actual day(mass_out) and ! the pre-industrial values(pi_mass_out) for aerosol corresponding to "id_aero". ! The mass concentrations for all aerosols are saved in this routine but each ! CALL to this routine only treats the aerosol "id_aero". ! 1) Read in data for the whole year, ONLY at first time step ! 2) Interpolate to the actual day, ONLY at new day ! 3) Interpolate to the model vertical grid (target grid), ONLY at new day ! 4) Test for negative mass values USE ioipsl USE dimphy, ONLY: klev, klon USE lmdz_phys_para, ONLY: mpi_rank USE readaerosol_mod USE aero_mod, ONLY: naero_spc, name_aero USE lmdz_writefield_phy USE phys_cal_mod USE lmdz_pres2lev USE lmdz_print_control, ONLY: lunout USE lmdz_abort_physic, ONLY: abort_physic USE lmdz_clesphys USE lmdz_yomcst USE lmdz_chem, ONLY: idms, iso2, iso4, ih2s, idmso, imsa, ih2o2, & n_avogadro, masse_s, masse_so4, rho_water, rho_ice IMPLICIT NONE ! Input: !**************************************************************************************** INTEGER, INTENT(IN) :: id_aero! Identity number for the aerosol to treat INTEGER, INTENT(IN) :: itap ! Physic step count REAL, INTENT(IN) :: pdtphys! Physic day step REAL, INTENT(IN) :: r_day ! Day of integration LOGICAL, INTENT(IN) :: first ! First model timestep REAL, DIMENSION(klon, klev), INTENT(IN) :: pplay ! pression at model mid-layers REAL, DIMENSION(klon, klev + 1), INTENT(IN) :: paprs ! pression between model layers REAL, DIMENSION(klon, klev), INTENT(IN) :: t_seri ! air temperature ! Output: !**************************************************************************************** REAL, INTENT(OUT) :: mass_out(klon, klev) ! Mass of aerosol (monthly mean data,from file) [ug AIBCM/m3] REAL, INTENT(OUT) :: pi_mass_out(klon, klev) ! Mass of preindustrial aerosol (monthly mean data,from file) [ug AIBCM/m3] REAL, INTENT(OUT) :: load_src(klon) ! Load of aerosol (monthly mean data,from file) [kg/m3] ! Local Variables: !**************************************************************************************** INTEGER :: i, k, ierr INTEGER :: iday, iyr, lmt_pas ! INTEGER :: im, day1, day2, im2 INTEGER :: im, im2 REAL :: day1, day2 INTEGER :: pi_klev_src ! Only for testing purpose INTEGER, SAVE :: klev_src ! Number of vertical levles in source field !$OMP THREADPRIVATE(klev_src) REAL :: zrho ! Air density [kg/m3] REAL :: volm ! Volyme de melange [kg/kg] REAL, DIMENSION(klon) :: psurf_day, pi_psurf_day REAL, DIMENSION(klon) :: pi_load_src ! Mass load at source grid REAL, DIMENSION(klon) :: load_tgt, load_tgt_test REAL, DIMENSION(klon, klev) :: delp ! pressure difference in each model layer REAL, ALLOCATABLE, DIMENSION(:, :) :: pplay_src ! pression mid-layer at source levels REAL, ALLOCATABLE, DIMENSION(:, :) :: tmp1, tmp2 ! Temporary variables REAL, ALLOCATABLE, DIMENSION(:, :, :, :), SAVE :: var_year ! VAR in right dimension for the total year REAL, ALLOCATABLE, DIMENSION(:, :, :, :), SAVE :: pi_var_year ! pre-industrial VAR, -"- !$OMP THREADPRIVATE(var_year,pi_var_year) REAL, ALLOCATABLE, DIMENSION(:, :, :), SAVE :: var_day ! VAR interpolated to the actual day and model grid REAL, ALLOCATABLE, DIMENSION(:, :, :), SAVE :: pi_var_day ! pre-industrial VAR, -"- !$OMP THREADPRIVATE(var_day,pi_var_day) REAL, ALLOCATABLE, DIMENSION(:, :, :), SAVE :: psurf_year, pi_psurf_year ! surface pressure for the total year !$OMP THREADPRIVATE(psurf_year, pi_psurf_year) REAL, ALLOCATABLE, DIMENSION(:, :, :), SAVE :: load_year, pi_load_year ! load in the column for the total year !$OMP THREADPRIVATE(load_year, pi_load_year) REAL, DIMENSION(:, :, :), POINTER :: pt_tmp ! Pointer allocated in readaerosol REAL, POINTER, DIMENSION(:), SAVE :: pt_ap, pt_b ! Pointer for describing the vertical levels !$OMP THREADPRIVATE(pt_ap, pt_b) INTEGER, SAVE :: nbr_tsteps ! number of time steps in file read REAL, DIMENSION(14), SAVE :: month_len, month_start, month_mid !$OMP THREADPRIVATE(nbr_tsteps, month_len, month_start, month_mid) REAL :: jDay LOGICAL :: lnewday ! Indicates if first time step at a new day LOGICAL :: OLDNEWDAY LOGICAL, SAVE :: vert_interp ! Indicates if vertical interpolation will be done LOGICAL, SAVE :: debug = .FALSE.! Debugging in this subroutine !$OMP THREADPRIVATE(vert_interp, debug) CHARACTER(len = 8) :: type CHARACTER(len = 8) :: filename !**************************************************************************************** ! Initialization !**************************************************************************************** ! Calculation to find if it is a new day IF(mpi_rank == 0 .AND. debug)THEN PRINT*, 'CONTROL PANEL REGARDING TIME STEPING' ENDIF ! Use phys_cal_mod iday = day_cur iyr = year_cur im = mth_cur ! iday = INT(r_day) ! iyr = iday/360 ! iday = iday-iyr*360 ! day of the actual year ! iyr = iyr + annee_ref ! year of the run ! im = iday/30 +1 ! the actual month CALL ymds2ju(iyr, im, iday, 0., jDay) ! CALL ymds2ju(iyr, im, iday-(im-1)*30, 0., jDay) IF(MOD(itap - 1, NINT(86400. / pdtphys)) == 0)THEN lnewday = .TRUE. ELSE lnewday = .FALSE. ENDIF IF(mpi_rank == 0 .AND. debug)THEN ! 0.02 is about 0.5/24, namly less than half an hour OLDNEWDAY = (r_day - REAL(iday) < 0.02) ! Once per day, update aerosol fields lmt_pas = NINT(86400. / pdtphys) PRINT*, 'r_day-REAL(iday) =', r_day - REAL(iday) PRINT*, 'itap =', itap PRINT*, 'pdtphys =', pdtphys PRINT*, 'lmt_pas =', lmt_pas PRINT*, 'iday =', iday PRINT*, 'r_day =', r_day PRINT*, 'day_cur =', day_cur PRINT*, 'mth_cur =', mth_cur PRINT*, 'year_cur =', year_cur PRINT*, 'NINT(86400./pdtphys) =', NINT(86400. / pdtphys) PRINT*, 'MOD(0,1) =', MOD(0, 1) PRINT*, 'lnewday =', lnewday PRINT*, 'OLDNEWDAY =', OLDNEWDAY ENDIF IF (.NOT. ALLOCATED(var_day)) THEN ALLOCATE(var_day(klon, klev, naero_spc), stat = ierr) IF (ierr /= 0) CALL abort_physic('readaerosol_interp', 'pb in allocation 1', 1) ALLOCATE(pi_var_day(klon, klev, naero_spc), stat = ierr) IF (ierr /= 0) CALL abort_physic('readaerosol_interp', 'pb in allocation 2', 1) ALLOCATE(psurf_year(klon, 12, naero_spc), pi_psurf_year(klon, 12, naero_spc), stat = ierr) IF (ierr /= 0) CALL abort_physic('readaerosol_interp', 'pb in allocation 3', 1) ALLOCATE(load_year(klon, 12, naero_spc), pi_load_year(klon, 12, naero_spc), stat = ierr) IF (ierr /= 0) CALL abort_physic('readaerosol_interp', 'pb in allocation 4', 1) lnewday = .TRUE. NULLIFY(pt_ap) NULLIFY(pt_b) ENDIF !**************************************************************************************** ! 1) Read in data : corresponding to the actual year and preindustrial data. ! Only for the first day of the year. !**************************************************************************************** IF ((first .OR. iday==0) .AND. lnewday) THEN NULLIFY(pt_tmp) ! Reading values corresponding to the closest year taking into count the choice of aer_type. ! For aer_type=scenario interpolation between 2 data sets is done in readaerosol. ! If aer_type=mix1, mix2 or mix3, the run type and file name depends on the aerosol. IF (aer_type=='preind' .OR. aer_type=='actuel' .OR. aer_type=='annuel' .OR. aer_type=='scenario') THEN ! Standard case filename = 'aerosols' type = aer_type ELSE IF (aer_type == 'mix1') THEN ! Special case using a mix of decenal sulfate file and annual aerosols(all aerosols except sulfate) IF (name_aero(id_aero) == 'SO4') THEN filename = 'so4.run ' type = 'scenario' ELSE filename = 'aerosols' type = 'annuel' ENDIF ELSE IF (aer_type == 'mix2') THEN ! Special case using a mix of decenal sulfate file and natrual aerosols IF (name_aero(id_aero) == 'SO4') THEN filename = 'so4.run ' type = 'scenario' ELSE filename = 'aerosols' type = 'preind' ENDIF ELSE IF (aer_type == 'mix3') THEN ! Special case using a mix of annual sulfate file and natrual aerosols IF (name_aero(id_aero) == 'SO4') THEN filename = 'aerosols' type = 'annuel' ELSE filename = 'aerosols' type = 'preind' ENDIF ELSE CALL abort_physic('readaerosol_interp', 'this aer_type not supported', 1) ENDIF CALL readaerosol(name_aero(id_aero), type, filename, iyr, klev_src, pt_ap, pt_b, pt_tmp, & psurf_year(:, :, id_aero), load_year(:, :, id_aero)) IF (.NOT. ALLOCATED(var_year)) THEN ALLOCATE(var_year(klon, klev_src, 12, naero_spc), stat = ierr) IF (ierr /= 0) CALL abort_physic('readaerosol_interp', 'pb in allocation 5', 1) ENDIF var_year(:, :, :, id_aero) = pt_tmp(:, :, :) ! Reading values corresponding to the preindustrial concentrations. type = 'preind' CALL readaerosol(name_aero(id_aero), type, filename, iyr, pi_klev_src, pt_ap, pt_b, pt_tmp, & pi_psurf_year(:, :, id_aero), pi_load_year(:, :, id_aero)) ! klev_src must be the same in both files. ! Also supposing pt_ap and pt_b to be the same in the 2 files without testing. IF (pi_klev_src /= klev_src) THEN WRITE(lunout, *) 'Error! All forcing files for the same aerosol must have the same vertical dimension' WRITE(lunout, *) 'Aerosol : ', name_aero(id_aero) CALL abort_physic('readaerosol_interp', 'Differnt vertical axes in aerosol forcing files', 1) ENDIF IF (.NOT. ALLOCATED(pi_var_year)) THEN ALLOCATE(pi_var_year(klon, klev_src, 12, naero_spc), stat = ierr) IF (ierr /= 0) CALL abort_physic('readaerosol_interp', 'pb in allocation 6', 1) ENDIF pi_var_year(:, :, :, id_aero) = pt_tmp(:, :, :) IF (debug) THEN CALL writefield_phy('var_year_jan', var_year(:, :, 1, id_aero), klev_src) CALL writefield_phy('var_year_dec', var_year(:, :, 12, id_aero), klev_src) CALL writefield_phy('psurf_src', psurf_year(:, :, id_aero), 1) CALL writefield_phy('pi_psurf_src', pi_psurf_year(:, :, id_aero), 1) CALL writefield_phy('load_year_src', load_year(:, :, id_aero), 1) CALL writefield_phy('pi_load_year_src', pi_load_year(:, :, id_aero), 1) ENDIF ! Pointer no more useful, deallocate. DEALLOCATE(pt_tmp) ! Test if vertical interpolation will be needed. IF (psurf_year(1, 1, id_aero)==not_valid .OR. pi_psurf_year(1, 1, id_aero)==not_valid) THEN ! Pressure=not_valid indicates old file format, see module readaerosol vert_interp = .FALSE. ! If old file format, both psurf_year and pi_psurf_year must be not_valid IF (psurf_year(1, 1, id_aero) /= pi_psurf_year(1, 1, id_aero)) THEN WRITE(lunout, *) 'Warning! All forcing files for the same aerosol must have the same structure' CALL abort_physic('readaerosol_interp', 'The aerosol files have not the same format', 1) ENDIF IF (klev /= klev_src) THEN WRITE(lunout, *) 'Old format of aerosol file do not allowed vertical interpolation' CALL abort_physic('readaerosol_interp', 'Old aerosol file not possible', 1) ENDIF ELSE vert_interp = .TRUE. ENDIF ! Calendar initialisation DO i = 2, 13 month_len(i) = REAL(ioget_mon_len(year_cur, i - 1)) CALL ymds2ju(year_cur, i - 1, 1, 0.0, month_start(i)) ENDDO month_len(1) = REAL(ioget_mon_len(year_cur - 1, 12)) CALL ymds2ju(year_cur - 1, 12, 1, 0.0, month_start(1)) month_len(14) = REAL(ioget_mon_len(year_cur + 1, 1)) CALL ymds2ju(year_cur + 1, 1, 1, 0.0, month_start(14)) month_mid(:) = month_start (:) + month_len(:) / 2. IF (debug) THEN WRITE(lunout, *)' month_len = ', month_len WRITE(lunout, *)' month_mid = ', month_mid endif ENDIF ! IF ( (first .OR. iday==0) .AND. lnewday ) THEN !**************************************************************************************** ! - 2) Interpolate to the actual day. ! - 3) Interpolate to the model vertical grid. !**************************************************************************************** IF (lnewday) THEN ! only if new day !**************************************************************************************** ! 2) Interpolate to the actual day !**************************************************************************************** ! Find which months and days to use for time interpolation nbr_tsteps = 12 IF (nbr_tsteps == 12) THEN IF (jDay < month_mid(im + 1)) THEN im2 = im - 1 day2 = month_mid(im2 + 1) day1 = month_mid(im + 1) IF (im2 <= 0) THEN ! the month is january, thus the month before december im2 = 12 ENDIF ELSE ! the second half of the month im2 = im + 1 day1 = month_mid(im + 1) day2 = month_mid(im2 + 1) IF (im2 > 12) THEN ! the month is december, the following thus january im2 = 1 ENDIF ENDIF ELSE IF (nbr_tsteps == 14) THEN im = im + 1 IF (jDay < month_mid(im)) THEN ! in the first half of the month use month before and actual month im2 = im - 1 day2 = month_mid(im2) day1 = month_mid(im) ELSE ! the second half of the month im2 = im + 1 day1 = month_mid(im) day2 = month_mid(im2) ENDIF ELSE CALL abort_physic('readaerosol_interp', 'number of months undefined', 1) ENDIF IF (debug) THEN WRITE(lunout, *)' jDay, day1, day2, im, im2 = ', jDay, day1, day2, im, im2 endif ! Time interpolation, still on vertical source grid ALLOCATE(tmp1(klon, klev_src), tmp2(klon, klev_src), stat = ierr) IF (ierr /= 0) CALL abort_physic('readaerosol_interp', 'pb in allocation 7', 1) ALLOCATE(pplay_src(klon, klev_src), stat = ierr) IF (ierr /= 0) CALL abort_physic('readaerosol_interp', 'pb in allocation 8', 1) DO k = 1, klev_src DO i = 1, klon tmp1(i, k) = & var_year(i, k, im2, id_aero) - (jDay - day2) / (day1 - day2) * & (var_year(i, k, im2, id_aero) - var_year(i, k, im, id_aero)) tmp2(i, k) = & pi_var_year(i, k, im2, id_aero) - (jDay - day2) / (day1 - day2) * & (pi_var_year(i, k, im2, id_aero) - pi_var_year(i, k, im, id_aero)) ENDDO ENDDO ! Time interpolation for pressure at surface, still on vertical source grid DO i = 1, klon psurf_day(i) = & psurf_year(i, im2, id_aero) - (jDay - day2) / (day1 - day2) * & (psurf_year(i, im2, id_aero) - psurf_year(i, im, id_aero)) pi_psurf_day(i) = & pi_psurf_year(i, im2, id_aero) - (jDay - day2) / (day1 - day2) * & (pi_psurf_year(i, im2, id_aero) - pi_psurf_year(i, im, id_aero)) ENDDO ! Time interpolation for the load, still on vertical source grid DO i = 1, klon load_src(i) = & load_year(i, im2, id_aero) - (jDay - day2) / (day1 - day2) * & (load_year(i, im2, id_aero) - load_year(i, im, id_aero)) pi_load_src(i) = & pi_load_year(i, im2, id_aero) - (jDay - day2) / (day1 - day2) * & (pi_load_year(i, im2, id_aero) - pi_load_year(i, im, id_aero)) ENDDO !**************************************************************************************** ! 3) Interpolate to the model vertical grid (target grid) !**************************************************************************************** IF (vert_interp) THEN ! - Interpolate variable tmp1 (on source grid) to var_day (on target grid) !******************************************************************************** ! a) calculate pression at vertical levels for the source grid using the ! hybrid-sigma coordinates ap and b and the surface pressure, variables from file. DO k = 1, klev_src DO i = 1, klon pplay_src(i, k) = pt_ap(k) + pt_b(k) * psurf_day(i) ENDDO ENDDO IF (debug) THEN CALL writefield_phy('psurf_day_src', psurf_day(:), 1) CALL writefield_phy('pplay_src', pplay_src(:, :), klev_src) CALL writefield_phy('pplay', pplay(:, :), klev) CALL writefield_phy('day_src', tmp1, klev_src) CALL writefield_phy('pi_day_src', tmp2, klev_src) ENDIF ! b) vertical interpolation on pressure leveles CALL pres2lev(tmp1(:, :), var_day(:, :, id_aero), klev_src, klev, pplay_src, pplay, & 1, klon, .FALSE.) IF (debug) CALL writefield_phy('day_tgt', var_day(:, :, id_aero), klev) ! c) adjust to conserve total aerosol mass load in the vertical pillar ! Calculate the load in the actual pillar and compare with the load ! read from aerosol file. ! Find the pressure difference in each model layer DO k = 1, klev DO i = 1, klon delp(i, k) = paprs(i, k) - paprs (i, k + 1) ENDDO ENDDO ! Find the mass load in the actual pillar, on target grid load_tgt(:) = 0. DO k = 1, klev DO i = 1, klon zrho = pplay(i, k) / t_seri(i, k) / RD ! [kg/m3] volm = var_day(i, k, id_aero) * 1.E-9 / zrho ! [kg/kg] load_tgt(i) = load_tgt(i) + volm * delp(i, k) / RG ENDDO ENDDO ! Adjust, uniform DO k = 1, klev DO i = 1, klon var_day(i, k, id_aero) = var_day(i, k, id_aero) * load_src(i) / max(1.e-30, load_tgt(i)) ENDDO ENDDO IF (debug) THEN load_tgt_test(:) = 0. DO k = 1, klev DO i = 1, klon zrho = pplay(i, k) / t_seri(i, k) / RD ! [kg/m3] volm = var_day(i, k, id_aero) * 1.E-9 / zrho ! [kg/kg] load_tgt_test(i) = load_tgt_test(i) + volm * delp(i, k) / RG ENDDO ENDDO CALL writefield_phy('day_tgt2', var_day(:, :, id_aero), klev) CALL writefield_phy('load_tgt', load_tgt(:), 1) CALL writefield_phy('load_tgt_test', load_tgt_test(:), 1) CALL writefield_phy('load_src', load_src(:), 1) ENDIF ! - Interpolate variable tmp2 (source grid) to pi_var_day (target grid) !******************************************************************************** ! a) calculate pression at vertical levels at source grid DO k = 1, klev_src DO i = 1, klon pplay_src(i, k) = pt_ap(k) + pt_b(k) * pi_psurf_day(i) ENDDO ENDDO IF (debug) THEN CALL writefield_phy('pi_psurf_day_src', pi_psurf_day(:), 1) CALL writefield_phy('pi_pplay_src', pplay_src(:, :), klev_src) ENDIF ! b) vertical interpolation on pressure leveles CALL pres2lev(tmp2(:, :), pi_var_day(:, :, id_aero), klev_src, klev, pplay_src, pplay, & 1, klon, .FALSE.) IF (debug) CALL writefield_phy('pi_day_tgt', pi_var_day(:, :, id_aero), klev) ! c) adjust to conserve total aerosol mass load in the vertical pillar ! Calculate the load in the actual pillar and compare with the load ! read from aerosol file. ! Find the load in the actual pillar, on target grid load_tgt(:) = 0. DO k = 1, klev DO i = 1, klon zrho = pplay(i, k) / t_seri(i, k) / RD ! [kg/m3] volm = pi_var_day(i, k, id_aero) * 1.E-9 / zrho ! [kg/kg] load_tgt(i) = load_tgt(i) + volm * delp(i, k) / RG ENDDO ENDDO DO k = 1, klev DO i = 1, klon pi_var_day(i, k, id_aero) = pi_var_day(i, k, id_aero) * pi_load_src(i) / max(1.e-30, load_tgt(i)) ENDDO ENDDO IF (debug) THEN load_tgt_test(:) = 0. DO k = 1, klev DO i = 1, klon zrho = pplay(i, k) / t_seri(i, k) / RD ! [kg/m3] volm = pi_var_day(i, k, id_aero) * 1.E-9 / zrho ! [kg/kg] load_tgt_test(i) = load_tgt_test(i) + volm * delp(i, k) / RG ENDDO ENDDO CALL writefield_phy('pi_day_tgt2', pi_var_day(:, :, id_aero), klev) CALL writefield_phy('pi_load_tgt', load_tgt(:), 1) CALL writefield_phy('pi_load_tgt_test', load_tgt_test(:), 1) CALL writefield_phy('pi_load_src', pi_load_src(:), 1) ENDIF ELSE ! No vertical interpolation done var_day(:, :, id_aero) = tmp1(:, :) pi_var_day(:, :, id_aero) = tmp2(:, :) ENDIF ! vert_interp ! Deallocation DEALLOCATE(tmp1, tmp2, pplay_src, stat = ierr) !**************************************************************************************** ! 4) Test for negative mass values !**************************************************************************************** IF (MINVAL(var_day(:, :, id_aero)) < 0.) THEN DO k = 1, klev DO i = 1, klon ! Test for var_day IF (var_day(i, k, id_aero) < 0.) THEN IF (jDay - day2 < 0.) WRITE(lunout, *) 'jDay-day2=', jDay - day2 IF (var_year(i, k, im2, id_aero) - var_year(i, k, im, id_aero) < 0.) THEN WRITE(lunout, *) trim(name_aero(id_aero)), '(i,k,im2)-', & trim(name_aero(id_aero)), '(i,k,im)=', & var_year(i, k, im2, id_aero) - var_year(i, k, im, id_aero) ENDIF WRITE(lunout, *) 'stop for aerosol : ', name_aero(id_aero) WRITE(lunout, *) 'day1, day2, jDay = ', day1, day2, jDay CALL abort_physic('readaerosol_interp', 'Error in interpolation 1', 1) ENDIF ENDDO ENDDO ENDIF IF (MINVAL(pi_var_day(:, :, id_aero)) < 0.) THEN DO k = 1, klev DO i = 1, klon ! Test for pi_var_day IF (pi_var_day(i, k, id_aero) < 0.) THEN IF (jDay - day2 < 0.) WRITE(lunout, *) 'jDay-day2=', jDay - day2 IF (pi_var_year(i, k, im2, id_aero) - pi_var_year(i, k, im, id_aero) < 0.) THEN WRITE(lunout, *) trim(name_aero(id_aero)), '(i,k,im2)-', & trim(name_aero(id_aero)), '(i,k,im)=', & pi_var_year(i, k, im2, id_aero) - pi_var_year(i, k, im, id_aero) ENDIF WRITE(lunout, *) 'stop for aerosol : ', name_aero(id_aero) CALL abort_physic('readaerosol_interp', 'Error in interpolation 2', 1) ENDIF ENDDO ENDDO ENDIF ENDIF ! lnewday !**************************************************************************************** ! Copy output from saved variables !**************************************************************************************** mass_out(:, :) = var_day(:, :, id_aero) pi_mass_out(:, :) = pi_var_day(:, :, id_aero) END SUBROUTINE readaerosol_interp