! $Id: $ MODULE inigeomphy_mod CONTAINS SUBROUTINE inigeomphy(iim, jjm, nlayer, & nbp, communicator, & rlatu, rlatv, rlonu, rlonv, aire, cu, cv) USE lmdz_grid_phy, ONLY: klon_glo, & ! number of atmospheric columns (on full grid) regular_lonlat, & ! regular longitude-latitude grid type nbp_lon, nbp_lat, nbp_lev USE lmdz_phys_para, ONLY: klon_omp, & ! number of columns (on local omp grid) klon_omp_begin, & ! start index of local omp subgrid klon_omp_end, & ! end index of local omp subgrid klon_mpi_begin ! start indes of columns (on local mpi grid) USE lmdz_geometry, ONLY: init_geometry USE lmdz_physics_distribution, ONLY: init_physics_distribution USE lmdz_regular_lonlat, ONLY: init_regular_lonlat, & east, west, north, south, & north_east, north_west, & south_west, south_east USE mod_interface_dyn_phys, ONLY: init_interface_dyn_phys USE lmdz_physical_constants, ONLY: pi USE comvert_mod, ONLY: preff, ap, bp, aps, bps, presnivs, & scaleheight, pseudoalt, presinter USE lmdz_vertical_layers, ONLY: init_vertical_layers USE lmdz_iniprint, ONLY: lunout, prt_level IMPLICIT NONE ! ======================================================================= ! Initialisation of the physical constants and some positional and ! geometrical arrays for the physics ! ======================================================================= INTEGER, INTENT (IN) :: nlayer ! number of atmospheric layers INTEGER, INTENT (IN) :: iim ! number of atmospheric columns along longitudes INTEGER, INTENT (IN) :: jjm ! number of atompsheric columns along latitudes INTEGER, INTENT(IN) :: nbp ! number of physics columns for this MPI process INTEGER, INTENT(IN) :: communicator ! MPI communicator REAL, INTENT (IN) :: rlatu(jjm + 1) ! latitudes of the physics grid REAL, INTENT (IN) :: rlatv(jjm) ! latitude boundaries of the physics grid REAL, INTENT (IN) :: rlonv(iim + 1) ! longitudes of the physics grid REAL, INTENT (IN) :: rlonu(iim + 1) ! longitude boundaries of the physics grid REAL, INTENT (IN) :: aire(iim + 1, jjm + 1) ! area of the dynamics grid (m2) REAL, INTENT (IN) :: cu((iim + 1) * (jjm + 1)) ! cu coeff. (u_covariant = cu * u) REAL, INTENT (IN) :: cv((iim + 1) * jjm) ! cv coeff. (v_covariant = cv * v) INTEGER :: ibegin, iend, offset INTEGER :: i, j, k CHARACTER (LEN = 20) :: modname = 'inigeomphy' CHARACTER (LEN = 80) :: abort_message REAL :: total_area_phy, total_area_dyn ! boundaries, on global grid REAL, ALLOCATABLE :: boundslon_reg(:, :) REAL, ALLOCATABLE :: boundslat_reg(:, :) ! global array, on full physics grid: REAL, ALLOCATABLE :: latfi_glo(:) REAL, ALLOCATABLE :: lonfi_glo(:) REAL, ALLOCATABLE :: cufi_glo(:) REAL, ALLOCATABLE :: cvfi_glo(:) REAL, ALLOCATABLE :: airefi_glo(:) REAL, ALLOCATABLE :: boundslonfi_glo(:, :) REAL, ALLOCATABLE :: boundslatfi_glo(:, :) ! local arrays, on given MPI/OpenMP domain: REAL, ALLOCATABLE, SAVE :: latfi(:) REAL, ALLOCATABLE, SAVE :: lonfi(:) REAL, ALLOCATABLE, SAVE :: cufi(:) REAL, ALLOCATABLE, SAVE :: cvfi(:) REAL, ALLOCATABLE, SAVE :: airefi(:) REAL, ALLOCATABLE, SAVE :: boundslonfi(:, :) REAL, ALLOCATABLE, SAVE :: boundslatfi(:, :) INTEGER, ALLOCATABLE, SAVE :: ind_cell_glo_fi(:) !$OMP THREADPRIVATE (latfi,lonfi,cufi,cvfi,airefi,boundslonfi,boundslatfi,ind_cell_glo_fi) ! Initialize Physics distibution and parameters and interface with dynamics IF (iim * jjm>1) THEN ! general 3D case CALL init_physics_distribution(regular_lonlat, 4, & nbp, iim, jjm + 1, nlayer, communicator) ELSE ! For 1D model CALL init_physics_distribution(regular_lonlat, 4, & 1, 1, 1, nlayer, communicator) ENDIF CALL init_interface_dyn_phys ! init regular global longitude-latitude grid points and boundaries ALLOCATE(boundslon_reg(iim, 2)) ALLOCATE(boundslat_reg(jjm + 1, 2)) ! specific handling of the -180 longitude scalar grid point boundaries boundslon_reg(1, east) = rlonu(1) boundslon_reg(1, west) = rlonu(iim) - 2 * PI DO i = 2, iim boundslon_reg(i, east) = rlonu(i) boundslon_reg(i, west) = rlonu(i - 1) ENDDO boundslat_reg(1, north) = PI / 2 boundslat_reg(1, south) = rlatv(1) DO j = 2, jjm boundslat_reg(j, north) = rlatv(j - 1) boundslat_reg(j, south) = rlatv(j) ENDDO boundslat_reg(jjm + 1, north) = rlatv(jjm) boundslat_reg(jjm + 1, south) = -PI / 2 ! Write values in module lmdz_regular_lonlat CALL init_regular_lonlat(iim, jjm + 1, rlonv(1:iim), rlatu, & boundslon_reg, boundslat_reg) ! Generate global arrays on full physics grid ALLOCATE(latfi_glo(klon_glo), lonfi_glo(klon_glo)) ALLOCATE(cufi_glo(klon_glo), cvfi_glo(klon_glo)) ALLOCATE(airefi_glo(klon_glo)) ALLOCATE(boundslonfi_glo(klon_glo, 4)) ALLOCATE(boundslatfi_glo(klon_glo, 4)) IF (klon_glo>1) THEN ! general case ! North pole latfi_glo(1) = rlatu(1) lonfi_glo(1) = 0. cufi_glo(1) = cu(1) cvfi_glo(1) = cv(1) boundslonfi_glo(1, north_east) = PI boundslatfi_glo(1, north_east) = PI / 2 boundslonfi_glo(1, north_west) = -PI boundslatfi_glo(1, north_west) = PI / 2 boundslonfi_glo(1, south_west) = -PI boundslatfi_glo(1, south_west) = rlatv(1) boundslonfi_glo(1, south_east) = PI boundslatfi_glo(1, south_east) = rlatv(1) DO j = 2, jjm DO i = 1, iim k = (j - 2) * iim + 1 + i latfi_glo(k) = rlatu(j) lonfi_glo(k) = rlonv(i) cufi_glo(k) = cu((j - 1) * (iim + 1) + i) cvfi_glo(k) = cv((j - 1) * (iim + 1) + i) boundslonfi_glo(k, north_east) = rlonu(i) boundslatfi_glo(k, north_east) = rlatv(j - 1) IF (i==1) THEN ! special case for the first longitude's west bound boundslonfi_glo(k, north_west) = rlonu(iim) - 2 * PI boundslonfi_glo(k, south_west) = rlonu(iim) - 2 * PI else boundslonfi_glo(k, north_west) = rlonu(i - 1) boundslonfi_glo(k, south_west) = rlonu(i - 1) endif boundslatfi_glo(k, north_west) = rlatv(j - 1) boundslatfi_glo(k, south_west) = rlatv(j) boundslonfi_glo(k, south_east) = rlonu(i) boundslatfi_glo(k, south_east) = rlatv(j) ENDDO ENDDO ! South pole latfi_glo(klon_glo) = rlatu(jjm + 1) lonfi_glo(klon_glo) = 0. cufi_glo(klon_glo) = cu((iim + 1) * jjm + 1) cvfi_glo(klon_glo) = cv((iim + 1) * jjm - iim) boundslonfi_glo(klon_glo, north_east) = PI boundslatfi_glo(klon_glo, north_east) = rlatv(jjm) boundslonfi_glo(klon_glo, north_west) = -PI boundslatfi_glo(klon_glo, north_west) = rlatv(jjm) boundslonfi_glo(klon_glo, south_west) = -PI boundslatfi_glo(klon_glo, south_west) = -PI / 2 boundslonfi_glo(klon_glo, south_east) = PI boundslatfi_glo(klon_glo, south_east) = -Pi / 2 ! build airefi(), mesh area on physics grid CALL gr_dyn_fi(1, iim + 1, jjm + 1, klon_glo, aire, airefi_glo) ! Poles are single points on physics grid airefi_glo(1) = sum(aire(1:iim, 1)) airefi_glo(klon_glo) = sum(aire(1:iim, jjm + 1)) ! Sanity check: do total planet area match between physics and dynamics? total_area_dyn = sum(aire(1:iim, 1:jjm + 1)) total_area_phy = sum(airefi_glo(1:klon_glo)) IF (total_area_dyn/=total_area_phy) THEN WRITE (lunout, *) 'inigeomphy: planet total surface discrepancy !!!' WRITE (lunout, *) ' in the dynamics total_area_dyn=', total_area_dyn WRITE (lunout, *) ' but in the physics total_area_phy=', total_area_phy IF (abs(total_area_dyn - total_area_phy)>0.00001 * total_area_dyn) THEN ! stop here if the relative difference is more than 0.001% abort_message = 'planet total surface discrepancy' CALL abort_gcm(modname, abort_message, 1) ENDIF ENDIF ELSE ! klon_glo==1, running the 1D model ! just copy over input values latfi_glo(1) = rlatu(1) lonfi_glo(1) = rlonv(1) cufi_glo(1) = cu(1) cvfi_glo(1) = cv(1) airefi_glo(1) = aire(1, 1) boundslonfi_glo(1, north_east) = rlonu(1) boundslatfi_glo(1, north_east) = PI / 2 boundslonfi_glo(1, north_west) = rlonu(2) boundslatfi_glo(1, north_west) = PI / 2 boundslonfi_glo(1, south_west) = rlonu(2) boundslatfi_glo(1, south_west) = rlatv(1) boundslonfi_glo(1, south_east) = rlonu(1) boundslatfi_glo(1, south_east) = rlatv(1) ENDIF ! of IF (klon_glo>1) !$OMP PARALLEL ! Now generate local lon/lat/cu/cv/area/bounds arrays ALLOCATE(latfi(klon_omp), lonfi(klon_omp), cufi(klon_omp), cvfi(klon_omp)) ALLOCATE(airefi(klon_omp)) ALLOCATE(boundslonfi(klon_omp, 4)) ALLOCATE(boundslatfi(klon_omp, 4)) ALLOCATE(ind_cell_glo_fi(klon_omp)) offset = klon_mpi_begin - 1 airefi(1:klon_omp) = airefi_glo(offset + klon_omp_begin:offset + klon_omp_end) cufi(1:klon_omp) = cufi_glo(offset + klon_omp_begin:offset + klon_omp_end) cvfi(1:klon_omp) = cvfi_glo(offset + klon_omp_begin:offset + klon_omp_end) lonfi(1:klon_omp) = lonfi_glo(offset + klon_omp_begin:offset + klon_omp_end) latfi(1:klon_omp) = latfi_glo(offset + klon_omp_begin:offset + klon_omp_end) boundslonfi(1:klon_omp, :) = boundslonfi_glo(offset + klon_omp_begin:offset + klon_omp_end, :) boundslatfi(1:klon_omp, :) = boundslatfi_glo(offset + klon_omp_begin:offset + klon_omp_end, :) ind_cell_glo_fi(1:klon_omp) = (/ (i, i = offset + klon_omp_begin, offset + klon_omp_end) /) ! copy over local grid longitudes and latitudes CALL init_geometry(klon_omp, lonfi, latfi, boundslonfi, boundslatfi, & airefi, ind_cell_glo_fi, cufi, cvfi) ! copy over preff , ap(), bp(), etc CALL init_vertical_layers(nlayer, preff, scaleheight, & ap, bp, aps, bps, presnivs, presinter, pseudoalt) !$OMP END PARALLEL END SUBROUTINE inigeomphy END MODULE inigeomphy_mod