module eq_regions_mod ! Purpose. ! -------- ! eq_regions_mod provides the code to perform a high level ! partitioning of the surface of a sphere into regions of ! equal area and small diameter. ! the type. ! Background. ! ----------- ! This Fortran version of eq_regions is a much cut down version of the ! "Recursive Zonal Equal Area (EQ) Sphere Partitioning Toolbox" of the ! same name developed by Paul Leopardi at the University of New South Wales. ! This version has been coded specifically for the case of partitioning the ! surface of a sphere or S^dim (where dim=2) as denoted in the original code. ! Only a subset of the original eq_regions package has been coded to determine ! the high level distribution of regions on a sphere, as the detailed ! distribution of grid points to each region is left to IFS software. ! This is required to take into account the spatial distribution of grid ! points in an IFS gaussian grid and provide an optimal (i.e. exact) ! distribution of grid points over regions. ! The following copyright notice for the eq_regions package is included from ! the original MatLab release. ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! + Release 1.10 2005-06-26 + ! + + ! + Copyright (c) 2004, 2005, University of New South Wales + ! + + ! + Permission is hereby granted, free of charge, to any person obtaining + ! + a copy of this software and associated documentation files (the + ! + "Software"), to deal in the Software without restriction, including + ! + without limitation the rights to use, copy, modify, merge, publish, + ! + distribute, sublicense, and/or sell copies of the Software, and to + ! + permit persons to whom the Software is furnished to do so, subject to + ! + the following conditions: + ! + + ! + The above copyright notice and this permission notice shall be included + ! + in all copies or substantial portions of the Software. + ! + + ! + THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + ! + EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + ! + MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. + ! + IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY + ! + CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + ! + TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE + ! + SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + ! + + ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! Author. ! ------- ! George Mozdzynski *ECMWF* ! Modifications. ! -------------- ! Original : 2006-04-15 !-------------------------------------------------------------------------------- USE PARKIND1 ,ONLY : JPIM ,JPRB IMPLICIT NONE SAVE PRIVATE PUBLIC eq_regions,l_regions_debug,n_regions_ns,n_regions_ew,n_regions,my_region_ns,my_region_ew real(kind=jprb) pi logical :: l_regions_debug=.false. integer(kind=jpim) :: n_regions_ns integer(kind=jpim) :: n_regions_ew integer(kind=jpim) :: my_region_ns integer(kind=jpim) :: my_region_ew integer(kind=jpim),allocatable :: n_regions(:) !$OMP THREADPRIVATE(l_regions_debug,my_region_ew,my_region_ns,n_regions_ew,n_regions_ns,pi,n_regions) CONTAINS subroutine eq_regions(N) ! eq_regions uses the zonal equal area sphere partitioning algorithm to partition ! the surface of a sphere into N regions of equal area and small diameter. integer(kind=jpim),intent(in) :: N integer(kind=jpim) :: n_collars,j real(kind=jprb),allocatable :: r_regions(:) real(kind=jprb) :: c_polar pi=2.0_jprb*asin(1.0_jprb) n_regions(:)=0 if( N == 1 )then ! We have only one region, which must be the whole sphere. n_regions(1)=1 n_regions_ns=1 else ! Given N, determine c_polar ! the colatitude of the North polar spherical cap. c_polar = polar_colat(N) ! Given N, determine the ideal angle for spherical collars. ! Based on N, this ideal angle, and c_polar, ! determine n_collars, the number of collars between the polar caps. n_collars = num_collars(N,c_polar,ideal_collar_angle(N)) n_regions_ns=n_collars+2 ! Given N, c_polar and n_collars, determine r_regions, ! a list of the ideal real number of regions in each collar, ! plus the polar caps. ! The number of elements is n_collars+2. ! r_regions[1] is 1. ! r_regions[n_collars+2] is 1. ! The sum of r_regions is N. allocate(r_regions(n_collars+2)) call ideal_region_list(N,c_polar,n_collars,r_regions) ! Given N and r_regions, determine n_regions, a list of the natural number ! of regions in each collar and the polar caps. ! This list is as close as possible to r_regions. ! The number of elements is n_collars+2. ! n_regions[1] is 1. ! n_regions[n_collars+2] is 1. ! The sum of n_regions is N. call round_to_naturals(N,n_collars,r_regions) deallocate(r_regions) if( N /= sum(n_regions(:)) )then write(*,'("eq_regions: N=",I10," sum(n_regions(:))=",I10)')N,sum(n_regions(:)) call abor1('eq_regions: N /= sum(n_regions)') endif endif if( l_regions_debug )then write(*,'("eq_regions: N=",I6," n_regions_ns=",I4)') N,n_regions_ns DO j=1,n_regions_ns write(*,'("eq_regions: n_regions(",I4,")=",I4)') j,n_regions(j) enddo endif n_regions_ew=maxval(n_regions(:)) return end subroutine eq_regions function num_collars(N,c_polar,a_ideal) result(num_c) !NUM_COLLARS The number of collars between the polar caps ! Given N, an ideal angle, and c_polar, ! determine n_collars, the number of collars between the polar caps. integer(kind=jpim),intent(in) :: N real(kind=jprb),intent(in) :: a_ideal,c_polar integer(kind=jpim) :: num_c logical enough enough = (N > 2) .AND. (a_ideal > 0) if( enough )then num_c = max(1,nint((pi-2.*c_polar)/a_ideal)) else num_c = 0 endif return end function num_collars subroutine ideal_region_list(N,c_polar,n_collars,r_regions) !IDEAL_REGION_LIST The ideal real number of regions in each zone ! List the ideal real number of regions in each collar, plus the polar caps. ! Given N, c_polar and n_collars, determine r_regions, a list of the ideal real ! number of regions in each collar, plus the polar caps. ! The number of elements is n_collars+2. ! r_regions[1] is 1. ! r_regions[n_collars+2] is 1. ! The sum of r_regions is N. integer(kind=jpim),intent(in) :: N,n_collars real(kind=jprb),intent(in) :: c_polar real(kind=jprb),intent(out) :: r_regions(n_collars+2) integer(kind=jpim) :: collar_n real(kind=jprb) :: ideal_region_area,ideal_collar_area real(kind=jprb) :: a_fitting r_regions(:)=0.0_jprb r_regions(1) = 1.0_jprb if( n_collars > 0 )then ! Based on n_collars and c_polar, determine a_fitting, ! the collar angle such that n_collars collars fit between the polar caps. a_fitting = (pi-2.0_jprb*c_polar)/float(n_collars) ideal_region_area = area_of_ideal_region(N) DO collar_n=1,n_collars ideal_collar_area = area_of_collar(c_polar+(collar_n-1)*a_fitting, & & c_polar+collar_n*a_fitting) r_regions(1+collar_n) = ideal_collar_area / ideal_region_area enddo endif r_regions(2+n_collars) = 1. return end subroutine ideal_region_list function ideal_collar_angle(N) result(ideal) ! IDEAL_COLLAR_ANGLE The ideal angle for spherical collars of an EQ partition ! IDEAL_COLLAR_ANGLE(N) sets ANGLE to the ideal angle for the ! spherical collars of an EQ partition of the unit sphere S^2 into N regions. integer(kind=jpim),intent(in) :: N real(kind=jprb) :: ideal ideal = area_of_ideal_region(N)**(0.5_jprb) return end function ideal_collar_angle subroutine round_to_naturals(N,n_collars,r_regions) ! ROUND_TO_NATURALS Round off a given list of numbers of regions ! Given N and r_regions, determine n_regions, a list of the natural number ! of regions in each collar and the polar caps. ! This list is as close as possible to r_regions, using rounding. ! The number of elements is n_collars+2. ! n_regions[1] is 1. ! n_regions[n_collars+2] is 1. ! The sum of n_regions is N. integer(kind=jpim),intent(in) :: N,n_collars real(kind=jprb),intent(in) :: r_regions(n_collars+2) integer(kind=jpim) :: zone_n real(kind=jprb) :: discrepancy n_regions(1:n_collars+2) = r_regions(:) discrepancy = 0.0_jprb DO zone_n = 1,n_collars+2 n_regions(zone_n) = nint(r_regions(zone_n)+discrepancy); discrepancy = discrepancy+r_regions(zone_n)-float(n_regions(zone_n)); enddo return end subroutine round_to_naturals function polar_colat(N) result(polar_c) ! Given N, determine the colatitude of the North polar spherical cap. integer(kind=jpim),intent(in) :: N real(kind=jprb) :: area real(kind=jprb) :: polar_c if( N == 1 ) polar_c=pi if( N == 2 ) polar_c=pi/2.0_jprb if( N > 2 )then area=area_of_ideal_region(N) polar_c=sradius_of_cap(area) endif return end function polar_colat function area_of_ideal_region(N) result(area) ! AREA_OF_IDEAL_REGION(N) sets AREA to be the area of one of N equal ! area regions on S^2, that is 1/N times AREA_OF_SPHERE. integer(kind=jpim),intent(in) :: N real(kind=jprb) :: area_of_sphere real(kind=jprb) :: area area_of_sphere = (2.0_jprb*pi**1.5_jprb/gamma(1.5_jprb)) area = area_of_sphere/float(N) return end function area_of_ideal_region function sradius_of_cap(area) result(sradius) ! SRADIUS_OF_CAP(AREA) returns the spherical radius of ! an S^2 spherical cap of area AREA. real(kind=jprb),intent(in) :: area real(kind=jprb) :: sradius sradius = 2.0_jprb*asin(sqrt(area/pi)/2.0_jprb) return end function sradius_of_cap function area_of_collar(a_top, a_bot) result(area) ! AREA_OF_COLLAR Area of spherical collar ! AREA_OF_COLLAR(A_TOP, A_BOT) sets AREA to be the area of an S^2 spherical ! collar specified by A_TOP, A_BOT, where A_TOP is top (smaller) spherical radius, ! A_BOT is bottom (larger) spherical radius. real(kind=jprb),intent(in) :: a_top,a_bot real(kind=jprb) area area = area_of_cap(a_bot) - area_of_cap(a_top) return end function area_of_collar function area_of_cap(s_cap) result(area) ! AREA_OF_CAP Area of spherical cap ! AREA_OF_CAP(S_CAP) sets AREA to be the area of an S^2 spherical ! cap of spherical radius S_CAP. real(kind=jprb),intent(in) :: s_cap real(kind=jprb) area area = 4.0_jprb*pi * sin(s_cap/2.0_jprb)**2 return end function area_of_cap function gamma(x) result(gamma_res) real(kind=jprb),intent(in) :: x real(kind=jprb) :: gamma_res real(kind=jprb) :: p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13 real(kind=jprb) :: w,y integer(kind=jpim) :: k,n parameter (& & p0 = 0.999999999999999990e+00_jprb,& & p1 = -0.422784335098466784e+00_jprb,& & p2 = -0.233093736421782878e+00_jprb,& & p3 = 0.191091101387638410e+00_jprb,& & p4 = -0.024552490005641278e+00_jprb,& & p5 = -0.017645244547851414e+00_jprb,& & p6 = 0.008023273027855346e+00_jprb) parameter (& & p7 = -0.000804329819255744e+00_jprb,& & p8 = -0.000360837876648255e+00_jprb,& & p9 = 0.000145596568617526e+00_jprb,& & p10 = -0.000017545539395205e+00_jprb,& & p11 = -0.000002591225267689e+00_jprb,& & p12 = 0.000001337767384067e+00_jprb,& & p13 = -0.000000199542863674e+00_jprb) n = nint(x - 2) w = x - (n + 2) y = ((((((((((((p13 * w + p12) * w + p11) * w + p10) *& & w + p9) * w + p8) * w + p7) * w + p6) * w + p5) *& & w + p4) * w + p3) * w + p2) * w + p1) * w + p0 if (n .gt. 0) then w = x - 1 DO k = 2, n w = w * (x - k) end do else w = 1 DO k = 0, -n - 1 y = y * (x + k) end do end if gamma_res = w / y return end function gamma end module eq_regions_mod