! radiation_spectral_definition.F90 - Derived type to describe a spectral definition ! (C) Copyright 2020- ECMWF. ! This software is licensed under the terms of the Apache Licence Version 2.0 ! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. ! In applying this licence, ECMWF does not waive the privileges and immunities ! granted to it by virtue of its status as an intergovernmental organisation ! nor does it submit to any jurisdiction. ! Author: Robin Hogan ! Email: r.j.hogan@ecmwf.int ! License: see the COPYING file for details ! module radiation_spectral_definition use parkind1, only : jprb implicit none public real(jprb), parameter :: SolarReferenceTemperature = 5777.0_jprb ! K real(jprb), parameter :: TerrestrialReferenceTemperature = 273.15_jprb ! K !--------------------------------------------------------------------- ! A derived type describing the contribution of the g points of a ! correlated k-distribution gas-optics model from each part of the ! spectrum. This is used primarily to map the cloud and aerosol ! optical properties on to the gas g points. type spectral_definition_type ! Spectral mapping of g points ! Number of wavenumber intervals integer :: nwav = 0 ! Number of k terms / g points integer :: ng = 0 ! Start and end wavenumber (cm-1), dimensioned (nwav) real(jprb), allocatable :: wavenumber1(:) real(jprb), allocatable :: wavenumber2(:) ! Fraction of each g point in each wavenumber interval, ! dimensioned (nwav, ng) real(jprb), allocatable :: gpoint_fraction(:,:) ! Band information ! Number of bands integer :: nband = 0 ! Lower and upper bounds of wavenumber bands (cm-1), dimensioned ! (nband) real(jprb), allocatable :: wavenumber1_band(:) real(jprb), allocatable :: wavenumber2_band(:) ! Band (one based) to which each g point belongs integer, allocatable :: i_band_number(:) contains procedure :: read => read_spectral_definition procedure :: allocate_bands_only procedure :: deallocate procedure :: find => find_wavenumber procedure :: calc_mapping procedure :: calc_mapping_from_bands procedure :: calc_mapping_from_wavenumber_bands procedure :: print_mapping_from_bands procedure :: min_wavenumber, max_wavenumber end type spectral_definition_type contains !--------------------------------------------------------------------- ! Read the description of a spectral definition from a NetCDF ! file of the type used to describe an ecCKD model subroutine read_spectral_definition(this, file) use easy_netcdf, only : netcdf_file use yomhook, only : lhook, dr_hook class(spectral_definition_type), intent(inout) :: this type(netcdf_file), intent(inout) :: file real(jprb) :: hook_handle if (lhook) call dr_hook('radiation_spectral_definition:read',0,hook_handle) ! Read spectral mapping of g points call file%get('wavenumber1', this%wavenumber1) call file%get('wavenumber2', this%wavenumber2) call file%get('gpoint_fraction', this%gpoint_fraction) ! Read band information call file%get('wavenumber1_band', this%wavenumber1_band) call file%get('wavenumber2_band', this%wavenumber2_band) call file%get('band_number', this%i_band_number) ! Band number is 0-based: add 1 this%i_band_number = this%i_band_number + 1 this%nwav = size(this%wavenumber1) this%ng = size(this%gpoint_fraction, 2); this%nband = size(this%wavenumber1_band) if (lhook) call dr_hook('radiation_spectral_definition:read',1,hook_handle) end subroutine read_spectral_definition !--------------------------------------------------------------------- ! Store a simple band description by copying over the lower and ! upper wavenumbers of each band subroutine allocate_bands_only(this, wavenumber1, wavenumber2) use yomhook, only : lhook, dr_hook class(spectral_definition_type), intent(inout) :: this real(jprb), dimension(:), intent(in) :: wavenumber1, wavenumber2 real(jprb) :: hook_handle if (lhook) call dr_hook('radiation_spectral_definition:allocate_bands_only',0,hook_handle) call this%deallocate() this%nband = size(wavenumber1) allocate(this%wavenumber1_band(this%nband)) allocate(this%wavenumber2_band(this%nband)) this%wavenumber1_band = wavenumber1 this%wavenumber2_band = wavenumber2 if (lhook) call dr_hook('radiation_spectral_definition:allocate_bands_only',1,hook_handle) end subroutine allocate_bands_only !--------------------------------------------------------------------- ! Deallocate memory inside a spectral definition object subroutine deallocate(this) class(spectral_definition_type), intent(inout) :: this this%nwav = 0 this%ng = 0 this%nband = 0 if (allocated(this%wavenumber1)) deallocate(this%wavenumber1) if (allocated(this%wavenumber2)) deallocate(this%wavenumber2) if (allocated(this%wavenumber1_band)) deallocate(this%wavenumber1_band) if (allocated(this%wavenumber2_band)) deallocate(this%wavenumber2_band) if (allocated(this%gpoint_fraction)) deallocate(this%gpoint_fraction) if (allocated(this%i_band_number)) deallocate(this%i_band_number) end subroutine deallocate !--------------------------------------------------------------------- ! Find the index to the highest wavenumber in the spectral ! definition that is lower than or equal to "wavenumber", used for ! implementing look-up tables pure function find_wavenumber(this, wavenumber) class(spectral_definition_type), intent(in) :: this real(jprb), intent(in) :: wavenumber ! cm-1 integer :: find_wavenumber if (wavenumber < this%wavenumber1(1) .or. wavenumber > this%wavenumber2(this%nwav)) then ! Wavenumber not present find_wavenumber = 0 else find_wavenumber = 1 DO while (wavenumber > this%wavenumber2(find_wavenumber) & & .and. find_wavenumber < this%nwav) find_wavenumber = find_wavenumber + 1 end do end if end function find_wavenumber !--------------------------------------------------------------------- ! Compute a mapping matrix "mapping" that can be used in an ! expression y=matmul(mapping,x) where x is a variable containing ! optical properties at each input "wavenumber", and y is this ! variable mapped on to the spectral intervals in the spectral ! definition "this". Temperature (K) is used to generate a Planck ! function to weight each wavenumber appropriately. subroutine calc_mapping(this, temperature, wavenumber, mapping, use_bands) use yomhook, only : lhook, dr_hook use radiation_io, only : nulerr, radiation_abort class(spectral_definition_type), intent(in) :: this real(jprb), intent(in) :: temperature ! K real(jprb), intent(in) :: wavenumber(:) ! cm-1 real(jprb), allocatable, intent(inout) :: mapping(:,:) logical, optional, intent(in) :: use_bands ! Spectral weights to apply, same length as wavenumber above real(jprb), dimension(:), allocatable :: weight, planck_weight ! Wavenumbers (cm-1) marking triangle of influence of a cloud ! spectral point real(jprb) :: wavenum0, wavenum1, wavenum2 integer :: nwav ! Number of wavenumbers describing cloud ! Indices to wavenumber intervals in spectral definition structure integer :: isd, isd0, isd1, isd2 ! Wavenumber index integer :: iwav ! Loop indices integer :: jg, jwav, jband logical :: use_bands_local real(jprb) :: hook_handle if (lhook) call dr_hook('radiation_spectral_definition:calc_mapping',0,hook_handle) if (present(use_bands)) then use_bands_local = use_bands else use_bands_local = .false. end if nwav = size(wavenumber) if (allocated(mapping)) then deallocate(mapping) end if ! Define the mapping matrix if (use_bands_local) then ! Cloud properties per band allocate(mapping(this%nband, nwav)) allocate(weight(nwav)) ! Planck weight uses the wavenumbers of the cloud points allocate(planck_weight(nwav)) planck_weight = calc_planck_function_wavenumber(wavenumber, & & temperature) DO jband = 1,this%nband weight = 0.0_jprb DO jwav = 1,nwav ! Work out wavenumber range for which this cloud wavenumber ! will be applicable if (wavenumber(jwav) >= this%wavenumber1_band(jband) & & .and. wavenumber(jwav) <= this%wavenumber2_band(jband)) then if (jwav > 1) then wavenum1 = max(this%wavenumber1_band(jband), & & 0.5_jprb*(wavenumber(jwav-1)+wavenumber(jwav))) else wavenum1 = this%wavenumber1_band(jband) end if if (jwav < nwav) then wavenum2 = min(this%wavenumber2_band(jband), & & 0.5_jprb*(wavenumber(jwav)+wavenumber(jwav+1))) else wavenum2 = this%wavenumber2_band(jband) end if ! This cloud wavenumber is weighted by the wavenumber ! range of its applicability multiplied by the Planck ! function at an appropriate temperature weight(jwav) = (wavenum2-wavenum1) * planck_weight(jwav) end if end do if (sum(weight) <= 0.0_jprb) then ! No cloud wavenumbers lie in the band; interpolate to ! central wavenumber of band instead if (wavenumber(1) >= this%wavenumber2_band(jband)) then ! Band is entirely below first cloudy wavenumber weight(1) = 1.0_jprb else if (wavenumber(nwav) <= this%wavenumber1_band(jband)) then ! Band is entirely above last cloudy wavenumber weight(nwav) = 1.0_jprb else ! Find interpolating points iwav = 2 DO while (wavenumber(iwav) < this%wavenumber2_band(jband)) iwav = iwav+1 end do weight(iwav-1) = planck_weight(iwav-1) * (wavenumber(iwav) & & - 0.5_jprb*(this%wavenumber2_band(jband)+this%wavenumber1_band(jband))) weight(iwav) = planck_weight(iwav) * (-wavenumber(iwav-1) & & + 0.5_jprb*(this%wavenumber2_band(jband)+this%wavenumber1_band(jband))) end if end if mapping(jband,:) = weight / sum(weight) end do deallocate(weight) deallocate(planck_weight) else ! Cloud properties per g-point if (this%ng == 0) then write(nulerr,'(a)') '*** Error: requested cloud/aerosol mapping per g-point but only available per band' call radiation_abort('Radiation configuration error') end if allocate(mapping(this%ng, nwav)) allocate(weight(this%nwav)) allocate(planck_weight(this%nwav)) planck_weight = calc_planck_function_wavenumber(0.5_jprb & & * (this%wavenumber1 + this%wavenumber2), & & temperature) mapping = 0.0_jprb ! Loop over wavenumbers representing cloud DO jwav = 1,nwav ! Clear the weights. The weight says for one wavenumber in the ! cloud file, what is its fractional contribution to each of ! the spectral-definition intervals weight = 0.0_jprb ! Cloud properties are linearly interpolated between each of ! the nwav cloud points; therefore, the influence of a ! particular cloud point extends as a triangle between ! wavenum0 and wavenum2, peaking at wavenum1 wavenum1 = wavenumber(jwav) isd1 = this%find(wavenum1) if (isd1 < 1) then cycle end if if (jwav > 1) then wavenum0 = wavenumber(jwav-1) ! Map triangle under (wavenum0,0) to (wavenum1,1) to the ! wavenumbers in this%gpoint_fraction isd0 = this%find(wavenum0) if (isd0 == isd1) then ! Triangle completely within the range ! this%wavenumber1(isd0)-this%wavenumber2(isd0) weight(isd0) = 0.5_jprb*(wavenum1-wavenum0) & & / (this%wavenumber2(isd0)-this%wavenumber1(isd0)) else if (isd0 >= 1) then ! Left part of triangle weight(isd0) = 0.5_jprb * (this%wavenumber2(isd0)-wavenum0)**2 & & / ((this%wavenumber2(isd0)-this%wavenumber1(isd0)) & & *(wavenum1-wavenum0)) end if ! Right part of triangle (trapezium) ! weight(isd1) = 0.5_jprb * (wavenum1-this%wavenumber1(isd1)) & ! & * (wavenum1 + this%wavenumber1(isd1) - 2.0_jprb*wavenum0) & ! & / (wavenum1-wavenum0) weight(isd1) = 0.5_jprb * (1.0_jprb & & + (this%wavenumber1(isd1)-wavenum1)/(wavenum1-wavenum0)) & & * (wavenum1-this%wavenumber1(isd1)) & & / (this%wavenumber2(isd1)-this%wavenumber1(isd1)) if (isd1-isd0 > 1) then DO isd = isd0+1,isd1-1 ! Intermediate trapezia weight(isd) = 0.5_jprb * (this%wavenumber1(isd)+this%wavenumber2(isd) & & - 2.0_jprb*wavenum0) & & / (wavenum1-wavenum0) end do end if end if else ! First cloud wavenumber: all wavenumbers in the spectral ! definition below this will use the first one if (isd1 >= 1) then weight(1:isd1-1) = 1.0_jprb weight(isd1) = (wavenum1-this%wavenumber1(isd1)) & & / (this%wavenumber2(isd1)-this%wavenumber1(isd1)) end if end if if (jwav < nwav) then wavenum2 = wavenumber(jwav+1) ! Map triangle under (wavenum1,1) to (wavenum2,0) to the ! wavenumbers in this%gpoint_fraction isd2 = this%find(wavenum2) if (isd1 == isd2) then ! Triangle completely within the range ! this%wavenumber1(isd1)-this%wavenumber2(isd1) weight(isd1) = weight(isd1) + 0.5_jprb*(wavenum2-wavenum1) & & / (this%wavenumber2(isd1)-this%wavenumber1(isd1)) else if (isd2 >= 1 .and. isd2 <= this%nwav) then ! Right part of triangle weight(isd2) = weight(isd2) + 0.5_jprb * (wavenum2-this%wavenumber1(isd2))**2 & & / ((this%wavenumber2(isd2)-this%wavenumber1(isd2)) & & *(wavenum2-wavenum1)) end if ! Left part of triangle (trapezium) ! weight(isd1) = weight(isd1) + 0.5_jprb * (this%wavenumber2(isd1)-wavenum1) & ! & * (wavenum1 + this%wavenumber2(isd1) - 2.0_jprb*wavenum2) & ! & / (wavenum2-wavenum1) weight(isd1) = weight(isd1) + 0.5_jprb * (1.0_jprb & & + (wavenum2-this%wavenumber2(isd1)) / (wavenum2-wavenum1)) & & * (this%wavenumber2(isd1)-wavenum1) & & / (this%wavenumber2(isd1)-this%wavenumber1(isd1)) if (isd2-isd1 > 1) then DO isd = isd1+1,isd2-1 ! Intermediate trapezia weight(isd) = weight(isd) + 0.5_jprb * (2.0_jprb*wavenum2 & & - this%wavenumber1(isd) - this%wavenumber2(isd)) & & / (wavenum2-wavenum1) end do end if end if else ! Last cloud wavenumber: all wavenumbers in the spectral ! definition above this will use the last one if (isd1 <= this%nwav) then weight(isd1+1:this%nwav) = 1.0_jprb weight(isd1) = (this%wavenumber2(isd1)-wavenum1) & & / (this%wavenumber2(isd1)-this%wavenumber1(isd1)) end if end if weight = weight * planck_weight DO jg = 1,this%ng mapping(jg, jwav) = sum(weight * this%gpoint_fraction(:,jg)) end do end do deallocate(weight) deallocate(planck_weight) ! Normalize mapping matrix DO jg = 1,this%ng mapping(jg,:) = mapping(jg,:) * (1.0_jprb/sum(mapping(jg,:))) end do end if if (lhook) call dr_hook('radiation_spectral_definition:calc_mapping',1,hook_handle) end subroutine calc_mapping !--------------------------------------------------------------------- ! Under normal operation (if use_fluxes is .false. or not present), ! compute a mapping matrix "mapping" that can be used in an ! expression y=matmul(mapping^T,x) where x is a variable containing ! optical properties in input bands (e.g. albedo in shortwave albedo ! bands), and y is this variable mapped on to the spectral intervals ! in the spectral definition "this". Temperature (K) is used to ! generate a Planck function to weight each input band ! appropriately. Note that "mapping" is here transposed from the ! convention in the calc_mapping routine. Under the alternative ! operation (if use_fluxes is present and .true.), the mapping works ! in the reverse sense: if y contains fluxes in each ecRad band or ! g-point, then x=matmul(mapping,y) would return fluxes in x ! averaged to user-supplied "input" bands. In this version, the ! bands are described by their wavelength bounds (wavelength_bound, ! which must be increasing and exclude the end points) and the index ! of the mapping matrix that each band corresponds to (i_intervals, ! which has one more element than wavelength_bound and can have ! duplicated values if an albedo/emissivity value is to be ! associated with more than one discontinuous ranges of the ! spectrum). subroutine calc_mapping_from_bands(this, temperature, & & wavelength_bound, i_intervals, mapping, use_bands, use_fluxes) use yomhook, only : lhook, dr_hook use radiation_io, only : nulerr, radiation_abort class(spectral_definition_type), intent(in) :: this real(jprb), intent(in) :: temperature ! K ! Monotonically increasing wavelength bounds (m) between ! intervals, not including the outer bounds (which are assumed to ! be zero and infinity) real(jprb), intent(in) :: wavelength_bound(:) ! The albedo band indices corresponding to each interval integer, intent(in) :: i_intervals(:) real(jprb), allocatable, intent(inout) :: mapping(:,:) logical, optional, intent(in) :: use_bands logical, optional, intent(in) :: use_fluxes ! Planck function and central wavenumber of each wavenumber ! interval of the spectral definition real(jprb) :: planck(this%nwav) ! W m-2 (cm-1)-1 real(jprb) :: wavenumber_mid(this%nwav) ! cm-1 real(jprb), allocatable :: mapping_denom(:,:) real(jprb) :: wavenumber1_bound, wavenumber2_bound ! To work out weights we sample the Planck function at five points ! in the interception between an input interval and a band, and ! use the Trapezium Rule integer, parameter :: nsample = 5 integer :: isamp real(jprb), dimension(nsample) :: wavenumber_sample, planck_sample real(jprb), parameter :: weight_sample(nsample) & & = [0.5_jprb, 1.0_jprb, 1.0_jprb, 1.0_jprb, 0.5_jprb] ! Index of input value corresponding to each wavenumber interval integer :: i_input(this%nwav) ! Number of albedo/emissivity values that will be provided, some ! of which may span discontinuous intervals in wavelength space integer :: ninput ! Number of albedo/emissivity intervals represented, where some ! may be grouped to have the same value of albedo/emissivity (an ! example is in the thermal infrared where classically the IFS has ! ninput=2 and ninterval=3, since only two emissivities are ! provided representing (1) the infrared window, and (2) the ! intervals to each side of the infrared window. integer :: ninterval logical :: use_bands_local, use_fluxes_local ! Loop indices integer :: jg, jband, jin, jint real(jprb) :: hook_handle if (lhook) call dr_hook('radiation_spectral_definition:calc_mapping_from_bands',0,hook_handle) if (present(use_bands)) then use_bands_local = use_bands else use_bands_local = .false. end if if (present(use_fluxes)) then use_fluxes_local = use_fluxes else use_fluxes_local = .false. end if ! Count the number of input intervals ninterval = size(i_intervals) ninput = maxval(i_intervals) if (allocated(mapping)) then deallocate(mapping) end if ! Check wavelength is monotonically increasing if (ninterval > 2) then DO jint = 2,ninterval-1 if (wavelength_bound(jint) <= wavelength_bound(jint-1)) then write(nulerr, '(a)') '*** Error: wavelength bounds must be monotonically increasing' call radiation_abort() end if end do end if ! Define the mapping matrix if (use_bands_local) then ! Require properties per band allocate(mapping(ninput, this%nband)) mapping = 0.0_jprb if (use_fluxes_local) then allocate(mapping_denom(ninput, this%nband)) mapping_denom = 0.0_jprb end if DO jband = 1,this%nband DO jint = 1,ninterval if (jint == 1) then ! First input interval in wavelength space: lower ! wavelength bound is 0 m, so infinity cm-1 wavenumber2_bound = this%wavenumber2_band(jband) else wavenumber2_bound = min(this%wavenumber2_band(jband), & & 0.01_jprb/wavelength_bound(jint-1)) end if if (jint == ninterval) then ! Final input interval in wavelength space: upper ! wavelength bound is infinity m, so 0 cm-1 wavenumber1_bound = this%wavenumber1_band(jband) else wavenumber1_bound = max(this%wavenumber1_band(jband), & & 0.01_jprb/wavelength_bound(jint)) end if if (wavenumber2_bound > wavenumber1_bound) then ! Current input interval contributes to current band; ! compute the weight of the contribution in proportion to ! an approximate calculation of the integral of the Planck ! function over the relevant part of the spectrum wavenumber_sample = wavenumber1_bound + [(isamp,isamp=0,nsample-1)] & & * (wavenumber2_bound-wavenumber1_bound) / real(nsample-1,jprb) planck_sample = calc_planck_function_wavenumber(wavenumber_sample, temperature) mapping(i_intervals(jint),jband) = mapping(i_intervals(jint),jband) & & + sum(planck_sample*weight_sample) * (wavenumber2_bound-wavenumber1_bound) if (use_fluxes_local) then ! Compute an equivalent sample containing the entire ecRad band wavenumber_sample = this%wavenumber1_band(jband) + [(isamp,isamp=0,nsample-1)] & & * (this%wavenumber2_band(jband)-this%wavenumber1_band(jband)) & & / real(nsample-1,jprb) planck_sample = calc_planck_function_wavenumber(wavenumber_sample, temperature) mapping_denom(i_intervals(jint),jband) = mapping_denom(i_intervals(jint),jband) & & + sum(planck_sample*weight_sample) * (this%wavenumber2_band(jband)-this%wavenumber1_band(jband)) end if end if end do end do if (use_fluxes_local) then mapping = mapping / max(1.0e-12_jprb, mapping_denom) deallocate(mapping_denom) end if else ! Require properties per g-point if (this%ng == 0) then write(nulerr,'(a)') '*** Error: requested surface mapping per g-point but only available per band' call radiation_abort('Radiation configuration error') end if allocate(mapping(ninput,this%ng)) mapping = 0.0_jprb wavenumber_mid = 0.5_jprb * (this%wavenumber1 + this%wavenumber2) planck = calc_planck_function_wavenumber(wavenumber_mid, temperature) ! In the processing that follows, we assume that the wavenumber ! grid on which the g-points are defined in the spectral ! definition is much finer than the albedo/emissivity intervals ! that the user will provide. This means that each wavenumber ! is assigned to only one of the albedo/emissivity intervals. ! By default set all wavenumbers to use first input ! albedo/emissivity i_input = 1 ! All bounded intervals DO jint = 2,ninterval-1 wavenumber1_bound = 0.01_jprb / wavelength_bound(jint) wavenumber2_bound = 0.01_jprb / wavelength_bound(jint-1) where (wavenumber_mid > wavenumber1_bound & & .and. wavenumber_mid <= wavenumber2_bound) i_input = i_intervals(jint) end where end do ! Final interval in wavelength space goes up to wavenumber of ! infinity if (ninterval > 1) then wavenumber2_bound = 0.01_jprb / wavelength_bound(ninterval-1) where (wavenumber_mid <= wavenumber2_bound) i_input = i_intervals(ninterval) end where end if DO jg = 1,this%ng DO jin = 1,ninput mapping(jin,jg) = sum(this%gpoint_fraction(:,jg) * planck, & & mask=(i_input==jin)) if (use_fluxes_local) then mapping(jin,jg) = mapping(jin,jg) / sum(this%gpoint_fraction(:,jg) * planck) end if end do end do end if if (.not. use_fluxes_local) then ! Normalize mapping matrix DO jg = 1,size(mapping,dim=2) mapping(:,jg) = mapping(:,jg) * (1.0_jprb/sum(mapping(:,jg))) end do end if if (lhook) call dr_hook('radiation_spectral_definition:calc_mapping_from_bands',1,hook_handle) end subroutine calc_mapping_from_bands !--------------------------------------------------------------------- ! As calc_mapping_from_bands but in terms of wavenumber bounds from ! wavenumber1 to wavenumber2 subroutine calc_mapping_from_wavenumber_bands(this, temperature, & & wavenumber1, wavenumber2, mapping, use_bands, use_fluxes) use yomhook, only : lhook, dr_hook use radiation_io, only : nulerr, radiation_abort class(spectral_definition_type), intent(in) :: this real(jprb), intent(in) :: temperature ! K real(jprb), intent(in) :: wavenumber1(:), wavenumber2(:) real(jprb), allocatable, intent(inout) :: mapping(:,:) logical, optional, intent(in) :: use_bands logical, optional, intent(in) :: use_fluxes ! Monotonically increasing wavelength bounds (m) between ! intervals, not including the outer bounds (which are assumed to ! be zero and infinity) real(jprb) :: wavelength_bound(size(wavenumber1)-1) ! The albedo band indices corresponding to each interval integer :: i_intervals(size(wavenumber1)) ! Lower wavelength bound (m) of each band real(jprb) :: wavelength1(size(wavenumber1)) logical :: is_band_unassigned(size(wavenumber1)) ! Number of albedo/emissivity intervals represented, where some ! may be grouped to have the same value of albedo/emissivity (an ! example is in the thermal infrared where classically the IFS has ! ninput=2 and ninterval=3, since only two emissivities are ! provided representing (1) the infrared window, and (2) the ! intervals to each side of the infrared window. integer :: ninterval ! Index to next band in order of increasing wavelength integer :: inext ! Loop indices integer :: jint real(jprb) :: hook_handle if (lhook) call dr_hook('radiation_spectral_definition:calc_mapping_from_wavenumber_bands',0,hook_handle) wavelength1 = 0.01_jprb / wavenumber2 ninterval = size(wavelength1) is_band_unassigned = .true. DO jint = 1,ninterval inext = minloc(wavelength1, dim=1, mask=is_band_unassigned) if (jint > 1) then wavelength_bound(jint-1) = wavelength1(inext) end if is_band_unassigned(inext) = .false. i_intervals(jint) = inext end do call calc_mapping_from_bands(this, temperature, & & wavelength_bound, i_intervals, mapping, use_bands, use_fluxes) if (lhook) call dr_hook('radiation_spectral_definition:calc_mapping_from_wavenumber_bands',1,hook_handle) end subroutine calc_mapping_from_wavenumber_bands !--------------------------------------------------------------------- ! Print out the mapping computed by calc_mapping_from_bands subroutine print_mapping_from_bands(this, mapping, use_bands) use radiation_io, only : nulout class(spectral_definition_type), intent(in) :: this real(jprb), allocatable, intent(in) :: mapping(:,:) ! (ninput,nband/ng) logical, optional, intent(in) :: use_bands logical :: use_bands_local integer :: nin, nout integer :: jin, jout if (present(use_bands)) then use_bands_local = use_bands else use_bands_local = .false. end if nin = size(mapping,1) nout = size(mapping,2) if (nin <= 1) then write(nulout, '(a)') ' All spectral intervals will use the same albedo/emissivity' else if (use_bands_local) then write(nulout, '(a,i0,a,i0,a)') ' Mapping from ', nin, ' values to ', nout, ' bands (wavenumber ranges in cm-1)' if (nout <= 40) then DO jout = 1,nout write(nulout,'(i6,a,i6,a)',advance='no') nint(this%wavenumber1_band(jout)), ' to', & & nint(this%wavenumber2_band(jout)), ':' DO jin = 1,nin write(nulout,'(f5.2)',advance='no') mapping(jin,jout) end do write(nulout, '()') end do else DO jout = 1,30 write(nulout,'(i6,a,i6,a)',advance='no') nint(this%wavenumber1_band(jout)), ' to', & & nint(this%wavenumber2_band(jout)), ':' DO jin = 1,nin write(nulout,'(f5.2)',advance='no') mapping(jin,jout) end do write(nulout, '()') end do write(nulout,'(a)') ' ...' write(nulout,'(i6,a,i6,a)',advance='no') nint(this%wavenumber1_band(nout)), ' to', & & nint(this%wavenumber2_band(nout)), ':' DO jin = 1,nin write(nulout,'(f5.2)',advance='no') mapping(jin,nout) end do write(nulout, '()') end if else write(nulout, '(a,i0,a,i0,a)') ' Mapping from ', nin, ' values to ', nout, ' g-points' if (nout <= 40) then DO jout = 1,nout write(nulout,'(i3,a)',advance='no') jout, ':' DO jin = 1,nin write(nulout,'(f5.2)',advance='no') mapping(jin,jout) end do write(nulout, '()') end do else DO jout = 1,30 write(nulout,'(i3,a)',advance='no') jout, ':' DO jin = 1,nin write(nulout,'(f5.2)',advance='no') mapping(jin,jout) end do write(nulout, '()') end do write(nulout,'(a)') ' ...' write(nulout,'(i3,a)',advance='no') nout, ':' DO jin = 1,nin write(nulout,'(f5.2)',advance='no') mapping(jin,nout) end do write(nulout, '()') end if end if end subroutine print_mapping_from_bands !--------------------------------------------------------------------- ! Return the minimum wavenumber of this object in cm-1 pure function min_wavenumber(this) class(spectral_definition_type), intent(in) :: this real(jprb) :: min_wavenumber if (this%nwav > 0) then min_wavenumber = this%wavenumber1(1) else min_wavenumber = minval(this%wavenumber1_band) end if end function min_wavenumber !--------------------------------------------------------------------- ! Return the maximum wavenumber of this object in cm-1 pure function max_wavenumber(this) class(spectral_definition_type), intent(in) :: this real(jprb) :: max_wavenumber if (this%nwav > 0) then max_wavenumber = this%wavenumber1(this%nwav) else max_wavenumber = maxval(this%wavenumber2_band) end if end function max_wavenumber !--------------------------------------------------------------------- ! Return the Planck function (in W m-2 (cm-1)-1) for a given ! wavenumber (cm-1) and temperature (K), ensuring double precision ! for internal calculation. If temperature is 0 or less then unity ! is returned; since this function is primarily used to weight an ! integral by the Planck function, a temperature of 0 or less means ! no weighting is to be applied. elemental function calc_planck_function_wavenumber(wavenumber, temperature) use parkind1, only : jprb, jprd use radiation_constants, only : SpeedOfLight, BoltzmannConstant, PlanckConstant real(jprb), intent(in) :: wavenumber ! cm-1 real(jprb), intent(in) :: temperature ! K real(jprb) :: calc_planck_function_wavenumber real(jprd) :: freq ! Hz real(jprd) :: planck_fn_freq ! W m-2 Hz-1 if (temperature > 0.0_jprd) then freq = 100.0_jprd * real(SpeedOfLight,jprd) * real(wavenumber,jprd) planck_fn_freq = 2.0_jprd * real(PlanckConstant,jprd) * freq**3 & & / (real(SpeedOfLight,jprd)**2 * (exp(real(PlanckConstant,jprd)*freq & & /(real(BoltzmannConstant,jprd)*real(temperature,jprd))) - 1.0_jprd)) calc_planck_function_wavenumber = real(planck_fn_freq * 100.0_jprd * real(SpeedOfLight,jprd), jprb) else calc_planck_function_wavenumber = 1.0_jprb end if end function calc_planck_function_wavenumber end module radiation_spectral_definition