! $Id $ SUBROUTINE cvltr_noscav(it,pdtime,da, phi, mp,wght_cvfd,paprs,pplay,x,upd,dnd,dx) USE dimphy USE infotrac_phy, ONLY: nbtr USE lmdz_YOECUMF USE lmdz_yomcst IMPLICIT NONE !===================================================================== ! Objet : convection des traceurs / KE ! Auteurs: M-A Filiberti and J-Y Grandpeix !===================================================================== ! Entree REAL,INTENT(IN) :: pdtime INTEGER, INTENT(IN) :: it REAL,DIMENSION(klon,klev),INTENT(IN) :: da REAL,DIMENSION(klon,klev,klev),INTENT(IN) :: phi REAL,DIMENSION(klon,klev),INTENT(IN) :: mp REAL,DIMENSION(klon,klev),INTENT(IN) :: wght_cvfd ! weights of the layers feeding convection REAL,DIMENSION(klon,klev+1),INTENT(IN) :: paprs ! pression aux 1/2 couches (bas en haut) REAL,DIMENSION(klon,klev),INTENT(IN) :: pplay ! pression pour le milieu de chaque couche REAL,DIMENSION(klon,klev,nbtr),INTENT(IN) :: x ! q de traceur (bas en haut) REAL,DIMENSION(klon,klev),INTENT(IN) :: upd ! saturated updraft mass flux REAL,DIMENSION(klon,klev),INTENT(IN) :: dnd ! saturated downdraft mass flux ! Sortie REAL,DIMENSION(klon,klev,nbtr),INTENT(inOUT) :: dx ! tendance de traceur (bas en haut) ! Variables locales ! REAL,DIMENSION(klon,klev) :: zed REAL,DIMENSION(klon,klev,klev) :: zmd REAL,DIMENSION(klon,klev,klev) :: za REAL,DIMENSION(klon,klev) :: zmfd,zmfa REAL,DIMENSION(klon,klev) :: zmfp,zmfu REAL,DIMENSION(klon,nbtr) :: qfeed ! tracer concentration feeding convection REAL,DIMENSION(klon,klev) :: deltap INTEGER :: i,k,j REAL :: pdtimeRG REAL :: smallest_mp REAL conserv REAL smfd REAL smfu REAL smfa REAL smfp ! ========================================= ! calcul des tendances liees au downdraft ! ========================================= smallest_mp = tiny(mp(1,1)) !cdir collapse qfeed(:,it) = 0. DO j=1,klev DO i=1,klon ! zed(i,j)=0. zmfd(i,j)=0. zmfa(i,j)=0. zmfu(i,j)=0. zmfp(i,j)=0. END DO END DO !cdir collapse DO k=1,klev DO j=1,klev DO i=1,klon zmd(i,j,k)=0. za (i,j,k)=0. END DO END DO END DO ! entrainement ! DO k=1,klev-1 ! DO i=1,klon ! zed(i,k)=max(0.,mp(i,k)-mp(i,k+1)) ! END DO ! END DO ! calcul de la matrice d echange ! matrice de distribution de la masse entrainee en k DO k=1,klev-1 DO i=1,klon zmd(i,k,k)=max(0.,mp(i,k)-mp(i,k+1)) END DO END DO DO k=2,klev DO j=k-1,1,-1 DO i=1,klon !! IF(mp(i,j+1).NE.0) THEN !! zmd(i,j,k)=zmd(i,j+1,k)*min(1.,mp(i,j)/mp(i,j+1)) !! ENDif zmd(i,j,k)=zmd(i,j+1,k)*mp(i,j)/max(mp(i,j),mp(i,j+1),smallest_mp) END DO END DO END DO DO k=1,klev DO j=1,klev-1 DO i=1,klon za(i,j,k)=max(0.,zmd(i,j+1,k)-zmd(i,j,k)) END DO END DO END DO ! rajout du terme lie a l ascendance induite DO j=2,klev DO i=1,klon za(i,j,j-1)=za(i,j,j-1)+mp(i,j) END DO END DO ! tendances DO k=1,klev DO j=1,klev DO i=1,klon zmfd(i,j)=zmfd(i,j)+za(i,j,k)*(x(i,k,it)-x(i,j,it)) END DO END DO END DO ! ========================================= ! calcul des tendances liees aux flux satures ! ========================================= !RL ! Feeding concentrations DO j=1,klev DO i=1,klon qfeed(i,it)=qfeed(i,it)+wght_cvfd(i,j)*x(i,j,it) END DO END DO !RL DO j=1,klev DO i=1,klon !RL !! zmfa(i,j,it)=da(i,j)*(x(i,1,it)-x(i,j,it)) ! da zmfa(i,j)=da(i,j)*(qfeed(i,it)-x(i,j,it)) ! da !RL END DO END DO !! print *,'it, qfeed(1,it), x(1,1,it) ', it, qfeed(1,it), x(1,1,it) !jyg !! print *,'wght_cvfd ', (j, wght_cvfd(1,j), j=1,5) !jyg DO k=1,klev DO j=1,klev DO i=1,klon zmfp(i,j)=zmfp(i,j)+phi(i,j,k)*(x(i,k,it)-x(i,j,it)) END DO END DO END DO DO j=1,klev-1 DO i=1,klon zmfu(i,j)=max(0.,upd(i,j+1)+dnd(i,j+1))*(x(i,j+1,it)-x(i,j,it)) END DO END DO DO j=2,klev DO i=1,klon zmfu(i,j)=zmfu(i,j)+min(0.,upd(i,j)+dnd(i,j))*(x(i,j,it)-x(i,j-1,it)) END DO END DO ! ========================================= ! calcul final des tendances ! ========================================= DO k=1, klev DO i=1, klon deltap(i,k)=paprs(i,k)-paprs(i,k+1) ENDDO ENDDO pdtimeRG=pdtime*RG !cdir collapse DO k=1, klev DO i=1, klon dx(i,k,it)=(zmfd(i,k)+zmfu(i,k) & +zmfa(i,k)+zmfp(i,k))*pdtimeRG/deltap(i,k) ENDDO ENDDO !! test de conservation du traceur conserv=0. smfd = 0. smfu = 0. smfa = 0. smfp = 0. DO k=1, klev DO i=1, klon conserv=conserv+dx(i,k,it)* & deltap(i,k)/RG smfd = smfd + zmfd(i,k)*pdtime smfu = smfu + zmfu(i,k)*pdtime smfa = smfa + zmfa(i,k)*pdtime smfp = smfp + zmfp(i,k)*pdtime ENDDO ENDDO !! print *,'it',it,'cvltr_noscav conserv, smfd, smfu, smfa, smfp ',conserv, & !! smfd, smfu, smfa, smfp END SUBROUTINE cvltr_noscav