MODULE wx_pbl_var_mod ! Split Planetary Boundary Layer variables ! This module manages the variables necessary for the splitting of the boundary layer USE dimphy USE lmdz_abort_physic, ONLY: abort_physic IMPLICIT NONE REAL, PROTECTED, SAVE :: eps_1, fqsat, smallestreal !$OMP THREADPRIVATE(eps_1, fqsat, smallestreal) REAL, ALLOCATABLE, PROTECTED, DIMENSION(:), SAVE :: C_p, L_v !$OMP THREADPRIVATE(C_p, L_v) REAL, ALLOCATABLE, PROTECTED, DIMENSION(:), SAVE :: Ts0, dTs0 !$OMP THREADPRIVATE(Ts0, dTs0) REAL, ALLOCATABLE, PROTECTED, DIMENSION(:), SAVE :: Ts0_x, Ts0_w !$OMP THREADPRIVATE(Ts0_x, Ts0_w) REAL, ALLOCATABLE, PROTECTED, DIMENSION(:), SAVE :: qsat0, dqsatdT0 !$OMP THREADPRIVATE(qsat0, dqsatdT0) REAL, ALLOCATABLE, PROTECTED, DIMENSION(:), SAVE :: qsat0_x, dqsatdT0_x !$OMP THREADPRIVATE(qsat0_x, dqsatdT0_x) REAL, ALLOCATABLE, PROTECTED, DIMENSION(:), SAVE :: qsat0_w, dqsatdT0_w !$OMP THREADPRIVATE(qsat0_w, dqsatdT0_w) REAL, ALLOCATABLE, PROTECTED, DIMENSION(:), SAVE :: QQ_b, dd_QQ !$OMP THREADPRIVATE(QQ_b, dd_QQ) REAL, ALLOCATABLE, PROTECTED, DIMENSION(:), SAVE :: QQ_x, QQ_w !$OMP THREADPRIVATE(QQ_x, QQ_w) REAL, ALLOCATABLE, PROTECTED, DIMENSION(:), SAVE :: qsatsrf0_x, qsatsrf0_w !$OMP THREADPRIVATE(qsatsrf0_x, qsatsrf0_w) REAL, ALLOCATABLE, PROTECTED, DIMENSION(:), SAVE :: dqsatsrf0 !$OMP THREADPRIVATE(dqsatsrf0) REAL, ALLOCATABLE, PROTECTED, DIMENSION(:), SAVE :: q1_0b !$OMP THREADPRIVATE(q1_0b) REAL, ALLOCATABLE, PROTECTED, DIMENSION(:), SAVE :: dd_Cdragh, dd_Cdragm, dd_Cdragq !$OMP THREADPRIVATE(dd_Cdragh, dd_Cdragm, dd_Cdragq ) REAL, ALLOCATABLE, PROTECTED, DIMENSION(:), SAVE :: Kech_h, Kech_h_x, Kech_h_w ! Energy exchange coefficients !$OMP THREADPRIVATE(Kech_h, Kech_h_x, Kech_h_w) REAL, ALLOCATABLE, PROTECTED, DIMENSION(:), SAVE :: Kech_q, Kech_q_x, Kech_q_w ! Moisture exchange coefficients !$OMP THREADPRIVATE(Kech_q, Kech_q_x, Kech_q_w) REAL, ALLOCATABLE, PROTECTED, DIMENSION(:), SAVE :: Kech_m, Kech_m_x, Kech_m_w ! Momentum exchange coefficients !$OMP THREADPRIVATE(Kech_m, Kech_m_x, Kech_m_w) REAL, ALLOCATABLE, PROTECTED, DIMENSION(:), SAVE :: Kech_Tp, Kech_T_px, Kech_T_pw REAL, ALLOCATABLE, PROTECTED, DIMENSION(:), SAVE :: dd_KTp, KxKwTp !$OMP THREADPRIVATE(Kech_Tp, Kech_T_px, Kech_T_pw, dd_KTp, KxKwTp) REAL, ALLOCATABLE, PROTECTED, DIMENSION(:), SAVE :: dd_AT, dd_BT !$OMP THREADPRIVATE(dd_AT, dd_BT) REAL, ALLOCATABLE, PROTECTED, DIMENSION(:), SAVE :: Kech_Qp, Kech_Q_px, Kech_Q_pw REAL, ALLOCATABLE, PROTECTED, DIMENSION(:), SAVE :: dd_KQp, KxKwQp !$OMP THREADPRIVATE(Kech_Qp, Kech_Q_px, Kech_Q_pw, dd_KQp, KxKwQp) REAL, ALLOCATABLE, PROTECTED, DIMENSION(:), SAVE :: Kech_Qs, Kech_Q_sx, Kech_Q_sw REAL, ALLOCATABLE, PROTECTED, DIMENSION(:), SAVE :: dd_KQs, KxKwQs !$OMP THREADPRIVATE(Kech_Qs, Kech_Q_sx, Kech_Q_sw, dd_KQs, KxKwQs) REAL, ALLOCATABLE, PROTECTED, DIMENSION(:), SAVE :: dd_AQ, dd_BQ !$OMP THREADPRIVATE(dd_AQ, dd_BQ) REAL, ALLOCATABLE, PROTECTED, DIMENSION(:), SAVE :: AQ_x, AQ_w, BQ_x, BQ_w !$OMP THREADPRIVATE(AQ_x, AQ_w, BQ_x, BQ_w) REAL, ALLOCATABLE, PROTECTED, DIMENSION(:), SAVE :: Kech_Up, Kech_U_px, Kech_U_pw REAL, ALLOCATABLE, PROTECTED, DIMENSION(:), SAVE :: dd_KUp, KxKwUp !$OMP THREADPRIVATE(Kech_Up, Kech_U_px, Kech_U_pw, dd_KUp, KxKwUp) REAL, ALLOCATABLE, PROTECTED, DIMENSION(:), SAVE :: dd_AU, dd_BU !$OMP THREADPRIVATE(dd_AU, dd_BU) REAL, ALLOCATABLE, PROTECTED, DIMENSION(:), SAVE :: Kech_Vp, Kech_V_px, Kech_V_pw REAL, ALLOCATABLE, PROTECTED, DIMENSION(:), SAVE :: dd_KVp, KxKwVp !$OMP THREADPRIVATE(Kech_Vp, Kech_V_px, Kech_V_pw, dd_KVp, KxKwVp) REAL, ALLOCATABLE, PROTECTED, DIMENSION(:), SAVE :: dd_AV, dd_BV !$OMP THREADPRIVATE(dd_AV, dd_BV) CONTAINS !**************************************************************************************** SUBROUTINE wx_pbl_init ! Local variables !**************************************************************************************** INTEGER :: ierr !**************************************************************************************** ! Allocate module variables !**************************************************************************************** ierr = 0 ALLOCATE(C_p(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(L_v(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(Ts0(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(dTs0(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(Ts0_x(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(Ts0_w(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(qsat0(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(dqsatdT0(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(qsat0_x(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(dqsatdT0_x(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(qsat0_w(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(dqsatdT0_w(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(q1_0b(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(QQ_b(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(dd_QQ(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(QQ_x(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(QQ_w(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(qsatsrf0_x(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(qsatsrf0_w(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(dqsatsrf0(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(dd_Cdragh(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(dd_Cdragm(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(dd_Cdragq(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(Kech_h(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(Kech_h_x(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(Kech_h_w(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(Kech_q(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(Kech_q_x(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(Kech_q_w(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(Kech_m(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(Kech_m_x(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(Kech_m_w(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(Kech_Tp(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(Kech_T_px(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(Kech_T_pw(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(dd_KTp(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(KxKwTp(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(dd_AT(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(dd_BT(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) !---------------------------------------------------------------------------- ALLOCATE(Kech_Qp(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(Kech_Q_px(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(Kech_Q_pw(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(dd_KQp(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(KxKwQp(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(Kech_Qs(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(Kech_Q_sx(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(Kech_Q_sw(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(dd_KQs(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(KxKwQs(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) !!!!!!!!!! ALLOCATE(AQ_x(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(AQ_w(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(BQ_x(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(BQ_w(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(dd_AQ(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(dd_BQ(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) !---------------------------------------------------------------------------- ALLOCATE(Kech_Up(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(Kech_U_px(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(Kech_U_pw(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(dd_KUp(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(KxKwUp(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(dd_AU(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(dd_BU(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) !---------------------------------------------------------------------------- ALLOCATE(Kech_Vp(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(Kech_V_px(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(Kech_V_pw(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(dd_KVp(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(KxKwVp(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(dd_AV(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) ALLOCATE(dd_BV(klon), stat = ierr) IF (ierr /= 0) CALL abort_physic('wx_pbl_init', 'pb in allocation', 1) !---------------------------------------------------------------------------- END SUBROUTINE wx_pbl_init SUBROUTINE wx_pbl_prelim_0(knon, nsrf, dtime, ypplay, ypaprs, sigw, & yt_s, ydeltat_s, ygustiness, & yt_x, yt_w, yq_x, yq_w, & yu_x, yu_w, yv_x, yv_w, & ycdragh_x, ycdragh_w, ycdragq_x, ycdragq_w, & ycdragm_x, ycdragm_w, & AcoefT_x, AcoefT_w, AcoefQ_x, AcoefQ_w, & AcoefU_x, AcoefU_w, AcoefV_x, AcoefV_w, & BcoefT_x, BcoefT_w, BcoefQ_x, BcoefQ_w, & BcoefU_x, BcoefU_w, BcoefV_x, BcoefV_w, & Kech_h_x_out, Kech_h_w_out, Kech_h_out & ) USE lmdz_print_control, ONLY: prt_level, lunout USE indice_sol_mod, ONLY: is_oce USE lmdz_clesphys USE lmdz_yoethf USE lmdz_yomcst IMPLICIT NONE INCLUDE "FCTTRE.h" INTEGER, INTENT(IN) :: knon ! number of grid cells INTEGER, INTENT(IN) :: nsrf ! surface type REAL, INTENT(IN) :: dtime ! time step size (s) REAL, DIMENSION(knon, klev), INTENT(IN) :: ypplay ! mid-layer pressure (Pa) REAL, DIMENSION(knon, klev), INTENT(IN) :: ypaprs ! pressure at layer interfaces (pa) REAL, DIMENSION(knon), INTENT(IN) :: sigw ! cold pools fractional area REAL, DIMENSION(knon), INTENT(IN) :: yt_s REAL, DIMENSION(knon), INTENT(IN) :: ydeltat_s REAL, DIMENSION(knon), INTENT(IN) :: ygustiness REAL, DIMENSION(knon, klev), INTENT(IN) :: yt_x, yt_w, yq_x, yq_w REAL, DIMENSION(knon, klev), INTENT(IN) :: yu_x, yu_w, yv_x, yv_w REAL, DIMENSION(knon), INTENT(IN) :: ycdragh_x, ycdragh_w, ycdragq_x, ycdragq_w REAL, DIMENSION(knon), INTENT(IN) :: ycdragm_x, ycdragm_w REAL, DIMENSION(knon), INTENT(IN) :: AcoefT_x, AcoefT_w, AcoefQ_x, AcoefQ_w REAL, DIMENSION(knon), INTENT(IN) :: AcoefU_x, AcoefU_w, AcoefV_x, AcoefV_w REAL, DIMENSION(knon), INTENT(IN) :: BcoefT_x, BcoefT_w, BcoefQ_x, BcoefQ_w REAL, DIMENSION(knon), INTENT(IN) :: BcoefU_x, BcoefU_w, BcoefV_x, BcoefV_w REAL, DIMENSION(knon), INTENT(OUT) :: Kech_h_x_out, Kech_h_w_out, Kech_h_out ! Local variables INTEGER :: j REAL :: rho1 REAL :: mod_wind_x REAL :: mod_wind_w REAL :: dd_Kh REAL :: dd_Kq REAL :: dd_Km REAL :: zdelta, zcvm5, zcor, qsat REAL, DIMENSION(knon) :: sigx ! fractional area of (x) region !!! !!! jyg le 09/04/2013 ; passage aux nouvelles expressions en differences ! First computations ! ------------------ eps_1 = 0.5 smallestreal = tiny(smallestreal) sigx(1:knon) = 1. - sigw(1:knon) ! Compute Cp, Lv, qsat, dqsat_dT. L_v(1:knon) = RLvtt Ts0(1:knon) = yt_s(1:knon) dTs0(1:knon) = ydeltat_s(1:knon) q1_0b(1:knon) = sigw(1:knon) * yq_w(1:knon, 1) + sigx(1:knon) * yq_x(1:knon, 1) ! fqsat determination ! ------------------- IF (nsrf == is_oce) THEN fqsat = f_qsat_oce ELSE fqsat = 1. ENDIF ! Reference state ! --------------- DO j = 1, knon zdelta = MAX(0., SIGN(1., RTT - Ts0(j))) zcvm5 = R5LES * (1. - zdelta) + R5IES * zdelta qsat = R2ES * FOEEW(Ts0(j), zdelta) / ypaprs(j, 1) qsat = MIN(0.5, qsat) zcor = 1. / (1. - RETV * qsat) qsat0(j) = fqsat * qsat * zcor dqsatdT0(j) = fqsat * FOEDE(Ts0(j), zdelta, zcvm5, qsat0(j), zcor) C_p(j) = RCpd + qsat0(j) * (RCpv - RCpd) C_p(j) = RCpd ! print *,' AAAA wx_pbl0, C_p(j), qsat0(j), Ts0(j) : ', C_p(j), qsat0(j), Ts0(j) ENDDO DO j = 1, knon Ts0_x(j) = Ts0(j) - sigw(j) * dTs0(j) zdelta = MAX(0., SIGN(1., RTT - Ts0_x(j))) zcvm5 = R5LES * (1. - zdelta) + R5IES * zdelta !! zcvm5 = R5LES*RLVTT*(1.-zdelta) + R5IES*RLSTT*zdelta qsat = R2ES * FOEEW(Ts0_x(j), zdelta) / ypaprs(j, 1) qsat = MIN(0.5, qsat) zcor = 1. / (1. - RETV * qsat) qsat0_x(j) = fqsat * qsat * zcor dqsatdT0_x(j) = fqsat * FOEDE(Ts0_x(j), zdelta, zcvm5, qsat0_x(j), zcor) !! dqsatdT0_x(j) = (RLvtt*(1.-zdelta)+RLSTT*zdelta)*qsat0_x(j)/(Rv*Ts0_x(j)*Ts0_x(j)) ENDDO DO j = 1, knon Ts0_w(j) = Ts0(j) + sigx(j) * dTs0(j) zdelta = MAX(0., SIGN(1., RTT - Ts0_w(j))) zcvm5 = R5LES * (1. - zdelta) + R5IES * zdelta !! zcvm5 = R5LES*RLVTT*(1.-zdelta) + R5IES*RLSTT*zdelta qsat = R2ES * FOEEW(Ts0_w(j), zdelta) / ypaprs(j, 1) qsat = MIN(0.5, qsat) zcor = 1. / (1. - RETV * qsat) qsat0_w(j) = fqsat * qsat * zcor dqsatdT0_w(j) = fqsat * FOEDE(Ts0_w(j), zdelta, zcvm5, qsat0_w(j), zcor) !! dqsatdT0_w(j) = (RLvtt*(1.-zdelta)+RLSTT*zdelta)*qsat0_w(j)/(Rv*Ts0_w(j)*Ts0_w(j)) ENDDO QQ_x(1:knon) = 1. / dqsatdT0_x(1:knon) QQ_w(1:knon) = 1. / dqsatdT0_w(1:knon) QQ_b(1:knon) = sigw(1:knon) * QQ_w(1:knon) + sigx(1:knon) * QQ_x(1:knon) dd_QQ(1:knon) = QQ_w(1:knon) - QQ_x(1:knon) DO j = 1, knon ! Exchange coefficients computation ! --------------------------------- ! Wind factor (Warning : this is not valid when using land_surf_orchidee) mod_wind_x = min_wind_speed + SQRT(ygustiness(j) + yu_x(j, 1)**2 + yv_x(j, 1)**2) mod_wind_w = min_wind_speed + SQRT(ygustiness(j) + yu_w(j, 1)**2 + yv_w(j, 1)**2) !! rho1 = ypplay(j,1)/(RD*yt(j,1)) rho1 = ypplay(j, 1) / (RD * (yt_x(j, 1) + sigw(j) * (yt_w(j, 1) - yt_x(j, 1)))) ! (w) and (x) Exchange coefficients Kech_h_x(j) = ycdragh_x(j) * mod_wind_x * rho1 Kech_h_w(j) = ycdragh_w(j) * mod_wind_w * rho1 Kech_q_x(j) = ycdragq_x(j) * mod_wind_x * rho1 Kech_q_w(j) = ycdragq_w(j) * mod_wind_w * rho1 Kech_m_x(j) = ycdragm_x(j) * mod_wind_x * rho1 Kech_m_w(j) = ycdragm_w(j) * mod_wind_w * rho1 !! Print *,'YYYYpbl0: ycdragh_x, ycdragq_x, mod_wind_x, rho1, Kech_q_x, Kech_h_x ', & !! ycdragh_x(j), ycdragq_x(j), mod_wind_x, rho1, Kech_q_x(j), Kech_h_x(j) !! Print *,'YYYYpbl0: ycdragh_w, ycdragq_w, mod_wind_w, rho1, Kech_q_w, Kech_h_w ', & !! ycdragh_w(j), ycdragq_w(j), mod_wind_w, rho1, Kech_q_w(j), Kech_h_w(j) ! Merged exchange coefficients dd_Kh = Kech_h_w(j) - Kech_h_x(j) dd_Kq = Kech_q_w(j) - Kech_q_x(j) dd_Km = Kech_m_w(j) - Kech_m_x(j) IF (prt_level >=10) THEN print *, ' mod_wind_x, mod_wind_w ', mod_wind_x, mod_wind_w print *, ' rho1 ', rho1 print *, ' ycdragh_x(j),ycdragm_x(j) ', ycdragh_x(j), ycdragm_x(j) print *, ' ycdragh_w(j),ycdragm_w(j) ', ycdragh_w(j), ycdragm_w(j) print *, ' dd_Kh: ', dd_Kh ENDIF Kech_h(j) = Kech_h_x(j) + sigw(j) * dd_Kh Kech_q(j) = Kech_q_x(j) + sigw(j) * dd_Kq Kech_m(j) = Kech_m_x(j) + sigw(j) * dd_Km Kech_h_x_out(j) = Kech_h_x(j) Kech_h_w_out(j) = Kech_h_w(j) Kech_h_out(j) = Kech_h(j) ! Effective exchange coefficient computation ! ------------------------------------------ Kech_T_px(j) = Kech_h_x(j) / (1. - BcoefT_x(j) * Kech_h_x(j) * dtime) Kech_T_pw(j) = Kech_h_w(j) / (1. - BcoefT_w(j) * Kech_h_w(j) * dtime) Kech_Q_px(j) = Kech_q_x(j) / (1. - BcoefQ_x(j) * Kech_q_x(j) * dtime) Kech_Q_pw(j) = Kech_q_w(j) / (1. - BcoefQ_w(j) * Kech_q_w(j) * dtime) Kech_U_px(j) = Kech_m_x(j) / (1. - BcoefU_x(j) * Kech_m_x(j) * dtime) Kech_U_pw(j) = Kech_m_w(j) / (1. - BcoefU_w(j) * Kech_m_w(j) * dtime) Kech_V_px(j) = Kech_m_x(j) / (1. - BcoefV_x(j) * Kech_m_x(j) * dtime) Kech_V_pw(j) = Kech_m_w(j) / (1. - BcoefV_w(j) * Kech_m_w(j) * dtime) dd_KTp(j) = Kech_T_pw(j) - Kech_T_px(j) dd_KQp(j) = Kech_Q_pw(j) - Kech_Q_px(j) dd_KUp(j) = Kech_U_pw(j) - Kech_U_px(j) dd_KVp(j) = Kech_V_pw(j) - Kech_V_px(j) Kech_Tp(j) = Kech_T_px(j) + sigw(j) * dd_KTp(j) Kech_Qp(j) = Kech_Q_px(j) + sigw(j) * dd_KQp(j) Kech_Up(j) = Kech_U_px(j) + sigw(j) * dd_KUp(j) Kech_Vp(j) = Kech_V_px(j) + sigw(j) * dd_KVp(j) ! Store AQ and BQ in the module variables AQ_x(j) = AcoefQ_x(j) AQ_w(j) = AcoefQ_w(j) BQ_x(j) = BcoefQ_x(j) BQ_w(j) = BcoefQ_w(j) ! Calcul des differences w-x dd_Cdragm(j) = ycdragm_w(j) - ycdragm_x(j) dd_Cdragh(j) = ycdragh_w(j) - ycdragh_x(j) dd_Cdragq(j) = ycdragq_w(j) - ycdragq_x(j) dd_AT(j) = AcoefT_w(j) - AcoefT_x(j) dd_AQ(j) = AcoefQ_w(j) - AcoefQ_x(j) dd_AU(j) = AcoefU_w(j) - AcoefU_x(j) dd_AV(j) = AcoefV_w(j) - AcoefV_x(j) dd_BT(j) = BcoefT_w(j) - BcoefT_x(j) dd_BQ(j) = BcoefQ_w(j) - BcoefQ_x(j) dd_BU(j) = BcoefU_w(j) - BcoefU_x(j) dd_BV(j) = BcoefV_w(j) - BcoefV_x(j) KxKwTp(j) = Kech_T_px(j) * Kech_T_pw(j) KxKwQp(j) = Kech_Q_px(j) * Kech_Q_pw(j) KxKwUp(j) = Kech_U_px(j) * Kech_U_pw(j) KxKwVp(j) = Kech_V_px(j) * Kech_V_pw(j) IF (prt_level >=10) THEN print *, 'Variables pour la fusion : Kech_T_px(j)', Kech_T_px(j) print *, 'Variables pour la fusion : Kech_T_pw(j)', Kech_T_pw(j) print *, 'Variables pour la fusion : Kech_Tp(j)', Kech_Tp(j) print *, 'Variables pour la fusion : Kech_h(j)', Kech_h(j) ENDIF ENDDO ! j = 1, knon END SUBROUTINE wx_pbl_prelim_0 SUBROUTINE wx_pbl_prelim_beta(knon, dtime, & sigw, beta, & BcoefQ_x, BcoefQ_w & ) USE lmdz_print_control, ONLY: prt_level, lunout USE indice_sol_mod, ONLY: is_oce INTEGER, INTENT(IN) :: knon ! number of grid cells REAL, INTENT(IN) :: dtime ! time step size (s) REAL, DIMENSION(knon), INTENT(IN) :: sigw ! cold pools fractional area REAL, DIMENSION(knon), INTENT(IN) :: beta ! evaporation by potential evaporation REAL, DIMENSION(knon), INTENT(IN) :: BcoefQ_x, BcoefQ_w ! Local variables INTEGER :: j DO j = 1, knon qsatsrf0_x(j) = beta(j) * qsat0_x(j) qsatsrf0_w(j) = beta(j) * qsat0_w(j) dqsatsrf0(j) = qsatsrf0_w(j) - qsatsrf0_x(j) Kech_Q_sx(j) = Kech_q_x(j) / (1. - beta(j) * BcoefQ_x(j) * Kech_q_x(j) * dtime) Kech_Q_sw(j) = Kech_q_w(j) / (1. - beta(j) * BcoefQ_w(j) * Kech_q_w(j) * dtime) dd_KQs(j) = Kech_Q_sw(j) - Kech_Q_sx(j) Kech_Qs(j) = Kech_Q_sx(j) + sigw(j) * dd_KQs(j) KxKwQs(j) = Kech_Q_sx(j) * Kech_Q_sw(j) !! print *,'BBBBwx_prelim_beta : beta ', beta(j) ENDDO ! j = 1, knon END SUBROUTINE wx_pbl_prelim_beta SUBROUTINE wx_pbl_final !**************************************************************************************** ! Deallocate module variables !**************************************************************************************** IF (ALLOCATED(C_p)) DEALLOCATE(C_p) IF (ALLOCATED(L_v)) DEALLOCATE(L_v) IF (ALLOCATED(Ts0)) DEALLOCATE(Ts0) IF (ALLOCATED(dTs0)) DEALLOCATE(dTs0) IF (ALLOCATED(Ts0_x)) DEALLOCATE(Ts0_x) IF (ALLOCATED(Ts0_w)) DEALLOCATE(Ts0_w) IF (ALLOCATED(qsat0)) DEALLOCATE(qsat0) IF (ALLOCATED(dqsatdT0)) DEALLOCATE(dqsatdT0) IF (ALLOCATED(qsat0_x)) DEALLOCATE(qsat0_x) IF (ALLOCATED(dqsatdT0_x)) DEALLOCATE(dqsatdT0_x) IF (ALLOCATED(qsat0_w)) DEALLOCATE(qsat0_w) IF (ALLOCATED(dqsatdT0_w)) DEALLOCATE(dqsatdT0_w) IF (ALLOCATED(q1_0b)) DEALLOCATE(q1_0b) IF (ALLOCATED(QQ_b)) DEALLOCATE(QQ_b) IF (ALLOCATED(dd_QQ)) DEALLOCATE(dd_QQ) IF (ALLOCATED(QQ_x)) DEALLOCATE(QQ_x) IF (ALLOCATED(QQ_w)) DEALLOCATE(QQ_w) IF (ALLOCATED(qsatsrf0_x)) DEALLOCATE(qsatsrf0_x) IF (ALLOCATED(qsatsrf0_w)) DEALLOCATE(qsatsrf0_w) IF (ALLOCATED(dqsatsrf0)) DEALLOCATE(dqsatsrf0) IF (ALLOCATED(dd_Cdragh)) DEALLOCATE(dd_Cdragh) IF (ALLOCATED(dd_Cdragm)) DEALLOCATE(dd_Cdragm) IF (ALLOCATED(dd_Cdragq)) DEALLOCATE(dd_Cdragq) IF (ALLOCATED(Kech_h)) DEALLOCATE(Kech_h) IF (ALLOCATED(Kech_h_x)) DEALLOCATE(Kech_h_x) IF (ALLOCATED(Kech_h_w)) DEALLOCATE(Kech_h_w) IF (ALLOCATED(Kech_q)) DEALLOCATE(Kech_q) IF (ALLOCATED(Kech_q_x)) DEALLOCATE(Kech_q_x) IF (ALLOCATED(Kech_q_w)) DEALLOCATE(Kech_q_w) IF (ALLOCATED(Kech_m)) DEALLOCATE(Kech_m) IF (ALLOCATED(Kech_m_x)) DEALLOCATE(Kech_m_x) IF (ALLOCATED(Kech_m_w)) DEALLOCATE(Kech_m_w) IF (ALLOCATED(Kech_Tp)) DEALLOCATE(Kech_Tp) IF (ALLOCATED(Kech_T_px)) DEALLOCATE(Kech_T_px) IF (ALLOCATED(Kech_T_pw)) DEALLOCATE(Kech_T_pw) IF (ALLOCATED(dd_KTp)) DEALLOCATE(dd_KTp) IF (ALLOCATED(KxKwTp)) DEALLOCATE(KxKwTp) IF (ALLOCATED(dd_AT)) DEALLOCATE(dd_AT) IF (ALLOCATED(dd_BT)) DEALLOCATE(dd_BT) IF (ALLOCATED(Kech_Qp)) DEALLOCATE(Kech_Qp) IF (ALLOCATED(Kech_Q_px)) DEALLOCATE(Kech_Q_px) IF (ALLOCATED(Kech_Q_pw)) DEALLOCATE(Kech_Q_pw) IF (ALLOCATED(dd_KQp)) DEALLOCATE(dd_KQp) IF (ALLOCATED(KxKwQp)) DEALLOCATE(KxKwQp) IF (ALLOCATED(Kech_Qs)) DEALLOCATE(Kech_Qs) IF (ALLOCATED(Kech_Q_sx)) DEALLOCATE(Kech_Q_sx) IF (ALLOCATED(Kech_Q_sw)) DEALLOCATE(Kech_Q_sw) IF (ALLOCATED(dd_KQs)) DEALLOCATE(dd_KQs) IF (ALLOCATED(KxKwQs)) DEALLOCATE(KxKwQs) IF (ALLOCATED(AQ_x)) DEALLOCATE(AQ_x) IF (ALLOCATED(AQ_w)) DEALLOCATE(AQ_w) IF (ALLOCATED(BQ_x)) DEALLOCATE(BQ_x) IF (ALLOCATED(BQ_w)) DEALLOCATE(BQ_w) IF (ALLOCATED(dd_AQ)) DEALLOCATE(dd_AQ) IF (ALLOCATED(dd_BQ)) DEALLOCATE(dd_BQ) IF (ALLOCATED(Kech_Up)) DEALLOCATE(Kech_Up) IF (ALLOCATED(Kech_U_px)) DEALLOCATE(Kech_U_px) IF (ALLOCATED(Kech_U_pw)) DEALLOCATE(Kech_U_pw) IF (ALLOCATED(dd_KUp)) DEALLOCATE(dd_KUp) IF (ALLOCATED(KxKwUp)) DEALLOCATE(KxKwUp) IF (ALLOCATED(dd_AU)) DEALLOCATE(dd_AU) IF (ALLOCATED(dd_BU)) DEALLOCATE(dd_BU) IF (ALLOCATED(Kech_Vp)) DEALLOCATE(Kech_Vp) IF (ALLOCATED(Kech_V_px)) DEALLOCATE(Kech_V_px) IF (ALLOCATED(Kech_V_pw)) DEALLOCATE(Kech_V_pw) IF (ALLOCATED(dd_KVp)) DEALLOCATE(dd_KVp) IF (ALLOCATED(KxKwVp)) DEALLOCATE(KxKwVp) IF (ALLOCATED(dd_AV)) DEALLOCATE(dd_AV) IF (ALLOCATED(dd_BV)) DEALLOCATE(dd_BV) END SUBROUTINE wx_pbl_final END MODULE wx_pbl_var_mod