MODULE stdlevvar_mod ! This module contains main procedures for calculation ! of temperature, specific humidity and wind at a reference level USE cdrag_mod USE screenp_mod USE screenc_mod IMPLICIT NONE CONTAINS !**************************************************************************************** !r original routine svn3623 SUBROUTINE stdlevvar(klon, knon, nsrf, zxli, & u1, v1, t1, q1, z1, & ts1, qsurf, z0m, z0h, psol, pat1, & t_2m, q_2m, t_10m, q_10m, u_10m, ustar, s_pblh, prain, tsol) USE lmdz_flux_arp, ONLY: fsens, flat, betaevap, ust, tg, ok_flux_surf, ok_prescr_ust, ok_prescr_beta, ok_forc_tsurf USE lmdz_yoethf USE lmdz_yomcst IMPLICIT NONE !------------------------------------------------------------------------- ! Objet : calcul de la temperature et l'humidite relative a 2m et du ! module du vent a 10m a partir des relations de Dyer-Businger et ! des equations de Louis. ! Reference : Hess, Colman et McAvaney (1995) ! I. Musat, 01.07.2002 !AM On rajoute en sortie t et q a 10m pr le calcule d'hbtm2 dans clmain !------------------------------------------------------------------------- ! klon----input-I- dimension de la grille physique (= nb_pts_latitude X nb_pts_longitude) ! knon----input-I- nombre de points pour un type de surface ! nsrf----input-I- indice pour le type de surface; voir indice_sol_mod.F90 ! zxli----input-L- TRUE si calcul des cdrags selon Laurent Li ! u1------input-R- vent zonal au 1er niveau du modele ! v1------input-R- vent meridien au 1er niveau du modele ! t1------input-R- temperature de l'air au 1er niveau du modele ! q1------input-R- humidite relative au 1er niveau du modele ! z1------input-R- geopotentiel au 1er niveau du modele ! ts1-----input-R- temperature de l'air a la surface ! qsurf---input-R- humidite relative a la surface ! z0m, z0h---input-R- rugosite ! psol----input-R- pression au sol ! pat1----input-R- pression au 1er niveau du modele ! t_2m---output-R- temperature de l'air a 2m ! q_2m---output-R- humidite relative a 2m ! u_10m--output-R- vitesse du vent a 10m !AM ! t_10m--output-R- temperature de l'air a 10m ! q_10m--output-R- humidite specifique a 10m ! ustar--output-R- u* INTEGER, INTENT(IN) :: klon, knon, nsrf LOGICAL, INTENT(IN) :: zxli REAL, DIMENSION(klon), INTENT(IN) :: u1, v1, t1, q1, z1, ts1 REAL, DIMENSION(klon), INTENT(IN) :: qsurf REAL, DIMENSION(klon), INTENT(INOUT) :: z0m, z0h REAL, DIMENSION(klon), INTENT(IN) :: psol, pat1 REAL, DIMENSION(klon), INTENT(OUT) :: t_2m, q_2m, ustar REAL, DIMENSION(klon), INTENT(OUT) :: u_10m, t_10m, q_10m REAL, DIMENSION(klon), INTENT(INOUT) :: s_pblh REAL, DIMENSION(klon), INTENT(IN) :: prain REAL, DIMENSION(klon), INTENT(IN) :: tsol !------------------------------------------------------------------------- ! Quelques constantes et options: ! RKAR : constante de von Karman REAL, PARAMETER :: RKAR = 0.40 ! niter : nombre iterations calcul "corrector" ! INTEGER, parameter :: niter=6, ncon=niter-1 INTEGER, parameter :: niter = 2, ncon = niter - 1 ! Variables locales INTEGER :: i, n REAL :: zref REAL, DIMENSION(klon) :: speed ! tpot : temperature potentielle REAL, DIMENSION(klon) :: tpot REAL, DIMENSION(klon) :: zri1, cdran REAL, DIMENSION(klon) :: cdram, cdrah ! ri1 : nb. de Richardson entre la surface --> la 1ere couche REAL, DIMENSION(klon) :: ri1 REAL, DIMENSION(klon) :: testar, qstar REAL, DIMENSION(klon) :: zdte, zdq ! lmon : longueur de Monin-Obukhov selon Hess, Colman and McAvaney DOUBLE PRECISION, DIMENSION(klon) :: lmon DOUBLE PRECISION, parameter :: eps = 1.0D-20 REAL, DIMENSION(klon) :: delu, delte, delq REAL, DIMENSION(klon) :: u_zref, te_zref, q_zref REAL, DIMENSION(klon) :: temp, pref LOGICAL :: okri REAL, DIMENSION(klon) :: u_zref_p, te_zref_p, temp_p, q_zref_p !convertgence REAL, DIMENSION(klon) :: te_zref_con, q_zref_con REAL, DIMENSION(klon) :: u_zref_c, te_zref_c, temp_c, q_zref_c REAL, DIMENSION(klon) :: ok_pred, ok_corr, zri_zero ! REAL, DIMENSION(klon) :: conv_te, conv_q !------------------------------------------------------------------------- DO i = 1, knon speed(i) = SQRT(u1(i)**2 + v1(i)**2) ri1(i) = 0.0 ENDDO okri = .FALSE. ! CALL coefcdrag(klon, knon, nsrf, zxli, & ! & speed, t1, q1, z1, psol, & ! & ts1, qsurf, rugos, okri, ri1, & ! & cdram, cdrah, cdran, zri1, pref) ! Fuxing WANG, 04/03/2015, replace the coefcdrag by the merged version: cdrag CALL cdrag(knon, nsrf, & speed, t1, q1, z1, & psol, s_pblh, ts1, qsurf, z0m, z0h, & zri_zero, 0, & cdram, cdrah, zri1, pref, prain, tsol, pat1) ! --- special Dice: on force cdragm ( a defaut de forcer ustar) MPL 05082013 IF (ok_prescr_ust) THEN DO i = 1, knon print *, 'cdram avant=', cdram(i) cdram(i) = ust * ust / speed(i) / speed(i) print *, 'cdram ust speed apres=', cdram(i), ust, speed ENDDO ENDIF !---------Star variables---------------------------------------------------- DO i = 1, knon ri1(i) = zri1(i) tpot(i) = t1(i) * (psol(i) / pat1(i))**RKAPPA ustar(i) = sqrt(cdram(i) * speed(i) * speed(i)) zdte(i) = tpot(i) - ts1(i) zdq(i) = max(q1(i), 0.0) - max(qsurf(i), 0.0) !IM BUG BUG BUG zdte(i) = max(zdte(i),1.e-10) zdte(i) = sign(max(abs(zdte(i)), 1.e-10), zdte(i)) testar(i) = (cdrah(i) * zdte(i) * speed(i)) / ustar(i) qstar(i) = (cdrah(i) * zdq(i) * speed(i)) / ustar(i) lmon(i) = (ustar(i) * ustar(i) * tpot(i)) / & (RKAR * RG * testar(i)) ENDDO !----------First aproximation of variables at zref -------------------------- zref = 2.0 CALL screenp(klon, knon, nsrf, speed, tpot, q1, & ts1, qsurf, z0m, lmon, & ustar, testar, qstar, zref, & delu, delte, delq) DO i = 1, knon u_zref(i) = delu(i) q_zref(i) = max(qsurf(i), 0.0) + delq(i) te_zref(i) = ts1(i) + delte(i) temp(i) = te_zref(i) * (psol(i) / pat1(i))**(-RKAPPA) q_zref_p(i) = q_zref(i) ! te_zref_p(i) = te_zref(i) temp_p(i) = temp(i) ENDDO ! Iteration of the variables at the reference level zref : corrector calculation ; see Hess & McAvaney, 1995 DO n = 1, niter okri = .TRUE. CALL screenc(klon, knon, nsrf, zxli, & u_zref, temp, q_zref, zref, & ts1, qsurf, z0m, z0h, psol, & ustar, testar, qstar, okri, ri1, & pref, delu, delte, delq, s_pblh, prain, tsol, pat1) DO i = 1, knon u_zref(i) = delu(i) q_zref(i) = delq(i) + max(qsurf(i), 0.0) te_zref(i) = delte(i) + ts1(i) ! return to normal temperature temp(i) = te_zref(i) * (psol(i) / pref(i))**(-RKAPPA) ! temp(i) = te_zref(i) - (zref* RG)/RCPD/ & ! (1 + RVTMP2 * max(q_zref(i),0.0)) !IM +++ ! IF(temp(i).GT.350.) THEN ! WRITE(*,*) 'temp(i) GT 350 K !!',i,nsrf,temp(i) ! ENDIF !IM --- IF(n==ncon) THEN te_zref_con(i) = te_zref(i) q_zref_con(i) = q_zref(i) ENDIF ENDDO ENDDO ! verifier le critere de convergence : 0.25% pour te_zref et 5% pour qe_zref ! DO i = 1, knon ! conv_te(i) = (te_zref(i) - te_zref_con(i))/te_zref_con(i) ! conv_q(i) = (q_zref(i) - q_zref_con(i))/q_zref_con(i) !IM +++ ! IF(abs(conv_te(i)).GE.0.0025.AND.abs(conv_q(i)).GE.0.05) THEN ! PRINT*,'DIV','i=',i,te_zref_con(i),te_zref(i),conv_te(i), & ! q_zref_con(i),q_zref(i),conv_q(i) ! ENDIF !IM --- ! ENDDO DO i = 1, knon q_zref_c(i) = q_zref(i) temp_c(i) = temp(i) ! IF(zri1(i).LT.0.) THEN ! IF(nsrf.EQ.1) THEN ! ok_pred(i)=1. ! ok_corr(i)=0. ! ELSE ! ok_pred(i)=0. ! ok_corr(i)=1. ! ENDIF ! ELSE ! ok_pred(i)=0. ! ok_corr(i)=1. ! ENDIF ok_pred(i) = 0. ok_corr(i) = 1. t_2m(i) = temp_p(i) * ok_pred(i) + temp_c(i) * ok_corr(i) q_2m(i) = q_zref_p(i) * ok_pred(i) + q_zref_c(i) * ok_corr(i) !IM +++ ! IF(n.EQ.niter) THEN ! IF(t_2m(i).LT.t1(i).AND.t_2m(i).LT.ts1(i)) THEN ! PRINT*,' BAD t2m LT ',i,nsrf,t_2m(i),t1(i),ts1(i) ! ELSEIF(t_2m(i).GT.t1(i).AND.t_2m(i).GT.ts1(i)) THEN ! PRINT*,' BAD t2m GT ',i,nsrf,t_2m(i),t1(i),ts1(i) ! ENDIF ! ENDIF !IM --- ENDDO !----------First aproximation of variables at zref -------------------------- zref = 10.0 CALL screenp(klon, knon, nsrf, speed, tpot, q1, & ts1, qsurf, z0m, lmon, & ustar, testar, qstar, zref, & delu, delte, delq) DO i = 1, knon u_zref(i) = delu(i) q_zref(i) = max(qsurf(i), 0.0) + delq(i) te_zref(i) = ts1(i) + delte(i) temp(i) = te_zref(i) * (psol(i) / pat1(i))**(-RKAPPA) ! temp(i) = te_zref(i) - (zref* RG)/RCPD/ & ! (1 + RVTMP2 * max(q_zref(i),0.0)) u_zref_p(i) = u_zref(i) ENDDO ! Iteration of the variables at the reference level zref : corrector ; see Hess & McAvaney, 1995 DO n = 1, niter okri = .TRUE. CALL screenc(klon, knon, nsrf, zxli, & u_zref, temp, q_zref, zref, & ts1, qsurf, z0m, z0h, psol, & ustar, testar, qstar, okri, ri1, & pref, delu, delte, delq, s_pblh, prain, tsol, pat1) DO i = 1, knon u_zref(i) = delu(i) q_zref(i) = delq(i) + max(qsurf(i), 0.0) te_zref(i) = delte(i) + ts1(i) temp(i) = te_zref(i) * (psol(i) / pref(i))**(-RKAPPA) ! temp(i) = te_zref(i) - (zref* RG)/RCPD/ & ! (1 + RVTMP2 * max(q_zref(i),0.0)) ENDDO ENDDO DO i = 1, knon u_zref_c(i) = u_zref(i) u_10m(i) = u_zref_p(i) * ok_pred(i) + u_zref_c(i) * ok_corr(i) !AM q_zref_c(i) = q_zref(i) temp_c(i) = temp(i) t_10m(i) = temp_p(i) * ok_pred(i) + temp_c(i) * ok_corr(i) q_10m(i) = q_zref_p(i) * ok_pred(i) + q_zref_c(i) * ok_corr(i) !MA ENDDO END SUBROUTINE stdlevvar SUBROUTINE stdlevvarn(klon, knon, nsrf, zxli, & u1, v1, t1, q1, z1, & ts1, qsurf, z0m, z0h, psol, pat1, & t_2m, q_2m, t_10m, q_10m, u_10m, ustar, & n2mout) USE lmdz_ioipsl_getin_p, ONLY: getin_p USE lmdz_flux_arp, ONLY: fsens, flat, betaevap, ust, tg, ok_flux_surf, ok_prescr_ust, ok_prescr_beta, ok_forc_tsurf USE lmdz_yoethf USE lmdz_yomcst IMPLICIT NONE !------------------------------------------------------------------------- ! Objet : calcul de la temperature et l'humidite relative a 2m et du ! module du vent a 10m a partir des relations de Dyer-Businger et ! des equations de Louis. ! Reference : Hess, Colman et McAvaney (1995) ! I. Musat, 01.07.2002 !AM On rajoute en sortie t et q a 10m pr le calcule d'hbtm2 dans clmain !------------------------------------------------------------------------- ! klon----input-I- dimension de la grille physique (= nb_pts_latitude X nb_pts_longitude) ! knon----input-I- nombre de points pour un type de surface ! nsrf----input-I- indice pour le type de surface; voir indice_sol_mod.F90 ! zxli----input-L- TRUE si calcul des cdrags selon Laurent Li ! u1------input-R- vent zonal au 1er niveau du modele ! v1------input-R- vent meridien au 1er niveau du modele ! t1------input-R- temperature de l'air au 1er niveau du modele ! q1------input-R- humidite relative au 1er niveau du modele ! z1------input-R- geopotentiel au 1er niveau du modele ! ts1-----input-R- temperature de l'air a la surface ! qsurf---input-R- humidite relative a la surface ! z0m, z0h---input-R- rugosite ! psol----input-R- pression au sol ! pat1----input-R- pression au 1er niveau du modele ! t_2m---output-R- temperature de l'air a 2m ! q_2m---output-R- humidite relative a 2m ! u_2m--output-R- vitesse du vent a 2m ! u_10m--output-R- vitesse du vent a 10m ! ustar--output-R- u* !AM ! t_10m--output-R- temperature de l'air a 10m ! q_10m--output-R- humidite specifique a 10m INTEGER, INTENT(IN) :: klon, knon, nsrf LOGICAL, INTENT(IN) :: zxli REAL, DIMENSION(klon), INTENT(IN) :: u1, v1, t1, q1, ts1, z1 REAL, DIMENSION(klon), INTENT(INOUT) :: z0m, z0h REAL, DIMENSION(klon), INTENT(IN) :: qsurf REAL, DIMENSION(klon), INTENT(IN) :: psol, pat1 REAL, DIMENSION(klon), INTENT(OUT) :: t_2m, q_2m, ustar REAL, DIMENSION(klon), INTENT(OUT) :: u_10m, t_10m, q_10m INTEGER, DIMENSION(klon, 6), INTENT(OUT) :: n2mout REAL, DIMENSION(klon) :: u_2m REAL, DIMENSION(klon) :: cdrm2m, cdrh2m, ri2m REAL, DIMENSION(klon) :: cdram, cdrah, zri1 REAL, DIMENSION(klon) :: cdmn1, cdhn1, fm1, fh1 REAL, DIMENSION(klon) :: cdmn2m, cdhn2m, fm2m, fh2m REAL, DIMENSION(klon) :: ri2m_new REAL, DIMENSION(klon) :: s_pblh REAL, DIMENSION(klon) :: prain REAL, DIMENSION(klon) :: tsol !------------------------------------------------------------------------- ! Quelques constantes et options: ! RKAR : constante de von Karman REAL, PARAMETER :: RKAR = 0.40 ! niter : nombre iterations calcul "corrector" ! INTEGER, parameter :: niter=6, ncon=niter-1 !IM 071020 INTEGER, parameter :: niter=2, ncon=niter-1 INTEGER, parameter :: niter = 2, ncon = niter ! INTEGER, parameter :: niter=6, ncon=niter ! Variables locales INTEGER :: i, n REAL :: zref REAL, DIMENSION(klon) :: speed ! tpot : temperature potentielle REAL, DIMENSION(klon) :: tpot REAL, DIMENSION(klon) :: cdran ! ri1 : nb. de Richardson entre la surface --> la 1ere couche REAL, DIMENSION(klon) :: ri1 DOUBLE PRECISION, parameter :: eps = 1.0D-20 REAL, DIMENSION(klon) :: delu, delte, delq REAL, DIMENSION(klon) :: delh, delm REAL, DIMENSION(klon) :: delh_new, delm_new REAL, DIMENSION(klon) :: u_zref, te_zref, q_zref REAL, DIMENSION(klon) :: u_zref_pnew, te_zref_pnew, q_zref_pnew REAL, DIMENSION(klon) :: temp, pref REAL, DIMENSION(klon) :: temp_new, pref_new LOGICAL :: okri REAL, DIMENSION(klon) :: u_zref_p, te_zref_p, temp_p, q_zref_p REAL, DIMENSION(klon) :: u_zref_p_new, te_zref_p_new, temp_p_new, q_zref_p_new !convergence REAL, DIMENSION(klon) :: te_zref_con, q_zref_con REAL, DIMENSION(klon) :: u_zref_c, te_zref_c, temp_c, q_zref_c REAL, DIMENSION(klon) :: ok_pred, ok_corr REAL, DIMENSION(klon) :: cdrm10m, cdrh10m, ri10m REAL, DIMENSION(klon) :: cdmn10m, cdhn10m, fm10m, fh10m REAL, DIMENSION(klon) :: cdn2m, cdn1, zri_zero REAL :: CEPDUE, zdu2 INTEGER :: nzref, nz1 LOGICAL, DIMENSION(klon) :: ok_t2m_toosmall, ok_t2m_toobig LOGICAL, DIMENSION(klon) :: ok_q2m_toosmall, ok_q2m_toobig LOGICAL, DIMENSION(klon) :: ok_u2m_toobig LOGICAL, DIMENSION(klon) :: ok_t10m_toosmall, ok_t10m_toobig LOGICAL, DIMENSION(klon) :: ok_q10m_toosmall, ok_q10m_toobig LOGICAL, DIMENSION(klon) :: ok_u10m_toobig INTEGER, DIMENSION(klon, 6) :: n10mout !------------------------------------------------------------------------- CEPDUE = 0.1 ! n2mout : compteur des pas de temps ou t2m,q2m ou u2m sont en dehors des intervalles ! [tsurf, temp], [qsurf, q1] ou [0, speed] ! n10mout : compteur des pas de temps ou t10m,q10m ou u10m sont en dehors des intervalles ! [tsurf, temp], [qsurf, q1] ou [0, speed] n2mout(:, :) = 0 n10mout(:, :) = 0 DO i = 1, knon speed(i) = MAX(SQRT(u1(i)**2 + v1(i)**2), CEPDUE) ri1(i) = 0.0 ENDDO okri = .FALSE. CALL cdrag(knon, nsrf, & speed, t1, q1, z1, & psol, s_pblh, ts1, qsurf, z0m, z0h, & zri_zero, 0, & cdram, cdrah, zri1, pref, prain, tsol, pat1) DO i = 1, knon ri1(i) = zri1(i) tpot(i) = t1(i) * (psol(i) / pat1(i))**RKAPPA zdu2 = MAX(CEPDUE * CEPDUE, speed(i)**2) ustar(i) = sqrt(cdram(i) * zdu2) ENDDO !----------First aproximation of variables at zref -------------------------- zref = 2.0 ! calcul first-guess en utilisant dans les calculs à 2m ! le Richardson de la premiere couche atmospherique CALL screencn(klon, knon, nsrf, zxli, & speed, tpot, q1, zref, & ts1, qsurf, z0m, z0h, psol, & cdram, cdrah, okri, & ri1, 1, & pref_new, delm_new, delh_new, ri2m, & s_pblh, prain, tsol, pat1) DO i = 1, knon u_zref(i) = delm_new(i) * speed(i) u_zref_p(i) = u_zref(i) q_zref(i) = delh_new(i) * max(q1(i), 0.0) + & max(qsurf(i), 0.0) * (1 - delh_new(i)) q_zref_p(i) = q_zref(i) te_zref(i) = delh_new(i) * tpot(i) + ts1(i) * (1 - delh_new(i)) te_zref_p(i) = te_zref(i) ! return to normal temperature temp(i) = te_zref(i) * (psol(i) / pref_new(i))**(-RKAPPA) temp_p(i) = temp(i) ! compteurs ici ok_t2m_toosmall(i) = te_zref(i)tpot(i).AND. & te_zref(i)>ts1(i) ok_q2m_toosmall(i) = q_zref(i)q1(i).AND. & q_zref(i)>qsurf(i) ok_u2m_toobig(i) = u_zref(i)>speed(i) IF(ok_t2m_toosmall(i).OR.ok_t2m_toobig(i)) THEN n2mout(i, 1) = n2mout(i, 1) + 1 ENDIF IF(ok_q2m_toosmall(i).OR.ok_q2m_toobig(i)) THEN n2mout(i, 3) = n2mout(i, 3) + 1 ENDIF IF(ok_u2m_toobig(i)) THEN n2mout(i, 5) = n2mout(i, 5) + 1 ENDIF IF(ok_t2m_toosmall(i).OR.ok_t2m_toobig(i).OR. & ok_q2m_toosmall(i).OR.ok_q2m_toobig(i).OR. & ok_u2m_toobig(i)) THEN delm_new(i) = min(max(delm_new(i), 0.), 1.) delh_new(i) = min(max(delh_new(i), 0.), 1.) u_zref(i) = delm_new(i) * speed(i) u_zref_p(i) = u_zref(i) q_zref(i) = delh_new(i) * max(q1(i), 0.0) + & max(qsurf(i), 0.0) * (1 - delh_new(i)) q_zref_p(i) = q_zref(i) te_zref(i) = delh_new(i) * tpot(i) + ts1(i) * (1 - delh_new(i)) te_zref_p(i) = te_zref(i) ! return to normal temperature temp(i) = te_zref(i) * (psol(i) / pref_new(i))**(-RKAPPA) temp_p(i) = temp(i) ENDIF ENDDO ! Iteration of the variables at the reference level zref : corrector calculation ; see Hess & McAvaney, 1995 DO n = 1, niter okri = .TRUE. CALL screencn(klon, knon, nsrf, zxli, & u_zref, temp, q_zref, zref, & ts1, qsurf, z0m, z0h, psol, & cdram, cdrah, okri, & ri1, 0, & pref, delm, delh, ri2m, & s_pblh, prain, tsol, pat1) DO i = 1, knon u_zref(i) = delm(i) * speed(i) q_zref(i) = delh(i) * max(q1(i), 0.0) + & max(qsurf(i), 0.0) * (1 - delh(i)) te_zref(i) = delh(i) * tpot(i) + ts1(i) * (1 - delh(i)) ! return to normal temperature temp(i) = te_zref(i) * (psol(i) / pref(i))**(-RKAPPA) ! compteurs ici ok_t2m_toosmall(i) = te_zref(i)tpot(i).AND. & te_zref(i)>ts1(i) ok_q2m_toosmall(i) = q_zref(i)q1(i).AND. & q_zref(i)>qsurf(i) ok_u2m_toobig(i) = u_zref(i)>speed(i) IF(ok_t2m_toosmall(i).OR.ok_t2m_toobig(i)) THEN n2mout(i, 2) = n2mout(i, 2) + 1 ENDIF IF(ok_q2m_toosmall(i).OR.ok_q2m_toobig(i)) THEN n2mout(i, 4) = n2mout(i, 4) + 1 ENDIF IF(ok_u2m_toobig(i)) THEN n2mout(i, 6) = n2mout(i, 6) + 1 ENDIF IF(ok_t2m_toosmall(i).OR.ok_t2m_toobig(i).OR. & ok_q2m_toosmall(i).OR.ok_q2m_toobig(i).OR. & ok_u2m_toobig(i)) THEN delm(i) = min(max(delm(i), 0.), 1.) delh(i) = min(max(delh(i), 0.), 1.) u_zref(i) = delm(i) * speed(i) q_zref(i) = delh(i) * max(q1(i), 0.0) + & max(qsurf(i), 0.0) * (1 - delh(i)) te_zref(i) = delh(i) * tpot(i) + ts1(i) * (1 - delh(i)) temp(i) = te_zref(i) * (psol(i) / pref(i))**(-RKAPPA) ENDIF IF(n==ncon) THEN te_zref_con(i) = te_zref(i) q_zref_con(i) = q_zref(i) ENDIF ENDDO ENDDO DO i = 1, knon q_zref_c(i) = q_zref(i) temp_c(i) = temp(i) ok_pred(i) = 0. ok_corr(i) = 1. t_2m(i) = temp_p(i) * ok_pred(i) + temp_c(i) * ok_corr(i) q_2m(i) = q_zref_p(i) * ok_pred(i) + q_zref_c(i) * ok_corr(i) u_zref_c(i) = u_zref(i) u_2m(i) = u_zref_p(i) * ok_pred(i) + u_zref_c(i) * ok_corr(i) ENDDO !----------First aproximation of variables at zref -------------------------- zref = 10.0 CALL screencn(klon, knon, nsrf, zxli, & speed, tpot, q1, zref, & ts1, qsurf, z0m, z0h, psol, & cdram, cdrah, okri, & ri1, 1, & pref_new, delm_new, delh_new, ri10m, & s_pblh, prain, tsol, pat1) DO i = 1, knon u_zref(i) = delm_new(i) * speed(i) q_zref(i) = delh_new(i) * max(q1(i), 0.0) + & max(qsurf(i), 0.0) * (1 - delh_new(i)) te_zref(i) = delh_new(i) * tpot(i) + ts1(i) * (1 - delh_new(i)) temp(i) = te_zref(i) * (psol(i) / pref_new(i))**(-RKAPPA) u_zref_p(i) = u_zref(i) ! compteurs ici ok_t10m_toosmall(i) = te_zref(i)tpot(i).AND. & te_zref(i)>ts1(i) ok_q10m_toosmall(i) = q_zref(i)q1(i).AND. & q_zref(i)>qsurf(i) ok_u10m_toobig(i) = u_zref(i)>speed(i) IF(ok_t10m_toosmall(i).OR.ok_t10m_toobig(i)) THEN n10mout(i, 1) = n10mout(i, 1) + 1 ENDIF IF(ok_q10m_toosmall(i).OR.ok_q10m_toobig(i)) THEN n10mout(i, 3) = n10mout(i, 3) + 1 ENDIF IF(ok_u10m_toobig(i)) THEN n10mout(i, 5) = n10mout(i, 5) + 1 ENDIF IF(ok_t10m_toosmall(i).OR.ok_t10m_toobig(i).OR. & ok_q10m_toosmall(i).OR.ok_q10m_toobig(i).OR. & ok_u10m_toobig(i)) THEN delm_new(i) = min(max(delm_new(i), 0.), 1.) delh_new(i) = min(max(delh_new(i), 0.), 1.) u_zref(i) = delm_new(i) * speed(i) u_zref_p(i) = u_zref(i) q_zref(i) = delh_new(i) * max(q1(i), 0.0) + & max(qsurf(i), 0.0) * (1 - delh_new(i)) te_zref(i) = delh_new(i) * tpot(i) + ts1(i) * (1 - delh_new(i)) temp(i) = te_zref(i) * (psol(i) / pref_new(i))**(-RKAPPA) ENDIF ENDDO ! Iteration of the variables at the reference level zref : corrector calculation ; see Hess & McAvaney, 1995 DO n = 1, niter okri = .TRUE. CALL screencn(klon, knon, nsrf, zxli, & u_zref, temp, q_zref, zref, & ts1, qsurf, z0m, z0h, psol, & cdram, cdrah, okri, & ri1, 0, & pref, delm, delh, ri10m, & s_pblh, prain, tsol, pat1) DO i = 1, knon u_zref(i) = delm(i) * speed(i) q_zref(i) = delh(i) * max(q1(i), 0.0) + & max(qsurf(i), 0.0) * (1 - delh(i)) te_zref(i) = delh(i) * tpot(i) + ts1(i) * (1 - delh(i)) ! return to normal temperature temp(i) = te_zref(i) * (psol(i) / pref(i))**(-RKAPPA) ! compteurs ici ok_t10m_toosmall(i) = te_zref(i)tpot(i).AND. & te_zref(i)>ts1(i) ok_q10m_toosmall(i) = q_zref(i)q1(i).AND. & q_zref(i)>qsurf(i) ok_u10m_toobig(i) = u_zref(i)>speed(i) IF(ok_t10m_toosmall(i).OR.ok_t10m_toobig(i)) THEN n10mout(i, 2) = n10mout(i, 2) + 1 ENDIF IF(ok_q10m_toosmall(i).OR.ok_q10m_toobig(i)) THEN n10mout(i, 4) = n10mout(i, 4) + 1 ENDIF IF(ok_u10m_toobig(i)) THEN n10mout(i, 6) = n10mout(i, 6) + 1 ENDIF IF(ok_t10m_toosmall(i).OR.ok_t10m_toobig(i).OR. & ok_q10m_toosmall(i).OR.ok_q10m_toobig(i).OR. & ok_u10m_toobig(i)) THEN delm(i) = min(max(delm(i), 0.), 1.) delh(i) = min(max(delh(i), 0.), 1.) u_zref(i) = delm(i) * speed(i) q_zref(i) = delh(i) * max(q1(i), 0.0) + & max(qsurf(i), 0.0) * (1 - delh(i)) te_zref(i) = delh(i) * tpot(i) + ts1(i) * (1 - delh(i)) temp(i) = te_zref(i) * (psol(i) / pref(i))**(-RKAPPA) ENDIF IF(n==ncon) THEN te_zref_con(i) = te_zref(i) q_zref_con(i) = q_zref(i) ENDIF ENDDO ENDDO DO i = 1, knon q_zref_c(i) = q_zref(i) temp_c(i) = temp(i) ok_pred(i) = 0. ok_corr(i) = 1. t_10m(i) = temp_p(i) * ok_pred(i) + temp_c(i) * ok_corr(i) q_10m(i) = q_zref_p(i) * ok_pred(i) + q_zref_c(i) * ok_corr(i) u_zref_c(i) = u_zref(i) u_10m(i) = u_zref_p(i) * ok_pred(i) + u_zref_c(i) * ok_corr(i) ENDDO END SUBROUTINE stdlevvarn END MODULE stdlevvar_mod