SUBROUTINE ener_conserv(klon, klev, pdtphys, & puo, pvo, pto, qx, ivap, iliq, isol, & pun, pvn, ptn, pqn, pqln, pqsn, dtke, masse, exner, d_t_ec) !============================================================= ! Energy conservation ! Based on the TKE equation ! The M2 and N2 terms at the origin of TKE production are ! concerted into heating in the d_t_ec term ! Option 1 is the standard ! 101 is for M2 term only ! 101 for N2 term only ! -1 is a previours treatment for kinetic energy only ! FH (hourdin@lmd.jussieu.fr), 2013/04/25 !============================================================= !============================================================= ! Declarations !============================================================= ! From module USE phys_local_var_mod, ONLY: d_u_vdf, d_v_vdf, d_t_vdf, d_u_ajs, d_v_ajs, d_t_ajs, & d_u_con, d_v_con, d_t_con, d_t_diss USE phys_local_var_mod, ONLY: d_t_eva, d_t_lsc, d_q_eva, d_q_lsc USE phys_local_var_mod, ONLY: d_u_oro, d_v_oro, d_u_lif, d_v_lif USE phys_local_var_mod, ONLY: du_gwd_hines, dv_gwd_hines, dv_gwd_front, dv_gwd_rando USE phys_state_var_mod, ONLY: du_gwd_front, du_gwd_rando USE phys_output_var_mod, ONLY: bils_ec, bils_ech, bils_tke, bils_kinetic, bils_enthalp, bils_latent, bils_diss USE add_phys_tend_mod, ONLY: fl_cor_ebil USE infotrac_phy, ONLY: nqtot USE lmdz_abort_physic, ONLY: abort_physic USE lmdz_clesphys USE lmdz_compbl, ONLY: iflag_pbl, iflag_pbl_split, iflag_order2_sollw, ifl_pbltree USE lmdz_yoethf USE lmdz_yomcst IMPLICIT NONE ! Arguments INTEGER, INTENT(IN) :: klon, klev REAL, INTENT(IN) :: pdtphys REAL, DIMENSION(klon, klev), INTENT(IN) :: puo, pvo, pto REAL, DIMENSION(klon, klev, nqtot), INTENT(IN) :: qx INTEGER, INTENT(IN) :: ivap, iliq, isol REAL, DIMENSION(klon, klev), INTENT(IN) :: pun, pvn, ptn, pqn, pqln, pqsn REAL, DIMENSION(klon, klev), INTENT(IN) :: masse, exner REAL, DIMENSION(klon, klev + 1), INTENT(IN) :: dtke REAL, DIMENSION(klon, klev), INTENT(OUT) :: d_t_ec ! Local INTEGER k, i REAL, DIMENSION(klon, klev + 1) :: fluxu, fluxv, fluxt REAL, DIMENSION(klon, klev + 1) :: dddu, dddv, dddt REAL, DIMENSION(klon, klev) :: d_u, d_v, d_t, zv, zu, d_t_ech, pqo, pql0, pqs0 REAL ZRCPD CHARACTER*80 abort_message CHARACTER*20 :: modname modname = 'ener_conser' d_t_ec(:, :) = 0. IF(ivap == 0) CALL abort_physic (modname, 'can''t run without water vapour', 1) IF(iliq == 0) CALL abort_physic (modname, 'can''t run without liquid water', 1) pqo = qx(:, :, ivap) pql0 = qx(:, :, iliq) IF(isol /= 0) pqs0 = qx(:, :, isol) IF (iflag_ener_conserv==-1) THEN !+jld ec_conser DO k = 1, klev DO i = 1, klon IF (fl_cor_ebil > 0) THEN ZRCPD = RCPD * (1.0 + RVTMP2 * (pqn(i, k) + pqln(i, k) + pqsn(i, k))) ELSE ZRCPD = RCPD * (1.0 + RVTMP2 * pqn(i, k)) ENDIF d_t_ec(i, k) = 0.5 / ZRCPD & * (puo(i, k)**2 + pvo(i, k)**2 - pun(i, k)**2 - pvn(i, k)**2) ENDDO ENDDO !-jld ec_conser ELSEIF (iflag_ener_conserv>=1) THEN IF (iflag_ener_conserv<=2) THEN ! PRINT*,'ener_conserv pbl=',iflag_pbl IF (iflag_pbl>=20 .AND. iflag_pbl<=27) THEN !d_t_diss accounts for conserv d_t(:, :) = d_t_ajs(:, :) ! d_t_ajs = adjust + thermals d_u(:, :) = d_u_ajs(:, :) + d_u_con(:, :) d_v(:, :) = d_v_ajs(:, :) + d_v_con(:, :) ELSE d_t(:, :) = d_t_vdf(:, :) + d_t_ajs(:, :) ! d_t_ajs = adjust + thermals d_u(:, :) = d_u_vdf(:, :) + d_u_ajs(:, :) + d_u_con(:, :) d_v(:, :) = d_v_vdf(:, :) + d_v_ajs(:, :) + d_v_con(:, :) ENDIF ELSEIF (iflag_ener_conserv==101) THEN d_t(:, :) = 0. d_u(:, :) = d_u_vdf(:, :) + d_u_ajs(:, :) + d_u_con(:, :) d_v(:, :) = d_v_vdf(:, :) + d_v_ajs(:, :) + d_v_con(:, :) ELSEIF (iflag_ener_conserv==110) THEN d_t(:, :) = d_t_vdf(:, :) + d_t_ajs(:, :) d_u(:, :) = 0. d_v(:, :) = 0. ELSEIF (iflag_ener_conserv==3) THEN d_t(:, :) = 0. d_u(:, :) = 0. d_v(:, :) = 0. ELSEIF (iflag_ener_conserv==4) THEN d_t(:, :) = 0. d_u(:, :) = d_u_vdf(:, :) d_v(:, :) = d_v_vdf(:, :) ELSEIF (iflag_ener_conserv==5) THEN d_t(:, :) = d_t_vdf(:, :) d_u(:, :) = d_u_vdf(:, :) d_v(:, :) = d_v_vdf(:, :) ELSEIF (iflag_ener_conserv==6) THEN d_t(:, :) = d_t_vdf(:, :) d_u(:, :) = d_u_vdf(:, :) + d_u_ajs(:, :) d_v(:, :) = d_v_vdf(:, :) + d_v_ajs(:, :) ELSEIF (iflag_ener_conserv==7) THEN d_t(:, :) = d_t_vdf(:, :) + d_t_ajs(:, :) d_u(:, :) = d_u_vdf(:, :) + d_u_ajs(:, :) d_v(:, :) = d_v_vdf(:, :) + d_v_ajs(:, :) ELSEIF (iflag_ener_conserv==8) THEN d_t(:, :) = d_t_vdf(:, :) d_u(:, :) = d_u_vdf(:, :) + d_u_ajs(:, :) + d_u_con(:, :) d_v(:, :) = d_v_vdf(:, :) + d_v_ajs(:, :) + d_v_con(:, :) ELSEIF (iflag_ener_conserv==9) THEN d_t(:, :) = d_t_vdf(:, :) d_u(:, :) = d_u_vdf(:, :) + d_u_ajs(:, :) + d_u_con(:, :) + d_u_oro(:, :) d_v(:, :) = d_v_vdf(:, :) + d_v_ajs(:, :) + d_v_con(:, :) + d_v_oro(:, :) ELSEIF (iflag_ener_conserv==10) THEN d_t(:, :) = d_t_vdf(:, :) d_u(:, :) = d_u_vdf(:, :) + d_u_ajs(:, :) + d_u_con(:, :) + d_u_oro(:, :) + d_u_lif(:, :) d_v(:, :) = d_v_vdf(:, :) + d_v_ajs(:, :) + d_v_con(:, :) + d_v_oro(:, :) + d_v_lif(:, :) ELSEIF (iflag_ener_conserv==11) THEN d_t(:, :) = d_t_vdf(:, :) d_u(:, :) = d_u_vdf(:, :) + d_u_ajs(:, :) + d_u_con(:, :) + d_u_oro(:, :) + d_u_lif(:, :) d_v(:, :) = d_v_vdf(:, :) + d_v_ajs(:, :) + d_v_con(:, :) + d_v_oro(:, :) + d_v_lif(:, :) IF (ok_hines) THEN d_u_vdf(:, :) = d_u_vdf(:, :) + du_gwd_hines(:, :) d_v_vdf(:, :) = d_v_vdf(:, :) + dv_gwd_hines(:, :) ENDIF IF (.NOT. ok_hines .AND. ok_gwd_rando) THEN d_u_vdf(:, :) = d_u_vdf(:, :) + du_gwd_front(:, :) d_v_vdf(:, :) = d_v_vdf(:, :) + dv_gwd_front(:, :) ENDIF IF (ok_gwd_rando) THEN d_u_vdf(:, :) = d_u_vdf(:, :) + du_gwd_rando(:, :) d_v_vdf(:, :) = d_v_vdf(:, :) + dv_gwd_rando(:, :) ENDIF ELSE abort_message = 'iflag_ener_conserv non prevu' CALL abort_physic (modname, abort_message, 1) ENDIF !---------------------------------------------------------------------------- ! Two options wether we consider time integration in the energy conservation !---------------------------------------------------------------------------- IF (iflag_ener_conserv==2) THEN zu(:, :) = puo(:, :) zv(:, :) = pvo(:, :) else IF (iflag_pbl>=20 .AND. iflag_pbl<=27) THEN zu(:, :) = puo(:, :) + d_u_vdf(:, :) + 0.5 * d_u(:, :) zv(:, :) = pvo(:, :) + d_v_vdf(:, :) + 0.5 * d_v(:, :) ELSE zu(:, :) = puo(:, :) + 0.5 * d_u(:, :) zv(:, :) = pvo(:, :) + 0.5 * d_v(:, :) ENDIF endif fluxu(:, klev + 1) = 0. fluxv(:, klev + 1) = 0. fluxt(:, klev + 1) = 0. do k = klev, 1, -1 fluxu(:, k) = fluxu(:, k + 1) + masse(:, k) * d_u(:, k) fluxv(:, k) = fluxv(:, k + 1) + masse(:, k) * d_v(:, k) fluxt(:, k) = fluxt(:, k + 1) + masse(:, k) * d_t(:, k) / exner(:, k) enddo dddu(:, 1) = 2 * zu(:, 1) * fluxu(:, 1) dddv(:, 1) = 2 * zv(:, 1) * fluxv(:, 1) dddt(:, 1) = (exner(:, 1) - 1.) * fluxt(:, 1) do k = 2, klev dddu(:, k) = (zu(:, k) - zu(:, k - 1)) * fluxu(:, k) dddv(:, k) = (zv(:, k) - zv(:, k - 1)) * fluxv(:, k) dddt(:, k) = (exner(:, k) - exner(:, k - 1)) * fluxt(:, k) enddo dddu(:, klev + 1) = 0. dddv(:, klev + 1) = 0. dddt(:, klev + 1) = 0. do k = 1, klev d_t_ech(:, k) = -(rcpd * (dddt(:, k) + dddt(:, k + 1))) / (2. * rcpd * masse(:, k)) d_t_ec(:, k) = -(dddu(:, k) + dddu(:, k + 1) + dddv(:, k) + dddv(:, k + 1)) / (2. * rcpd * masse(:, k)) + d_t_ech(:, k) enddo ENDIF !================================================================ ! Computation of integrated enthalpie and kinetic energy variation ! FH (hourdin@lmd.jussieu.fr), 2013/04/25 ! bils_ec : energie conservation term ! bils_ech : part of this term linked to temperature ! bils_tke : change of TKE ! bils_diss : dissipation of TKE (when activated) ! bils_kinetic : change of kinetic energie of the column ! bils_enthalp : change of enthalpie ! bils_latent : change of latent heat. Computed between ! after reevaporation (at the beginning of the physics) ! and before large scale condensation (fisrtilp) !================================================================ bils_ec(:) = 0. bils_ech(:) = 0. bils_tke(:) = 0. bils_diss(:) = 0. bils_kinetic(:) = 0. bils_enthalp(:) = 0. bils_latent(:) = 0. DO k = 1, klev bils_ec(:) = bils_ec(:) - d_t_ec(:, k) * masse(:, k) bils_diss(:) = bils_diss(:) - d_t_diss(:, k) * masse(:, k) bils_kinetic(:) = bils_kinetic(:) + masse(:, k) * & (pun(:, k) * pun(:, k) + pvn(:, k) * pvn(:, k) & - puo(:, k) * puo(:, k) - pvo(:, k) * pvo(:, k)) bils_enthalp(:) = & bils_enthalp(:) + masse(:, k) * (ptn(:, k) - pto(:, k) + d_t_ec(:, k) - d_t_eva(:, k) - d_t_lsc(:, k)) ! & bils_enthalp(:)+masse(:,k)*(ptn(:,k)-pto(:,k)+d_t_ec(:,k)) bils_latent(:) = bils_latent(:) + masse(:, k) * & ! & (pqn(:,k)-pqo(:,k)) (pqn(:, k) - pqo(:, k) - d_q_eva(:, k) - d_q_lsc(:, k)) ENDDO bils_ec(:) = rcpd * bils_ec(:) / pdtphys bils_diss(:) = rcpd * bils_diss(:) / pdtphys bils_kinetic(:) = 0.5 * bils_kinetic(:) / pdtphys bils_enthalp(:) = rcpd * bils_enthalp(:) / pdtphys bils_latent(:) = rlvtt * bils_latent(:) / pdtphys !jyg< IF (iflag_pbl > 1) THEN DO k = 1, klev bils_tke(:) = bils_tke(:) + 0.5 * (dtke(:, k) + dtke(:, k + 1)) * masse(:, k) ENDDO bils_tke(:) = bils_tke(:) / pdtphys ENDIF ! (iflag_pbl > 1) !>jyg IF (iflag_ener_conserv>=1) THEN bils_ech(:) = 0. DO k = 1, klev bils_ech(:) = bils_ech(:) - d_t_ech(:, k) * masse(:, k) ENDDO bils_ech(:) = rcpd * bils_ech(:) / pdtphys ENDIF RETURN END