MODULE climb_hq_mod ! Module to solve the verctical diffusion of "q" and "H"; ! specific humidity and potential energi. USE dimphy IMPLICIT NONE PRIVATE PUBLIC :: climb_hq_down, climb_hq_up, d_h_col_vdf, f_h_bnd REAL, DIMENSION(:, :), ALLOCATABLE :: gamaq, gamah !$OMP THREADPRIVATE(gamaq,gamah) REAL, DIMENSION(:, :), ALLOCATABLE :: Ccoef_Q, Dcoef_Q !$OMP THREADPRIVATE(Ccoef_Q, Dcoef_Q) REAL, DIMENSION(:, :), ALLOCATABLE :: Ccoef_H, Dcoef_H !$OMP THREADPRIVATE(Ccoef_H, Dcoef_H) REAL, DIMENSION(:), ALLOCATABLE :: Acoef_Q, Bcoef_Q !$OMP THREADPRIVATE(Acoef_Q, Bcoef_Q) REAL, DIMENSION(:), ALLOCATABLE :: Acoef_H, Bcoef_H !$OMP THREADPRIVATE(Acoef_H, Bcoef_H) REAL, DIMENSION(:, :), ALLOCATABLE :: Kcoefhq !$OMP THREADPRIVATE(Kcoefhq) REAL, SAVE, DIMENSION(:, :), ALLOCATABLE :: h_old ! for diagnostics, h before solving diffusion !$OMP THREADPRIVATE(h_old) REAL, SAVE, DIMENSION(:), ALLOCATABLE :: d_h_col_vdf ! for diagnostics, vertical integral of enthalpy change !$OMP THREADPRIVATE(d_h_col_vdf) REAL, SAVE, DIMENSION(:), ALLOCATABLE :: f_h_bnd ! for diagnostics, enthalpy flux at surface !$OMP THREADPRIVATE(f_h_bnd) CONTAINS !**************************************************************************************** SUBROUTINE climb_hq_down(knon, coefhq, paprs, pplay, & delp, temp, q, dtime, & !!! nrlmd le 02/05/2011 Ccoef_H_out, Ccoef_Q_out, Dcoef_H_out, Dcoef_Q_out, & Kcoef_hq_out, gama_q_out, gama_h_out, & !!! Acoef_H_out, Acoef_Q_out, Bcoef_H_out, Bcoef_Q_out) ! This routine calculates recursivly the coefficients C and D ! for the quantity X=[Q,H] in equation X(k) = C(k) + D(k)*X(k-1), where k is ! the index of the vertical layer. ! Input arguments !**************************************************************************************** USE lmdz_compbl, ONLY: iflag_pbl, iflag_pbl_split, iflag_order2_sollw, ifl_pbltree USE lmdz_yomcst IMPLICIT NONE INTEGER, INTENT(IN) :: knon REAL, DIMENSION(klon, klev), INTENT(IN) :: coefhq REAL, DIMENSION(klon, klev), INTENT(IN) :: pplay REAL, DIMENSION(klon, klev + 1), INTENT(IN) :: paprs REAL, DIMENSION(klon, klev), INTENT(IN) :: temp, delp ! temperature REAL, DIMENSION(klon, klev), INTENT(IN) :: q REAL, INTENT(IN) :: dtime ! Output arguments !**************************************************************************************** REAL, DIMENSION(klon), INTENT(OUT) :: Acoef_H_out REAL, DIMENSION(klon), INTENT(OUT) :: Acoef_Q_out REAL, DIMENSION(klon), INTENT(OUT) :: Bcoef_H_out REAL, DIMENSION(klon), INTENT(OUT) :: Bcoef_Q_out !!! nrlmd le 02/05/2011 REAL, DIMENSION(klon, klev), INTENT(OUT) :: Ccoef_H_out REAL, DIMENSION(klon, klev), INTENT(OUT) :: Ccoef_Q_out REAL, DIMENSION(klon, klev), INTENT(OUT) :: Dcoef_H_out REAL, DIMENSION(klon, klev), INTENT(OUT) :: Dcoef_Q_out REAL, DIMENSION(klon, klev), INTENT(OUT) :: Kcoef_hq_out REAL, DIMENSION(klon, klev), INTENT(OUT) :: gama_q_out REAL, DIMENSION(klon, klev), INTENT(OUT) :: gama_h_out !!! ! Local variables !**************************************************************************************** LOGICAL, SAVE :: first = .TRUE. !$OMP THREADPRIVATE(first) ! JLD now renamed h_old and declared in module ! REAL, DIMENSION(klon,klev) :: local_H REAL, DIMENSION(klon) :: psref REAL :: delz, pkh INTEGER :: k, i, ierr ! Include !**************************************************************************************** ! 1) ! Allocation at first time step only !**************************************************************************************** IF (first) THEN first = .FALSE. ALLOCATE(Ccoef_Q(klon, klev), STAT = ierr) IF (ierr /= 0) PRINT*, ' pb in allloc Ccoef_Q, ierr=', ierr ALLOCATE(Dcoef_Q(klon, klev), STAT = ierr) IF (ierr /= 0) PRINT*, ' pb in allloc Dcoef_Q, ierr=', ierr ALLOCATE(Ccoef_H(klon, klev), STAT = ierr) IF (ierr /= 0) PRINT*, ' pb in allloc Ccoef_H, ierr=', ierr ALLOCATE(Dcoef_H(klon, klev), STAT = ierr) IF (ierr /= 0) PRINT*, ' pb in allloc Dcoef_H, ierr=', ierr ALLOCATE(Acoef_Q(klon), Bcoef_Q(klon), Acoef_H(klon), Bcoef_H(klon), STAT = ierr) IF (ierr /= 0) PRINT*, ' pb in allloc Acoef_X and Bcoef_X, ierr=', ierr ALLOCATE(Kcoefhq(klon, klev), STAT = ierr) IF (ierr /= 0) PRINT*, ' pb in allloc Kcoefhq, ierr=', ierr ALLOCATE(gamaq(1:klon, 2:klev), STAT = ierr) IF (ierr /= 0) PRINT*, ' pb in allloc gamaq, ierr=', ierr ALLOCATE(gamah(1:klon, 2:klev), STAT = ierr) IF (ierr /= 0) PRINT*, ' pb in allloc gamah, ierr=', ierr ALLOCATE(h_old(klon, klev), STAT = ierr) IF (ierr /= 0) PRINT*, ' pb in allloc h_old, ierr=', ierr ALLOCATE(d_h_col_vdf(klon), STAT = ierr) IF (ierr /= 0) PRINT*, ' pb in allloc d_h_col_vdf, ierr=', ierr ALLOCATE(f_h_bnd(klon), STAT = ierr) IF (ierr /= 0) PRINT*, ' pb in allloc f_h_bnd, ierr=', ierr END IF !**************************************************************************************** ! 2) ! Definition of the coeficient K !**************************************************************************************** Kcoefhq(:, :) = 0.0 DO k = 2, klev DO i = 1, knon Kcoefhq(i, k) = & coefhq(i, k) * RG * RG * dtime / (pplay(i, k - 1) - pplay(i, k)) & * (paprs(i, k) * 2 / (temp(i, k) + temp(i, k - 1)) / RD)**2 ENDDO ENDDO !**************************************************************************************** ! 3) ! Calculation of gama for "Q" and "H" !**************************************************************************************** ! surface pressure is used as reference psref(:) = paprs(:, 1) ! definition of gama IF (iflag_pbl == 1) THEN gamaq(:, :) = 0.0 gamah(:, :) = -1.0e-03 gamah(:, 2) = -2.5e-03 ! conversion de gama DO k = 2, klev DO i = 1, knon delz = RD * (temp(i, k - 1) + temp(i, k)) / & 2.0 / RG / paprs(i, k) * (pplay(i, k - 1) - pplay(i, k)) pkh = (psref(i) / paprs(i, k))**RKAPPA ! convertie gradient verticale d'humidite specifique en difference d'humidite specifique entre centre de couches gamaq(i, k) = gamaq(i, k) * delz ! convertie gradient verticale de temperature en difference de temperature potentielle entre centre de couches gamah(i, k) = gamah(i, k) * delz * RCPD * pkh ENDDO ENDDO ELSE gamaq(:, :) = 0.0 gamah(:, :) = 0.0 ENDIF !**************************************************************************************** ! 4) ! Calculte the coefficients C and D for specific humidity, q !**************************************************************************************** CALL calc_coef(knon, Kcoefhq(:, :), gamaq(:, :), delp(:, :), q(:, :), & Ccoef_Q(:, :), Dcoef_Q(:, :), Acoef_Q, Bcoef_Q) !**************************************************************************************** ! 5) ! Calculte the coefficients C and D for potentiel entalpie, H !**************************************************************************************** h_old(:, :) = 0.0 DO k = 1, klev DO i = 1, knon ! convertie la temperature en entalpie potentielle h_old(i, k) = RCPD * temp(i, k) * & (psref(i) / pplay(i, k))**RKAPPA ENDDO ENDDO CALL calc_coef(knon, Kcoefhq(:, :), gamah(:, :), delp(:, :), h_old(:, :), & Ccoef_H(:, :), Dcoef_H(:, :), Acoef_H, Bcoef_H) !**************************************************************************************** ! 6) ! Return the first layer in output variables !**************************************************************************************** Acoef_H_out = Acoef_H Bcoef_H_out = Bcoef_H Acoef_Q_out = Acoef_Q Bcoef_Q_out = Bcoef_Q !**************************************************************************************** ! 7) ! If Pbl is split, return also the other layers in output variables !**************************************************************************************** !!! jyg le 07/02/2012 !!jyg IF (mod(iflag_pbl_split,2) .EQ.1) THEN IF (mod(iflag_pbl_split, 10) >=1) THEN !!! nrlmd le 02/05/2011 DO k = 1, klev DO i = 1, klon Ccoef_H_out(i, k) = Ccoef_H(i, k) Dcoef_H_out(i, k) = Dcoef_H(i, k) Ccoef_Q_out(i, k) = Ccoef_Q(i, k) Dcoef_Q_out(i, k) = Dcoef_Q(i, k) Kcoef_hq_out(i, k) = Kcoefhq(i, k) IF (k==1) THEN gama_h_out(i, k) = 0. gama_q_out(i, k) = 0. ELSE gama_h_out(i, k) = gamah(i, k) gama_q_out(i, k) = gamaq(i, k) ENDIF ENDDO ENDDO !!! ENDIF ! (mod(iflag_pbl_split,2) .ge.1) !!! END SUBROUTINE climb_hq_down !**************************************************************************************** SUBROUTINE calc_coef(knon, Kcoef, gama, delp, X, Ccoef, Dcoef, Acoef, Bcoef) USE lmdz_yomcst IMPLICIT NONE ! Calculate the coefficients C and D in : X(k) = C(k) + D(k)*X(k-1) ! where X is H or Q, and k the vertical level k=1,klev ! Input arguments !**************************************************************************************** INTEGER, INTENT(IN) :: knon REAL, DIMENSION(klon, klev), INTENT(IN) :: Kcoef, delp REAL, DIMENSION(klon, klev), INTENT(IN) :: X REAL, DIMENSION(klon, 2:klev), INTENT(IN) :: gama ! Output arguments !**************************************************************************************** REAL, DIMENSION(klon), INTENT(OUT) :: Acoef, Bcoef REAL, DIMENSION(klon, klev), INTENT(OUT) :: Ccoef, Dcoef ! Local variables !**************************************************************************************** INTEGER :: k, i REAL :: buf !**************************************************************************************** ! Niveau au sommet, k=klev !**************************************************************************************** Ccoef(:, :) = 0.0 Dcoef(:, :) = 0.0 DO i = 1, knon buf = delp(i, klev) + Kcoef(i, klev) Ccoef(i, klev) = (X(i, klev) * delp(i, klev) - Kcoef(i, klev) * gama(i, klev)) / buf Dcoef(i, klev) = Kcoef(i, klev) / buf END DO !**************************************************************************************** ! Niveau (klev-1) <= k <= 2 !**************************************************************************************** DO k = (klev - 1), 2, -1 DO i = 1, knon buf = delp(i, k) + Kcoef(i, k) + Kcoef(i, k + 1) * (1. - Dcoef(i, k + 1)) Ccoef(i, k) = (X(i, k) * delp(i, k) + Kcoef(i, k + 1) * Ccoef(i, k + 1) + & Kcoef(i, k + 1) * gama(i, k + 1) - Kcoef(i, k) * gama(i, k)) / buf Dcoef(i, k) = Kcoef(i, k) / buf END DO END DO !**************************************************************************************** ! Niveau k=1 !**************************************************************************************** DO i = 1, knon buf = delp(i, 1) + Kcoef(i, 2) * (1. - Dcoef(i, 2)) Acoef(i) = (X(i, 1) * delp(i, 1) + Kcoef(i, 2) * (gama(i, 2) + Ccoef(i, 2))) / buf Bcoef(i) = -1. * RG / buf END DO END SUBROUTINE calc_coef !**************************************************************************************** SUBROUTINE climb_hq_up(knon, dtime, t_old, q_old, & flx_q1, flx_h1, paprs, pplay, & !!! nrlmd le 02/05/2011 Acoef_H_in, Acoef_Q_in, Bcoef_H_in, Bcoef_Q_in, & Ccoef_H_in, Ccoef_Q_in, Dcoef_H_in, Dcoef_Q_in, & Kcoef_hq_in, gama_q_in, gama_h_in, & !!! flux_q, flux_h, d_q, d_t) ! This routine calculates the flux and tendency of the specific humidity q and ! the potential engergi H. ! The quantities q and H are calculated according to ! X(k) = C(k) + D(k)*X(k-1) for X=[q,H], where the coefficients ! C and D are known from before and k is index of the vertical layer. ! Input arguments !**************************************************************************************** USE lmdz_compbl, ONLY: iflag_pbl, iflag_pbl_split, iflag_order2_sollw, ifl_pbltree USE lmdz_yomcst IMPLICIT NONE INTEGER, INTENT(IN) :: knon REAL, INTENT(IN) :: dtime REAL, DIMENSION(klon, klev), INTENT(IN) :: t_old, q_old REAL, DIMENSION(klon), INTENT(IN) :: flx_q1, flx_h1 REAL, DIMENSION(klon, klev + 1), INTENT(IN) :: paprs REAL, DIMENSION(klon, klev), INTENT(IN) :: pplay !!! nrlmd le 02/05/2011 REAL, DIMENSION(klon), INTENT(IN) :: Acoef_H_in, Acoef_Q_in, Bcoef_H_in, Bcoef_Q_in REAL, DIMENSION(klon, klev), INTENT(IN) :: Ccoef_H_in, Ccoef_Q_in, Dcoef_H_in, Dcoef_Q_in REAL, DIMENSION(klon, klev), INTENT(IN) :: Kcoef_hq_in, gama_q_in, gama_h_in !!! ! Output arguments !**************************************************************************************** REAL, DIMENSION(klon, klev), INTENT(OUT) :: flux_q, flux_h, d_q, d_t ! Local variables !**************************************************************************************** LOGICAL, SAVE :: last = .FALSE. REAL, DIMENSION(klon, klev) :: h_new, q_new REAL, DIMENSION(klon) :: psref INTEGER :: k, i, ierr !**************************************************************************************** ! 1) ! Definition of some variables REAL, DIMENSION(klon, klev) :: d_h, zairm !**************************************************************************************** flux_q(:, :) = 0.0 flux_h(:, :) = 0.0 d_q(:, :) = 0.0 d_t(:, :) = 0.0 d_h(:, :) = 0.0 f_h_bnd(:) = 0.0 psref(1:knon) = paprs(1:knon, 1) !!! jyg le 07/02/2012 !!jyg IF (mod(iflag_pbl_split,2) .EQ.1) THEN IF (mod(iflag_pbl_split, 10) >=1) THEN !!! nrlmd le 02/05/2011 DO i = 1, knon Acoef_H(i) = Acoef_H_in(i) Acoef_Q(i) = Acoef_Q_in(i) Bcoef_H(i) = Bcoef_H_in(i) Bcoef_Q(i) = Bcoef_Q_in(i) ENDDO DO k = 1, klev DO i = 1, knon Ccoef_H(i, k) = Ccoef_H_in(i, k) Ccoef_Q(i, k) = Ccoef_Q_in(i, k) Dcoef_H(i, k) = Dcoef_H_in(i, k) Dcoef_Q(i, k) = Dcoef_Q_in(i, k) Kcoefhq(i, k) = Kcoef_hq_in(i, k) IF (k>1) THEN gamah(i, k) = gama_h_in(i, k) gamaq(i, k) = gama_q_in(i, k) ENDIF ENDDO ENDDO !!! ENDIF ! (mod(iflag_pbl_split,2) .ge.1) !!! !**************************************************************************************** ! 2) ! Calculation of Q and H !**************************************************************************************** !- First layer q_new(1:knon, 1) = Acoef_Q(1:knon) + Bcoef_Q(1:knon) * flx_q1(1:knon) * dtime h_new(1:knon, 1) = Acoef_H(1:knon) + Bcoef_H(1:knon) * flx_h1(1:knon) * dtime f_h_bnd(1:knon) = flx_h1(1:knon) !- All the other layers DO k = 2, klev DO i = 1, knon q_new(i, k) = Ccoef_Q(i, k) + Dcoef_Q(i, k) * q_new(i, k - 1) h_new(i, k) = Ccoef_H(i, k) + Dcoef_H(i, k) * h_new(i, k - 1) END DO END DO !**************************************************************************************** ! 3) ! Calculation of the flux for Q and H !**************************************************************************************** !- The flux at first layer, k=1 flux_q(1:knon, 1) = flx_q1(1:knon) flux_h(1:knon, 1) = flx_h1(1:knon) !- The flux at all layers above surface DO k = 2, klev DO i = 1, knon flux_q(i, k) = (Kcoefhq(i, k) / RG / dtime) * & (q_new(i, k) - q_new(i, k - 1) + gamaq(i, k)) flux_h(i, k) = (Kcoefhq(i, k) / RG / dtime) * & (h_new(i, k) - h_new(i, k - 1) + gamah(i, k)) END DO END DO !**************************************************************************************** ! 4) ! Calculation of tendency for Q and H !**************************************************************************************** d_h_col_vdf(:) = 0.0 DO k = 1, klev DO i = 1, knon d_t(i, k) = h_new(i, k) / (psref(i) / pplay(i, k))**RKAPPA / RCPD - t_old(i, k) d_q(i, k) = q_new(i, k) - q_old(i, k) d_h(i, k) = h_new(i, k) - h_old(i, k) !JLD d_t(i,k) = d_h(i,k)/(psref(i)/pplay(i,k))**RKAPPA/RCPD !correction a venir ! layer air mass zairm(i, k) = (paprs(i, k) - paprs(i, k + 1)) / rg d_h_col_vdf(i) = d_h_col_vdf(i) + d_h(i, k) * zairm(i, k) END DO END DO !**************************************************************************************** ! Some deallocations !**************************************************************************************** IF (last) THEN DEALLOCATE(Ccoef_Q, Dcoef_Q, Ccoef_H, Dcoef_H, stat = ierr) IF (ierr /= 0) PRINT*, ' pb in dealllocate Ccoef_Q, Dcoef_Q, Ccoef_H, Dcoef_H, ierr=', ierr DEALLOCATE(Acoef_Q, Bcoef_Q, Acoef_H, Bcoef_H, stat = ierr) IF (ierr /= 0) PRINT*, ' pb in dealllocate Acoef_Q, Bcoef_Q, Acoef_H, Bcoef_H, ierr=', ierr DEALLOCATE(gamaq, gamah, stat = ierr) IF (ierr /= 0) PRINT*, ' pb in dealllocate gamaq, gamah, ierr=', ierr DEALLOCATE(Kcoefhq, stat = ierr) IF (ierr /= 0) PRINT*, ' pb in dealllocate Kcoefhq, ierr=', ierr DEALLOCATE(h_old, d_h_col_vdf, f_h_bnd, stat = ierr) IF (ierr /= 0) PRINT*, ' pb in dealllocate h_old, d_h_col_vdf, f_h_bnd, ierr=', ierr END IF END SUBROUTINE climb_hq_up !**************************************************************************************** END MODULE climb_hq_mod