! ! $Id: rrtm_ecrt_140gp.F90 5154 2024-07-31 19:54:47Z abarral $ ! !****************** SUBROUTINE RRTM_ECRT_140GP ************************** SUBROUTINE RRTM_ECRT_140GP & & (K_IPLON, klon, klev, kcld, & & paer, paph, pap, & & pts, pth, pt, & & P_ZEMIS, P_ZEMIW, & & pq, pcco2, pozn, pcldf, ptaucld, ptclear, & & P_CLDFRAC, P_TAUCLD, & & PTAU_LW, & & P_COLDRY, P_WKL, P_WX, & & P_TAUAERL, PAVEL, P_TAVEL, PZ, P_TZ, P_TBOUND, K_NLAYERS, P_SEMISS, K_IREFLECT) ! Reformatted for F90 by JJMorcrette, ECMWF, 980714 ! Read in atmospheric profile from ECMWF radiation code, and prepare it ! for use in RRTM. Set other RRTM input parameters. Values are passed ! back through existing RRTM arrays and commons. !- Modifications ! 2000-05-15 Deborah Salmond Speed-up USE PARKIND1, ONLY: JPIM, JPRB USE YOMHOOK, ONLY: LHOOK, DR_HOOK USE PARRRTM, ONLY: JPBAND, JPXSEC, JPLAY, & & JPINPX USE YOERAD, ONLY: NLW, NOVLP !MPL/IM 20160915 on prend GES de phylmd USE YOERDI , ONLY : RCH4 ,RN2O ,RCFC11 ,RCFC12 USE YOESW, ONLY: RAER USE lmdz_clesphys !------------------------------Arguments-------------------------------- IMPLICIT NONE INTEGER(KIND = JPIM), INTENT(IN) :: KLON! Number of atmospheres (longitudes) INTEGER(KIND = JPIM), INTENT(IN) :: KLEV! Number of atmospheric layers INTEGER(KIND = JPIM), INTENT(IN) :: K_IPLON INTEGER(KIND = JPIM), INTENT(OUT) :: KCLD REAL(KIND = JPRB), INTENT(IN) :: PAER(KLON, 6, KLEV) ! Aerosol optical thickness REAL(KIND = JPRB), INTENT(IN) :: PAPH(KLON, KLEV + 1) ! Interface pressures (Pa) REAL(KIND = JPRB), INTENT(IN) :: PAP(KLON, KLEV) ! Layer pressures (Pa) REAL(KIND = JPRB), INTENT(IN) :: PTS(KLON) ! Surface temperature (K) REAL(KIND = JPRB), INTENT(IN) :: PTH(KLON, KLEV + 1) ! Interface temperatures (K) REAL(KIND = JPRB), INTENT(IN) :: PT(KLON, KLEV) ! Layer temperature (K) REAL(KIND = JPRB), INTENT(IN) :: P_ZEMIS(KLON) ! Non-window surface emissivity REAL(KIND = JPRB), INTENT(IN) :: P_ZEMIW(KLON) ! Window surface emissivity REAL(KIND = JPRB), INTENT(IN) :: PQ(KLON, KLEV) ! H2O specific humidity (mmr) REAL(KIND = JPRB), INTENT(IN) :: PCCO2 ! CO2 mass mixing ratio REAL(KIND = JPRB), INTENT(IN) :: POZN(KLON, KLEV) ! O3 mass mixing ratio REAL(KIND = JPRB), INTENT(IN) :: PCLDF(KLON, KLEV) ! Cloud fraction REAL(KIND = JPRB), INTENT(IN) :: PTAUCLD(KLON, KLEV, JPBAND) ! Cloud optical depth !--C.Kleinschmitt REAL(KIND = JPRB), INTENT(IN) :: PTAU_LW(KLON, KLEV, NLW) ! LW Optical depth of aerosols !--end REAL(KIND = JPRB), INTENT(OUT) :: PTCLEAR REAL(KIND = JPRB), INTENT(OUT) :: P_CLDFRAC(JPLAY) ! Cloud fraction REAL(KIND = JPRB), INTENT(OUT) :: P_TAUCLD(JPLAY, JPBAND) ! Spectral optical thickness REAL(KIND = JPRB), INTENT(OUT) :: P_COLDRY(JPLAY) REAL(KIND = JPRB), INTENT(OUT) :: P_WKL(JPINPX, JPLAY) REAL(KIND = JPRB), INTENT(OUT) :: P_WX(JPXSEC, JPLAY) ! Amount of trace gases REAL(KIND = JPRB), INTENT(OUT) :: P_TAUAERL(JPLAY, JPBAND) REAL(KIND = JPRB), INTENT(OUT) :: PAVEL(JPLAY) REAL(KIND = JPRB), INTENT(OUT) :: P_TAVEL(JPLAY) REAL(KIND = JPRB), INTENT(OUT) :: PZ(0:JPLAY) REAL(KIND = JPRB), INTENT(OUT) :: P_TZ(0:JPLAY) REAL(KIND = JPRB), INTENT(OUT) :: P_TBOUND INTEGER(KIND = JPIM), INTENT(OUT) :: K_NLAYERS REAL(KIND = JPRB), INTENT(OUT) :: P_SEMISS(JPBAND) INTEGER(KIND = JPIM), INTENT(OUT) :: K_IREFLECT ! real rch4 ! CH4 mass mixing ratio ! real rn2o ! N2O mass mixing ratio ! real rcfc11 ! CFC11 mass mixing ratio ! real rcfc12 ! CFC12 mass mixing ratio !- from AER !- from PROFILE !- from SURFACE REAL(KIND = JPRB) :: ztauaer(5) REAL(KIND = JPRB) :: zc1j(0:klev) ! total cloud from top and level k REAL(KIND = JPRB) :: Z_AMD ! Effective molecular weight of dry air (g/mol) REAL(KIND = JPRB) :: Z_AMW ! Molecular weight of water vapor (g/mol) REAL(KIND = JPRB) :: Z_AMCO2 ! Molecular weight of carbon dioxide (g/mol) REAL(KIND = JPRB) :: Z_AMO ! Molecular weight of ozone (g/mol) REAL(KIND = JPRB) :: Z_AMCH4 ! Molecular weight of methane (g/mol) REAL(KIND = JPRB) :: Z_AMN2O ! Molecular weight of nitrous oxide (g/mol) REAL(KIND = JPRB) :: Z_AMC11 ! Molecular weight of CFC11 (g/mol) - CFCL3 REAL(KIND = JPRB) :: Z_AMC12 ! Molecular weight of CFC12 (g/mol) - CF2CL2 REAL(KIND = JPRB) :: Z_AVGDRO ! Avogadro's number (molecules/mole) REAL(KIND = JPRB) :: Z_GRAVIT ! Gravitational acceleration (cm/sec2) ! Atomic weights for conversion from mass to volume mixing ratios; these ! are the same values used in ECRT to assure accurate conversion to vmr data Z_AMD / 28.970_JPRB / data Z_AMW / 18.0154_JPRB / data Z_AMCO2 / 44.011_JPRB / data Z_AMO / 47.9982_JPRB / data Z_AMCH4 / 16.043_JPRB / data Z_AMN2O / 44.013_JPRB / data Z_AMC11 / 137.3686_JPRB / data Z_AMC12 / 120.9140_JPRB / data Z_AVGDRO/ 6.02214E23_JPRB / data Z_GRAVIT/ 9.80665E02_JPRB / INTEGER(KIND = JPIM) :: IATM, IMOL, IXMAX, J1, J2, JAE, JB, JK, JL, I_L INTEGER(KIND = JPIM) :: I_NMOL, I_NXMOL REAL(KIND = JPRB) :: Z_AMM, ZCLDLY, ZCLEAR, ZCLOUD, ZEPSEC REAL(KIND = JPRB) :: ZHOOK_HANDLE ! *** ! *** mji ! Initialize all molecular amounts and aerosol optical depths to zero here, ! then pass ECRT amounts into RRTM arrays below. ! DATA ZWKL /MAXPRDW*0.0/ ! DATA ZWX /MAXPROD*0.0/ ! DATA KREFLECT /0/ ! Activate cross section molecules: ! NXMOL - number of cross-sections input by user ! IXINDX(I) - index of cross-section molecule corresponding to Ith ! cross-section specified by user ! = 0 -- not allowed in RRTM ! = 1 -- CCL4 ! = 2 -- CFC11 ! = 3 -- CFC12 ! = 4 -- CFC22 ! DATA KXMOL /2/ ! DATA KXINDX /0,2,3,0,31*0/ ! IREFLECT=KREFLECT ! NXMOL=KXMOL IF (LHOOK) CALL DR_HOOK('RRTM_ECRT_140GP', 0, ZHOOK_HANDLE) K_IREFLECT = 0 I_NXMOL = 2 DO J1 = 1, 35 ! IXINDX(J1)=0 DO J2 = 1, KLEV P_WKL(J1, J2) = 0.0_JPRB ENDDO ENDDO !IXINDX(2)=2 !IXINDX(3)=3 ! Set parameters needed for RRTM execution: IATM = 0 ! IXSECT = 1 ! NUMANGS = 0 ! IOUT = -1 IXMAX = 4 ! Bands 6,7,8 are considered the 'window' and allowed to have a ! different surface emissivity (as in ECMWF). Eli wrote this part.... P_SEMISS(1) = P_ZEMIS(K_IPLON) P_SEMISS(2) = P_ZEMIS(K_IPLON) P_SEMISS(3) = P_ZEMIS(K_IPLON) P_SEMISS(4) = P_ZEMIS(K_IPLON) P_SEMISS(5) = P_ZEMIS(K_IPLON) P_SEMISS(6) = P_ZEMIW(K_IPLON) P_SEMISS(7) = P_ZEMIW(K_IPLON) P_SEMISS(8) = P_ZEMIW(K_IPLON) P_SEMISS(9) = P_ZEMIS(K_IPLON) P_SEMISS(10) = P_ZEMIS(K_IPLON) P_SEMISS(11) = P_ZEMIS(K_IPLON) P_SEMISS(12) = P_ZEMIS(K_IPLON) P_SEMISS(13) = P_ZEMIS(K_IPLON) P_SEMISS(14) = P_ZEMIS(K_IPLON) P_SEMISS(15) = P_ZEMIS(K_IPLON) P_SEMISS(16) = P_ZEMIS(K_IPLON) ! Set surface temperature. P_TBOUND = pts(K_IPLON) ! Install ECRT arrays into RRTM arrays for pressure, temperature, ! and molecular amounts. Pressures are converted from Pascals ! (ECRT) to mb (RRTM). H2O, CO2, O3 and trace gas amounts are ! converted from mass mixing ratio to volume mixing ratio. CO2 ! converted with same dry air and CO2 molecular weights used in ! ECRT to assure correct conversion back to the proper CO2 vmr. ! The dry air column COLDRY (in molec/cm2) is calculated from ! the level pressures PZ (in mb) based on the hydrostatic equation ! and includes a correction to account for H2O in the layer. The ! molecular weight of moist air (amm) is calculated for each layer. ! Note: RRTM levels count from bottom to top, while the ECRT input ! variables count from the top down and must be reversed here. K_NLAYERS = klev I_NMOL = 6 PZ(0) = paph(K_IPLON, klev + 1) / 100._JPRB P_TZ(0) = pth(K_IPLON, klev + 1) DO I_L = 1, KLEV PAVEL(I_L) = pap(K_IPLON, KLEV - I_L + 1) / 100._JPRB P_TAVEL(I_L) = pt(K_IPLON, KLEV - I_L + 1) PZ(I_L) = paph(K_IPLON, KLEV - I_L + 1) / 100._JPRB P_TZ(I_L) = pth(K_IPLON, KLEV - I_L + 1) P_WKL(1, I_L) = pq(K_IPLON, KLEV - I_L + 1) * Z_AMD / Z_AMW P_WKL(2, I_L) = pcco2 * Z_AMD / Z_AMCO2 P_WKL(3, I_L) = pozn(K_IPLON, KLEV - I_L + 1) * Z_AMD / Z_AMO P_WKL(4, I_L) = rn2o * Z_AMD / Z_AMN2O P_WKL(6, I_L) = rch4 * Z_AMD / Z_AMCH4 Z_AMM = (1 - P_WKL(1, I_L)) * Z_AMD + P_WKL(1, I_L) * Z_AMW P_COLDRY(I_L) = (PZ(I_L - 1) - PZ(I_L)) * 1.E3_JPRB * Z_AVGDRO / (Z_GRAVIT * Z_AMM * (1 + P_WKL(1, I_L))) ENDDO !- Fill RRTM aerosol arrays with operational ECMWF aerosols, ! do the mixing and distribute over the 16 spectral intervals DO I_L = 1, KLEV JK = KLEV - I_L + 1 ! DO JAE=1,5 JAE = 1 ZTAUAER(JAE) = & & RAER(JAE, 1) * PAER(K_IPLON, 1, JK) + RAER(JAE, 2) * PAER(K_IPLON, 2, JK)& & + RAER(JAE, 3) * PAER(K_IPLON, 3, JK) + RAER(JAE, 4) * PAER(K_IPLON, 4, JK)& & + RAER(JAE, 5) * PAER(K_IPLON, 5, JK) + RAER(JAE, 6) * PAER(K_IPLON, 6, JK) P_TAUAERL(I_L, 1) = ZTAUAER(1) P_TAUAERL(I_L, 2) = ZTAUAER(1) JAE = 2 ZTAUAER(JAE) = & & RAER(JAE, 1) * PAER(K_IPLON, 1, JK) + RAER(JAE, 2) * PAER(K_IPLON, 2, JK)& & + RAER(JAE, 3) * PAER(K_IPLON, 3, JK) + RAER(JAE, 4) * PAER(K_IPLON, 4, JK)& & + RAER(JAE, 5) * PAER(K_IPLON, 5, JK) + RAER(JAE, 6) * PAER(K_IPLON, 6, JK) P_TAUAERL(I_L, 3) = ZTAUAER(2) P_TAUAERL(I_L, 4) = ZTAUAER(2) P_TAUAERL(I_L, 5) = ZTAUAER(2) JAE = 3 ZTAUAER(JAE) = & & RAER(JAE, 1) * PAER(K_IPLON, 1, JK) + RAER(JAE, 2) * PAER(K_IPLON, 2, JK)& & + RAER(JAE, 3) * PAER(K_IPLON, 3, JK) + RAER(JAE, 4) * PAER(K_IPLON, 4, JK)& & + RAER(JAE, 5) * PAER(K_IPLON, 5, JK) + RAER(JAE, 6) * PAER(K_IPLON, 6, JK) P_TAUAERL(I_L, 6) = ZTAUAER(3) P_TAUAERL(I_L, 8) = ZTAUAER(3) P_TAUAERL(I_L, 9) = ZTAUAER(3) JAE = 4 ZTAUAER(JAE) = & & RAER(JAE, 1) * PAER(K_IPLON, 1, JK) + RAER(JAE, 2) * PAER(K_IPLON, 2, JK)& & + RAER(JAE, 3) * PAER(K_IPLON, 3, JK) + RAER(JAE, 4) * PAER(K_IPLON, 4, JK)& & + RAER(JAE, 5) * PAER(K_IPLON, 5, JK) + RAER(JAE, 6) * PAER(K_IPLON, 6, JK) P_TAUAERL(I_L, 7) = ZTAUAER(4) JAE = 5 ZTAUAER(JAE) = & & RAER(JAE, 1) * PAER(K_IPLON, 1, JK) + RAER(JAE, 2) * PAER(K_IPLON, 2, JK)& & + RAER(JAE, 3) * PAER(K_IPLON, 3, JK) + RAER(JAE, 4) * PAER(K_IPLON, 4, JK)& & + RAER(JAE, 5) * PAER(K_IPLON, 5, JK) + RAER(JAE, 6) * PAER(K_IPLON, 6, JK) ! END DO P_TAUAERL(I_L, 10) = ZTAUAER(5) P_TAUAERL(I_L, 11) = ZTAUAER(5) P_TAUAERL(I_L, 12) = ZTAUAER(5) P_TAUAERL(I_L, 13) = ZTAUAER(5) P_TAUAERL(I_L, 14) = ZTAUAER(5) P_TAUAERL(I_L, 15) = ZTAUAER(5) P_TAUAERL(I_L, 16) = ZTAUAER(5) ENDDO !--Use LW AOD from own Mie calculations (C. Kleinschmitt) DO I_L = 1, KLEV JK = KLEV - I_L + 1 DO JAE = 1, NLW P_TAUAERL(I_L, JAE) = MAX(PTAU_LW(K_IPLON, JK, JAE), 1e-30) ENDDO ENDDO !--end C. Kleinschmitt DO J2 = 1, KLEV DO J1 = 1, JPXSEC P_WX(J1, J2) = 0.0_JPRB ENDDO ENDDO DO I_L = 1, KLEV !- Set cross section molecule amounts from ECRT; convert to vmr P_WX(2, I_L) = rcfc11 * Z_AMD / Z_AMC11 P_WX(3, I_L) = rcfc12 * Z_AMD / Z_AMC12 P_WX(2, I_L) = P_COLDRY(I_L) * P_WX(2, I_L) * 1.E-20_JPRB P_WX(3, I_L) = P_COLDRY(I_L) * P_WX(3, I_L) * 1.E-20_JPRB !- Here, all molecules in WKL and WX are in volume mixing ratio; convert to ! molec/cm2 based on COLDRY for use in RRTM DO IMOL = 1, I_NMOL P_WKL(IMOL, I_L) = P_COLDRY(I_L) * P_WKL(IMOL, I_L) ENDDO ! DO IX = 1,JPXSEC ! IF (IXINDX(IX) /= 0) THEN ! WX(IXINDX(IX),L) = COLDRY(L) * WX(IX,L) * 1.E-20_JPRB ! ENDIF ! END DO ENDDO !- Approximate treatment for various cloud overlaps ZCLEAR = 1.0_JPRB ZCLOUD = 0.0_JPRB ZC1J(0) = 0.0_JPRB ZEPSEC = 1.E-03_JPRB JL = K_IPLON !++MODIFCODE IF ((NOVLP == 1).OR.(NOVLP ==6).OR.(NOVLP ==8)) THEN !--MODIFCODE DO JK = 1, KLEV IF (pcldf(JL, JK) > ZEPSEC) THEN ZCLDLY = pcldf(JL, JK) ZCLEAR = ZCLEAR & & * (1.0_JPRB - MAX(ZCLDLY, ZCLOUD))& & / (1.0_JPRB - MIN(ZCLOUD, 1.0_JPRB - ZEPSEC)) ZCLOUD = ZCLDLY ZC1J(JK) = 1.0_JPRB - ZCLEAR ELSE ZCLDLY = 0.0_JPRB ZCLEAR = ZCLEAR & & * (1.0_JPRB - MAX(ZCLDLY, ZCLOUD))& & / (1.0_JPRB - MIN(ZCLOUD, 1.0_JPRB - ZEPSEC)) ZCLOUD = ZCLDLY ZC1J(JK) = 1.0_JPRB - ZCLEAR ENDIF ENDDO !++MODIFCODE ELSEIF ((NOVLP == 2).OR.(NOVLP ==7)) THEN !--MODIFCODE DO JK = 1, KLEV IF (pcldf(JL, JK) > ZEPSEC) THEN ZCLDLY = pcldf(JL, JK) ZCLOUD = MAX(ZCLDLY, ZCLOUD) ZC1J(JK) = ZCLOUD ELSE ZCLDLY = 0.0_JPRB ZCLOUD = MAX(ZCLDLY, ZCLOUD) ZC1J(JK) = ZCLOUD ENDIF ENDDO !++MODIFCODE ELSEIF ((NOVLP == 3).OR.(NOVLP ==5)) THEN !--MODIFCODE DO JK = 1, KLEV IF (pcldf(JL, JK) > ZEPSEC) THEN ZCLDLY = pcldf(JL, JK) ZCLEAR = ZCLEAR * (1.0_JPRB - ZCLDLY) ZCLOUD = 1.0_JPRB - ZCLEAR ZC1J(JK) = ZCLOUD ELSE ZCLDLY = 0.0_JPRB ZCLEAR = ZCLEAR * (1.0_JPRB - ZCLDLY) ZCLOUD = 1.0_JPRB - ZCLEAR ZC1J(JK) = ZCLOUD ENDIF ENDDO ELSEIF (NOVLP == 4) THEN ENDIF PTCLEAR = 1.0_JPRB - ZC1J(KLEV) ! Transfer cloud fraction and cloud optical depth to RRTM arrays; ! invert array index for pcldf to go from bottom to top for RRTM !- clear-sky column IF (PTCLEAR > 1.0_JPRB - ZEPSEC) THEN KCLD = 0 DO I_L = 1, KLEV P_CLDFRAC(I_L) = 0.0_JPRB ENDDO DO JB = 1, JPBAND DO I_L = 1, KLEV P_TAUCLD(I_L, JB) = 0.0_JPRB ENDDO ENDDO ELSE !- cloudy column ! The diffusivity factor (Savijarvi, 1997) on the cloud optical ! thickness TAUCLD has already been applied in RADLSW KCLD = 1 DO I_L = 1, KLEV P_CLDFRAC(I_L) = pcldf(K_IPLON, I_L) ENDDO DO JB = 1, JPBAND DO I_L = 1, KLEV P_TAUCLD(I_L, JB) = ptaucld(K_IPLON, I_L, JB) ENDDO ENDDO ENDIF ! ------------------------------------------------------------------ IF (LHOOK) CALL DR_HOOK('RRTM_ECRT_140GP', 1, ZHOOK_HANDLE) END SUBROUTINE RRTM_ECRT_140GP