!*************************************************************************************** ! tend_to_tke.F90 !************* ! Subroutine that adds a tendency on the TKE created by the ! fluxes of momentum retrieved from the wind speed tendencies ! of the physics. ! The basic concept is the following: ! the TKE equation writes de/dt = -u'w' du/dz -v'w' dv/dz +g/theta dtheta/dz +...... ! We expect contributions to the term u'w' and v'w' that do not come from the Yamada ! scheme, for instance: gravity waves, drag from high vegetation..... These contributions ! need to be accounted for. ! we explicitely calculate the fluxes, integrating the wind speed ! tendency from the top of the atmospher ! contacts: Frederic Hourdin, Etienne Vignon ! History: !--------- ! - 1st redaction, Etienne, 15/10/2016 ! Ajout des 4 sous surfaces pour la tke ! on sort l'ajout des tendances du if sur les deux cas, pour ne pas ! dupliuqer les lignes ! on enleve le pas de temps qui disprait dans les calculs !************************************************************************************** SUBROUTINE tend_to_tke(dt, plev, exner, temp, windu, windv, dt_a, du_a, dv_a, pctsrf, tke) USE dimphy, ONLY: klon, klev USE indice_sol_mod, ONLY: nbsrf USE lmdz_yomcst IMPLICIT NONE ! Declarations !============== ! Inputs !------- REAL dt ! Time step [s] REAL plev(klon, klev + 1) ! inter-layer pressure [Pa] REAL temp(klon, klev) ! temperature [K], grid-cell average or for a one subsurface REAL windu(klon, klev) ! zonal wind [m/s], grid-cell average or for a one subsurface REAL windv(klon, klev) ! meridonal wind [m/s], grid-cell average or for a one subsurface REAL exner(klon, klev) ! Fonction d'Exner = T/theta REAL dt_a(klon, klev) ! Temperature tendency [K], grid-cell average or for a one subsurface REAL du_a(klon, klev) ! Zonal wind speed tendency [m/s], grid-cell average or for a one subsurface REAL dv_a(klon, klev) ! Meridional wind speed tendency [m/s], grid-cell average or for a one subsurface REAL pctsrf(klon, nbsrf + 1) ! Turbulent Kinetic energy [m2/s2], grid-cell average or for a subsurface ! Inputs/Outputs !--------------- REAL tke(klon, klev + 1, nbsrf + 1) ! Turbulent Kinetic energy [m2/s2], grid-cell average or for a subsurface ! Local !------- INTEGER i, k, isrf ! indices REAL masse(klon, klev) ! mass in the layers [kg/m2] REAL unsmasse(klon, klev + 1) ! linear mass in the layers [kg/m2] REAL flux_rhotw(klon, klev + 1) ! flux massique de tempe. pot. rho*u'*theta' REAL flux_rhouw(klon, klev + 1) ! flux massique de quantit?? de mouvement rho*u'*w' [kg/m/s2] REAL flux_rhovw(klon, klev + 1) ! flux massique de quantit?? de mouvement rho*v'*w' [kg/m/s2] REAL tendt(klon, klev) ! new temperature tke tendency [m2/s2/s] REAL tendu(klon, klev) ! new zonal tke tendency [m2/s2/s] REAL tendv(klon, klev) ! new meridonal tke tendency [m2/s2/s] ! First calculations: !===================== unsmasse(:, :) = 0. DO k = 1, klev masse(:, k) = (plev(:, k) - plev(:, k + 1)) / RG unsmasse(:, k) = unsmasse(:, k) + 0.5 / masse(:, k) unsmasse(:, k + 1) = unsmasse(:, k + 1) + 0.5 / masse(:, k) END DO tendu(:, :) = 0.0 tendv(:, :) = 0.0 ! Method 1: Calculation of fluxes using a downward integration !============================================================ ! Flux calculation flux_rhotw(:, klev + 1) = 0. flux_rhouw(:, klev + 1) = 0. flux_rhovw(:, klev + 1) = 0. DO k = klev, 1, -1 flux_rhotw(:, k) = flux_rhotw(:, k + 1) + masse(:, k) * dt_a(:, k) / exner(:, k) flux_rhouw(:, k) = flux_rhouw(:, k + 1) + masse(:, k) * du_a(:, k) flux_rhovw(:, k) = flux_rhovw(:, k + 1) + masse(:, k) * dv_a(:, k) ENDDO ! TKE update: DO k = 2, klev tendt(:, k) = -flux_rhotw(:, k) * (exner(:, k) - exner(:, k - 1)) * unsmasse(:, k) * RCPD tendu(:, k) = -flux_rhouw(:, k) * (windu(:, k) - windu(:, k - 1)) * unsmasse(:, k) tendv(:, k) = -flux_rhovw(:, k) * (windv(:, k) - windv(:, k - 1)) * unsmasse(:, k) ENDDO tendt(:, 1) = -flux_rhotw(:, 1) * (exner(:, 1) - 1.) * unsmasse(:, 1) * RCPD tendu(:, 1) = -1. * flux_rhouw(:, 1) * windu(:, 1) * unsmasse(:, 1) tendv(:, 1) = -1. * flux_rhovw(:, 1) * windv(:, 1) * unsmasse(:, 1) DO isrf = 1, nbsrf DO k = 1, klev DO i = 1, klon IF (pctsrf(i, isrf)>0.) THEN tke(i, k, isrf) = tke(i, k, isrf) + tendu(i, k) + tendv(i, k) + tendt(i, k) tke(i, k, isrf) = max(tke(i, k, isrf), 1.e-10) ENDIF ENDDO ENDDO ENDDO ! IF (klon==1) THEN ! CALL iophys_ecrit('u',klev,'u','',windu) ! CALL iophys_ecrit('v',klev,'v','',windu) ! CALL iophys_ecrit('t',klev,'t','',temp) ! CALL iophys_ecrit('tke1',klev,'tke1','',tke(:,1:klev,1)) ! CALL iophys_ecrit('tke2',klev,'tke2','',tke(:,1:klev,2)) ! CALL iophys_ecrit('tke3',klev,'tke3','',tke(:,1:klev,3)) ! CALL iophys_ecrit('tke4',klev,'tke4','',tke(:,1:klev,4)) ! CALL iophys_ecrit('theta',klev,'theta','',temp/exner) ! CALL iophys_ecrit('Duv',klev,'Duv','',tendu(:,1:klev)+tendv(:,1:klev)) ! CALL iophys_ecrit('Dt',klev,'Dt','',tendt(:,1:klev)) ! ENDIF END SUBROUTINE tend_to_tke