module hbtm_mod IMPLICIT NONE CONTAINS SUBROUTINE hbtm(knon, paprs, pplay, t2m, t10m, q2m, q10m, ustar, wstar, & flux_t, flux_q, u, v, t, q, pblh, cape, eauliq, ctei, pblt, therm, & trmb1, trmb2, trmb3, plcl) USE dimphy ! *************************************************************** ! * * ! * HBTM2 D'apres Holstag&Boville et Troen&Mahrt * ! * JAS 47 BLM * ! * Algorithme These Anne Mathieu * ! * Critere d'Entrainement Peter Duynkerke (JAS 50) * ! * written by : Anne MATHIEU & Alain LAHELLEC, 22/11/99 * ! * features : implem. exces Mathieu * ! *************************************************************** ! * mods : decembre 99 passage th a niveau plus bas. voir fixer * ! * la prise du th a z/Lambda = -.2 (max Ray) * ! * Autre algo : entrainement ~ Theta+v =cste mais comment=>The?* ! * on peut fixer q a .7qsat(cf non adiab)=>T2 et The2 * ! * voir aussi //KE pblh = niveau The_e ou l = env. * ! *************************************************************** ! * fin therm a la HBTM passage a forme Mathieu 12/09/2001 * ! *************************************************************** ! * ! AM Fev 2003 ! Adaptation a LMDZ version couplee ! Pour le moment on fait passer en argument les grdeurs de surface : ! flux, t,q2m, t,q10m, on va utiliser systematiquement les grdeurs a 2m ms ! on garde la possibilite de changer si besoin est (jusqu'a present la ! forme de HB avec le 1er niveau modele etait conservee) include "YOMCST.h" REAL rlvcp, reps ! Arguments: INTEGER knon ! nombre de points a calculer ! AM REAL t2m(klon), t10m(klon) ! temperature a 2 et 10m REAL q2m(klon), q10m(klon) ! q a 2 et 10m REAL ustar(klon) REAL wstar(klon) ! w*, convective velocity scale REAL paprs(klon, klev+1) ! pression a inter-couche (Pa) REAL pplay(klon, klev) ! pression au milieu de couche (Pa) REAL flux_t(klon, klev), flux_q(klon, klev) ! Flux REAL u(klon, klev) ! vitesse U (m/s) REAL v(klon, klev) ! vitesse V (m/s) REAL t(klon, klev) ! temperature (K) REAL q(klon, klev) ! vapeur d'eau (kg/kg) ! AM REAL cd_h(klon) ! coefficient de friction au sol pour chaleur ! AM REAL cd_m(klon) ! coefficient de friction au sol pour vitesse INTEGER isommet ! um PARAMETER (isommet=klev) ! limite max sommet pbl REAL, PARAMETER :: vk = 0.35 ! Von Karman => passer a .41 ! cf U.Olgstrom REAL, PARAMETER :: ricr = 0.4 REAL, PARAMETER :: fak = 8.5 ! b calcul du Prandtl et de dTetas REAL, PARAMETER :: fakn = 7.2 ! a REAL, PARAMETER :: onet = 1.0/3.0 REAL, PARAMETER :: t_coup = 273.15 REAL, PARAMETER :: zkmin = 0.01 REAL, PARAMETER :: betam = 15.0 ! pour Phim / h dans la S.L stable REAL, PARAMETER :: betah = 15.0 REAL, PARAMETER :: betas = 5.0 ! Phit dans la S.L. stable (mais 2 formes / z/OBL<>1 REAL, PARAMETER :: sffrac = 0.1 ! S.L. = z/h < .1 REAL, PARAMETER :: usmin = 1.E-12 REAL, PARAMETER :: binm = betam*sffrac REAL, PARAMETER :: binh = betah*sffrac REAL, PARAMETER :: ccon = fak*sffrac*vk REAL, PARAMETER :: b1 = 70., b2 = 20. REAL, PARAMETER :: zref = 2. ! Niveau de ref a 2m peut eventuellement ! etre choisi a 10m REAL q_star, t_star REAL b212, b2sr ! Lambert correlations T' q' avec T* q* REAL z(klon, klev) ! AM REAL pcfm(klon,klev), pcfh(klon,klev) INTEGER i, k, j REAL zxt ! AM REAL zxt, zxq, zxu, zxv, zxmod, taux, tauy ! AM REAL zx_alf1, zx_alf2 ! parametres pour extrapolation REAL khfs(klon) ! surface kinematic heat flux [mK/s] REAL kqfs(klon) ! sfc kinematic constituent flux [m/s] REAL heatv(klon) ! surface virtual heat flux REAL rhino(klon, klev) ! bulk Richardon no. mais en Theta_v LOGICAL unstbl(klon) ! pts w/unstbl pbl (positive virtual ht flx) LOGICAL stblev(klon) ! stable pbl with levels within pbl LOGICAL unslev(klon) ! unstbl pbl with levels within pbl LOGICAL unssrf(klon) ! unstb pbl w/lvls within srf pbl lyr LOGICAL unsout(klon) ! unstb pbl w/lvls in outer pbl lyr LOGICAL check(klon) ! True=>chk if Richardson no.>critcal LOGICAL omegafl(klon) ! flag de prolongerment cape pour pt Omega REAL pblh(klon) REAL pblt(klon) REAL plcl(klon) ! AM REAL cgh(klon,2:klev) ! counter-gradient term for heat [K/m] ! AM REAL cgq(klon,2:klev) ! counter-gradient term for constituents ! AM REAL cgs(klon,2:klev) ! counter-gradient star (cg/flux) REAL unsobklen(klon) ! Monin-Obukhov lengh ! AM REAL ztvd, ztvu, REAL zdu2 REAL, INTENT(OUT):: therm(:) ! (klon) thermal virtual temperature excess REAL trmb1(klon), trmb2(klon), trmb3(klon) ! Algorithme thermique REAL s(klon, klev) ! [P/Po]^Kappa milieux couches REAL th_th(klon) ! potential temperature of thermal REAL the_th(klon) ! equivalent potential temperature of thermal REAL qt_th(klon) ! total water of thermal REAL tbef(klon) ! T thermique niveau precedent REAL qsatbef(klon) LOGICAL zsat(klon) ! le thermique est sature REAL cape(klon) ! Cape du thermique REAL kape(klon) ! Cape locale REAL eauliq(klon) ! Eau liqu integr du thermique REAL ctei(klon) ! Critere d'instab d'entrainmt des nuages de CL REAL the1, the2, aa, bb, zthvd, zthvu, xintpos, qqsat ! IM 091204 BEG REAL a1, a2, a3 ! IM 091204 END REAL xhis, rnum, denom, th1, th2, thv1, thv2, ql2 REAL dqsat_dt, qsat2, qt1, q2, t1, t2, xnull, delt_the REAL delt_qt, delt_2, quadsat, spblh, reduc REAL phiminv(klon) ! inverse phi function for momentum REAL phihinv(klon) ! inverse phi function for heat REAL wm(klon) ! turbulent velocity scale for momentum REAL fak1(klon) ! k*ustar*pblh REAL fak2(klon) ! k*wm*pblh REAL fak3(klon) ! fakn*wstar/wm REAL pblk(klon) ! level eddy diffusivity for momentum REAL pr(klon) ! Prandtl number for eddy diffusivities REAL zl(klon) ! zmzp / Obukhov length REAL zh(klon) ! zmzp / pblh REAL zzh(klon) ! (1-(zmzp/pblh))**2 REAL zm(klon) ! current level height REAL zp(klon) ! current level height + one level up REAL zcor, zdelta, zcvm5 ! AM REAL zxqs REAL fac, pblmin, zmzp, term include "YOETHF.h" include "FCTTRE.h" ! initialisations (Anne) isommet = klev th_th(:) = 0. q_star = 0 t_star = 0 therm = 0. b212 = sqrt(b1*b2) b2sr = sqrt(b2) ! ============================================================ ! Fonctions thermo implicites ! ============================================================ ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! Tetens : pression partielle de vap d'eau e_sat(T) ! ================================================= ! ++ e_sat(T) = r2*exp( r3*(T-Tf)/(T-r4) ) id a r2*FOEWE ! ++ avec : ! ++ Tf = 273.16 K (Temp de fusion de la glace) ! ++ r2 = 611.14 Pa ! ++ r3 = 17.269 (liquide) 21.875 (solide) adim ! ++ r4 = 35.86 7.66 Kelvin ! ++ q_sat = eps*e_sat/(p-(1-eps)*e_sat) ! ++ derivé : ! ++ ========= ! ++ r3*(Tf-r4)*q_sat(T,p) ! ++ d_qsat_dT = -------------------------------- ! ++ (T-r4)^2*( 1-(1-eps)*e_sat(T)/p ) ! ++ pour zcvm5=Lv, c'est FOEDE ! ++ Rq :(1.-REPS)*esarg/Parg id a RETV*Qsat ! ------------------------------------------------------------------ ! Initialisation rlvcp = rlvtt/rcpd reps = rd/rv ! DO i = 1, klon ! pcfh(i,1) = cd_h(i) ! pcfm(i,1) = cd_m(i) ! ENDDO ! DO k = 2, klev ! DO i = 1, klon ! pcfh(i,k) = zkmin ! pcfm(i,k) = zkmin ! cgs(i,k) = 0.0 ! cgh(i,k) = 0.0 ! cgq(i,k) = 0.0 ! ENDDO ! ENDDO ! Calculer les hauteurs de chaque couche ! (geopotentielle Int_dp/ro = Int_[Rd.T.dp/p] z = geop/g) ! pourquoi ne pas utiliser Phi/RG ? DO i = 1, knon z(i, 1) = rd*t(i, 1)/(0.5*(paprs(i,1)+pplay(i,1)))& *(paprs(i,1)-pplay(i,1))/rg s(i, 1) = (pplay(i,1)/paprs(i,1))**rkappa END DO ! s(k) = [pplay(k)/ps]^kappa ! + + + + + + + + + pplay <-> s(k) t dp=pplay(k-1)-pplay(k) ! ----------------- paprs <-> sig(k) ! + + + + + + + + + pplay <-> s(k-1) ! + + + + + + + + + pplay <-> s(1) t dp=paprs-pplay z(1) ! ----------------- paprs <-> sig(1) DO k = 2, klev DO i = 1, knon z(i, k) = z(i, k-1) + rd*0.5*(t(i,k-1)+t(i,k))/paprs(i, k)& *(pplay(i,k-1)-pplay(i,k))/rg s(i, k) = (pplay(i,k)/paprs(i,1))**rkappa END DO END DO ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! +++ Determination des grandeurs de surface +++++++++++++++++++++ ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ DO i = 1, knon ! AM IF (thermcep) THEN ! AM zdelta=MAX(0.,SIGN(1.,RTT-tsol(i))) ! zcvm5 = R5LES*RLVTT*(1.-zdelta) + R5IES*RLSTT*zdelta ! zcvm5 = zcvm5 / RCPD / (1.0+RVTMP2*q(i,1)) ! AM zxqs= r2es * FOEEW(tsol(i),zdelta)/paprs(i,1) ! AM zxqs=MIN(0.5,zxqs) ! AM zcor=1./(1.-retv*zxqs) ! AM zxqs=zxqs*zcor ! AM ELSE ! AM IF (tsol(i).LT.t_coup) THEN ! AM zxqs = qsats(tsol(i)) / paprs(i,1) ! AM ELSE ! AM zxqs = qsatl(tsol(i)) / paprs(i,1) ! AM ENDIF ! AM ENDIF ! niveau de reference bulk; mais ici, c,a pourrait etre le niveau de ref ! du thermique ! AM zx_alf1 = 1.0 ! AM zx_alf2 = 1.0 - zx_alf1 ! AM zxt = (t(i,1)+z(i,1)*RG/RCPD/(1.+RVTMP2*q(i,1))) ! AM . *(1.+RETV*q(i,1))*zx_alf1 ! AM . + (t(i,2)+z(i,2)*RG/RCPD/(1.+RVTMP2*q(i,2))) ! AM . *(1.+RETV*q(i,2))*zx_alf2 ! AM zxu = u(i,1)*zx_alf1+u(i,2)*zx_alf2 ! AM zxv = v(i,1)*zx_alf1+v(i,2)*zx_alf2 ! AM zxq = q(i,1)*zx_alf1+q(i,2)*zx_alf2 ! AM ! AMAM zxu = u10m(i) ! AMAM zxv = v10m(i) ! AMAM zxmod = 1.0+SQRT(zxu**2+zxv**2) ! AM Niveau de ref choisi a 2m zxt = t2m(i) ! *************************************************** ! attention, il doit s'agir de ! ;Calcul de tcls virtuel et de w'theta'virtuel ! ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ! tcls=tcls*(1+.608*qcls) ! ;Pour avoir w'theta', ! ; il faut diviser par ro.Cp ! Cp=Cpd*(1+0.84*qcls) ! fcs=fcs/(ro_surf*Cp) ! ;On transforme w'theta' en w'thetav' ! Lv=(2.501-0.00237*(tcls-273.15))*1.E6 ! xle=xle/(ro_surf*Lv) ! fcsv=fcs+.608*xle*tcls ! *************************************************** ! AM khfs(i) = (tsol(i)*(1.+RETV*q(i,1))-zxt) *zxmod*cd_h(i) ! AM kqfs(i) = (zxqs-zxq) *zxmod*cd_h(i) * beta(i) ! AM ! dif khfs est deja w't'_v / heatv(i) = khfs(i) + RETV*zxt*kqfs(i) ! AM calcule de Ro = paprs(i,1)/Rd zxt ! AM convention >0 vers le bas ds lmdz khfs(i) = -flux_t(i, 1)*zxt*rd/(rcpd*paprs(i,1)) kqfs(i) = -flux_q(i, 1)*zxt*rd/(paprs(i,1)) ! AM verifier que khfs et kqfs sont bien de la forme w'l' heatv(i) = khfs(i) + 0.608*zxt*kqfs(i) ! a comparer aussi aux sorties de clqh : flux_T/RoCp et flux_q/RoLv ! AM heatv(i) = khfs(i) ! AM ustar est en entree ! AM taux = zxu *zxmod*cd_m(i) ! AM tauy = zxv *zxmod*cd_m(i) ! AM ustar(i) = SQRT(taux**2+tauy**2) ! AM ustar(i) = MAX(SQRT(ustar(i)),0.01) ! Theta et qT du thermique sans exces (interpolin vers surf) ! chgt de niveau du thermique (jeudi 30/12/1999) ! (interpolation lineaire avant integration phi_h) ! AM qT_th(i) = zxqs*beta(i) + 4./z(i,1)*(q(i,1)-zxqs*beta(i)) ! AM qT_th(i) = max(qT_th(i),q(i,1)) qt_th(i) = q2m(i) ! n The_th restera la Theta du thermique sans exces jusqu'a 2eme calcul ! n reste a regler convention P) pour Theta ! The_th(i) = tsol(i) + 4./z(i,1)*(t(i,1)-tsol(i)) ! - + RLvCp*qT_th(i) ! AM Th_th(i) = tsol(i) + 4./z(i,1)*(t(i,1)-tsol(i)) th_th(i) = t2m(i) END DO DO i = 1, knon rhino(i, 1) = 0.0 ! Global Richardson check(i) = .TRUE. pblh(i) = z(i, 1) ! on initialise pblh a l'altitude du 1er niveau plcl(i) = 6000. ! Lambda = -u*^3 / (alpha.g.kvon. unsobklen(i) = -rg*vk*heatv(i)/(t(i,1)*max(ustar(i),usmin)**3) trmb1(i) = 0. trmb2(i) = 0. trmb3(i) = 0. END DO ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! PBL height calculation: ! Search for level of pbl. Scan upward until the Richardson number between ! the first level and the current level exceeds the "critical" value. ! (bonne idee Nu de separer le Ric et l'exces de temp du thermique) ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ fac = 100.0 DO k = 2, isommet DO i = 1, knon IF (check(i)) THEN ! pourquoi / niveau 1 (au lieu du sol) et le terme en u*^2 ? ! test zdu2 = ! (u(i,k)-u(i,1))**2+(v(i,k)-v(i,1))**2+fac*ustar(i)**2 zdu2 = u(i, k)**2 + v(i, k)**2 zdu2 = max(zdu2, 1.0E-20) ! Theta_v environnement zthvd = t(i, k)/s(i, k)*(1.+retv*q(i,k)) ! therm Theta_v sans exces (avec hypothese fausse de H&B, sinon, ! passer par Theta_e et virpot) ! zthvu=t(i,1)/s(i,1)*(1.+RETV*q(i,1)) ! AM zthvu = Th_th(i)*(1.+RETV*q(i,1)) zthvu = th_th(i)*(1.+retv*qt_th(i)) ! Le Ri par Theta_v ! AM rhino(i,k) = (z(i,k)-z(i,1))*RG*(zthvd-zthvu) ! AM . /(zdu2*0.5*(zthvd+zthvu)) ! AM On a nveau de ref a 2m ??? rhino(i, k) = (z(i,k)-zref)*rg*(zthvd-zthvu)/(zdu2*0.5& *(zthvd+zthvu)) IF (rhino(i,k)>=ricr) THEN pblh(i) = z(i, k-1) + (z(i,k-1)-z(i,k))*(ricr-rhino(i,k-1))& /(rhino(i,k-1)-rhino(i,k)) ! test04 pblh(i) = pblh(i) + 100. pblt(i) = t(i, k-1) + (t(i,k)-t(i,k-1))*(pblh(i)-z(i,k-1))& /(z(i,k)- z(i,k-1)) check(i) = .FALSE. END IF END IF END DO END DO ! Set pbl height to maximum value where computation exceeds number of ! layers allowed DO i = 1, knon IF (check(i)) pblh(i) = z(i, isommet) END DO ! Improve estimate of pbl height for the unstable points. ! Find unstable points (sensible heat flux is upward): DO i = 1, knon IF (heatv(i)>0.) THEN unstbl(i) = .TRUE. check(i) = .TRUE. ELSE unstbl(i) = .FALSE. check(i) = .FALSE. END IF END DO ! For the unstable case, compute velocity scale and the ! convective temperature excess: DO i = 1, knon IF (check(i)) THEN phiminv(i) = (1.-binm*pblh(i)*unsobklen(i))**onet ! *************************************************** ! Wm ? et W* ? c'est la formule pour z/h < .1 ! ;Calcul de w* ;; ! ;;;;;;;;;;;;;;;; ! w_star=((g/tcls)*fcsv*z(ind))^(1/3.) [ou prendre la premiere approx ! de h) ! ;; CALCUL DE wm ;; ! ;;;;;;;;;;;;;;;;;; ! ; Ici on considerera que l'on est dans la couche de surf jusqu'a ! 100 m ! ; On prend svt couche de surface=0.1*h mais on ne connait pas h ! ;;;;;;;;;;;Dans la couche de surface ! if (z(ind) le 20) then begin ! Phim=(1.-15.*(z(ind)/L))^(-1/3.) ! wm=u_star/Phim ! ;;;;;;;;;;;En dehors de la couche de surface ! END IF ELSE IF (z(ind) gt 20) then begin ! wm=(u_star^3+c1*w_star^3)^(1/3.) ! END IF ! *************************************************** wm(i) = ustar(i)*phiminv(i) ! =================================================================== ! valeurs de Dominique Lambert de la campagne SEMAPHORE : ! = 100.T*^2; = 20.q*^2 a 10m ! = (1+1.2q).100.T* + 1.2Tv.sqrt(20*100).T*.q* + ! (.608*Tv)^2*20.q*^2; ! et dTetavS = sqrt() ainsi calculee. ! avec : T*=_s/w* et q*=/w* ! !!! on peut donc utiliser w* pour les fluctuations <-> Lambert ! (leur corellation pourrait dependre de beta par ex) ! if fcsv(i,j) gt 0 then begin ! dTetavs=b1*(1.+2.*.608*q_10(i,j))*(fcs(i,j)/wm(i,j))^2+$ ! (.608*Thetav_10(i,j))^2*b2*(xle(i,j)/wm(i,j))^2+$ ! 2.*.608*thetav_10(i,j)*sqrt(b1*b2)*(xle(i,j)/wm(i,j))*(fcs(i,j) ! /wm(i,j)) ! dqs=b2*(xle(i,j)/wm(i,j))^2 ! theta_s(i,j)=thetav_10(i,j)+sqrt(dTetavs) ! q_s(i,j)=q_10(i,j)+sqrt(dqs) ! END IF else begin ! Theta_s(i,j)=thetav_10(i,j) ! q_s(i,j)=q_10(i,j) ! endelse ! =================================================================== ! HBTM therm(i) = heatv(i)*fak/wm(i) ! forme Mathieu : q_star = kqfs(i)/wm(i) t_star = khfs(i)/wm(i) ! IM 091204 BEG IF (1==0) THEN IF (t_star<0. .OR. q_star<0.) THEN PRINT *, 'i t_star q_star khfs kqfs wm', i, t_star, q_star, & khfs(i), kqfs(i), wm(i) END IF END IF ! IM 091204 END ! AM Nveau cde ref 2m => ! AM therm(i) = sqrt( b1*(1.+2.*RETV*q(i,1))*t_star**2 ! AM + + (RETV*T(i,1))**2*b2*q_star**2 ! AM + + 2.*RETV*T(i,1)*b212*q_star*t_star ! AM + ) ! IM 091204 BEG a1 = b1*(1.+2.*retv*qt_th(i))*t_star**2 a2 = (retv*th_th(i))**2*b2*q_star*q_star a3 = 2.*retv*th_th(i)*b212*q_star*t_star aa = a1 + a2 + a3 IF (1==0) THEN IF (aa<0.) THEN PRINT *, 'i a1 a2 a3 aa', i, a1, a2, a3, aa PRINT *, 'i qT_th Th_th t_star q_star RETV b1 b2 b212', i, & qt_th(i), th_th(i), t_star, q_star, retv, b1, b2, b212 END IF END IF ! IM 091204 END therm(i) = sqrt(b1*(1.+2.*retv*qt_th(i))*t_star**2+(retv*th_th( & i))**2*b2*q_star*q_star & ! IM 101204 + + ! 2.*RETV*Th_th(i)*b212*q_star*t_star +max(0.,2.*retv*th_th(i)*b212*q_star*t_star)) ! Theta et qT du thermique (forme H&B) avec exces ! (attention, on ajoute therm(i) qui est virtuelle ...) ! pourquoi pas sqrt(b1)*t_star ? ! dqs = b2sr*kqfs(i)/wm(i) qt_th(i) = qt_th(i) + b2sr*q_star ! new on differre le calcul de Theta_e ! The_th(i) = The_th(i) + therm(i) + RLvCp*qT_th(i) ! ou: The_th(i) = The_th(i) + sqrt(b1)*khfs(i)/wm(i) + ! RLvCp*qT_th(i) rhino(i, 1) = 0.0 END IF END DO ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! ++ Improve pblh estimate for unstable conditions using the +++++++ ! ++ convective temperature excess : +++++++ ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ DO k = 2, isommet DO i = 1, knon IF (check(i)) THEN ! test zdu2 = ! (u(i,k)-u(i,1))**2+(v(i,k)-v(i,1))**2+fac*ustar(i)**2 zdu2 = u(i, k)**2 + v(i, k)**2 zdu2 = max(zdu2, 1.0E-20) ! Theta_v environnement zthvd = t(i, k)/s(i, k)*(1.+retv*q(i,k)) ! et therm Theta_v (avec hypothese de constance de H&B, ! zthvu=(t(i,1)+therm(i))/s(i,1)*(1.+RETV*q(i,1)) zthvu = th_th(i)*(1.+retv*qt_th(i)) + therm(i) ! Le Ri par Theta_v ! AM Niveau de ref 2m ! AM rhino(i,k) = (z(i,k)-z(i,1))*RG*(zthvd-zthvu) ! AM . /(zdu2*0.5*(zthvd+zthvu)) rhino(i, k) = (z(i,k)-zref)*rg*(zthvd-zthvu)/(zdu2*0.5& *(zthvd+zthvu)) IF (rhino(i,k)>=ricr) THEN pblh(i) = z(i, k-1) + (z(i,k-1)-z(i,k))*(ricr-rhino(i,k-1))& /(rhino(i,k-1)-rhino(i,k)) ! test04 pblh(i) = pblh(i) + 100. pblt(i) = t(i, k-1) + (t(i,k)-t(i,k-1))*(pblh(i)-z(i,k-1))& /(z(i,k)- z(i,k-1)) check(i) = .FALSE. ! IM 170305 BEG IF (1==0) THEN ! debug print -120;34 -34- 58 et 0;26 wamp IF (i==950 .OR. i==192 .OR. i==624 .OR. i==118) THEN PRINT *, ' i,Th_th,Therm,qT :', i, th_th(i), therm(i), & qt_th(i) q_star = kqfs(i)/wm(i) t_star = khfs(i)/wm(i) PRINT *, 'q* t*, b1,b2,b212 ', q_star, t_star, & b1*(1.+2.*retv*qt_th(i))*t_star**2, & (retv*th_th(i))**2*b2*q_star**2, 2.*retv*th_th(i)& *b212*q_star *t_star PRINT *, 'zdu2 ,100.*ustar(i)**2', zdu2, fac*ustar(i)**2 END IF END IF !(1.EQ.0) THEN ! IM 170305 END ! q_star = kqfs(i)/wm(i) ! t_star = khfs(i)/wm(i) ! trmb1(i) = b1*(1.+2.*RETV*q(i,1))*t_star**2 ! trmb2(i) = (RETV*T(i,1))**2*b2*q_star**2 ! Omega now trmb3(i) = 2.*RETV*T(i,1)*b212*q_star*t_star END IF END IF END DO END DO ! Set pbl height to maximum value where computation exceeds number of ! layers allowed DO i = 1, knon IF (check(i)) pblh(i) = z(i, isommet) END DO ! PBL height must be greater than some minimum mechanical mixing depth ! Several investigators have proposed minimum mechanical mixing depth ! relationships as a function of the local friction velocity, u*. We ! make use of a linear relationship of the form h = c u* where c=700. ! The scaling arguments that give rise to this relationship most often ! represent the coefficient c as some constant over the local coriolis ! parameter. Here we make use of the experimental results of Koracin ! and Berkowicz (1988) [BLM, Vol 43] for wich they recommend 0.07/f ! where f was evaluated at 39.5 N and 52 N. Thus we use a typical mid ! latitude value for f so that c = 0.07/f = 700. DO i = 1, knon pblmin = 700.0*ustar(i) pblh(i) = max(pblh(i), pblmin) ! par exemple : pblt(i) = t(i, 2) + (t(i,3)-t(i,2))*(pblh(i)-z(i,2))/(z(i,3)-z(i,2)) END DO ! ******************************************************************** ! pblh is now available; do preparation for diffusivity calculation : ! ******************************************************************** DO i = 1, knon check(i) = .TRUE. zsat(i) = .FALSE. ! omegafl utilise pour prolongement CAPE omegafl(i) = .FALSE. cape(i) = 0. kape(i) = 0. eauliq(i) = 0. ctei(i) = 0. pblk(i) = 0.0 fak1(i) = ustar(i)*pblh(i)*vk ! Do additional preparation for unstable cases only, set temperature ! and moisture perturbations depending on stability. ! *** Rq: les formule sont prises dans leur forme CS *** IF (unstbl(i)) THEN ! AM Niveau de ref du thermique ! AM zxt=(t(i,1)-z(i,1)*0.5*RG/RCPD/(1.+RVTMP2*q(i,1))) ! AM . *(1.+RETV*q(i,1)) zxt = (th_th(i)-zref*0.5*rg/rcpd/(1.+rvtmp2*qt_th(i)))* & (1.+retv*qt_th(i)) phiminv(i) = (1.-binm*pblh(i)*unsobklen(i))**onet phihinv(i) = sqrt(1.-binh*pblh(i)*unsobklen(i)) wm(i) = ustar(i)*phiminv(i) fak2(i) = wm(i)*pblh(i)*vk wstar(i) = (heatv(i)*rg*pblh(i)/zxt)**onet fak3(i) = fakn*wstar(i)/wm(i) ELSE wstar(i) = 0. END IF ! Computes Theta_e for thermal (all cases : to be modified) ! attention ajout therm(i) = virtuelle the_th(i) = th_th(i) + therm(i) + rlvcp*qt_th(i) ! ou: The_th(i) = Th_th(i) + sqrt(b1)*khfs(i)/wm(i) + RLvCp*qT_th(i) END DO ! Main level loop to compute the diffusivities and ! counter-gradient terms: DO k = 2, isommet ! Find levels within boundary layer: DO i = 1, knon unslev(i) = .FALSE. stblev(i) = .FALSE. zm(i) = z(i, k-1) zp(i) = z(i, k) IF (zkmin==0.0 .AND. zp(i)>pblh(i)) zp(i) = pblh(i) IF (zm(i)