! $Id: radlwsw_m.F90 5119 2024-07-24 16:46:45Z abarral $ module radlwsw_m USE lmdz_abort_physic, ONLY: abort_physic IMPLICIT NONE CONTAINS SUBROUTINE radlwsw(& debut, dist, rmu0, fract, & !albedo SB >>> ! paprs, pplay,tsol,alb1, alb2, & paprs, pplay, tsol, SFRWL, alb_dir, alb_dif, & !albedo SB <<< t, q, wo, & cldfra, cldemi, cldtaupd, & ok_ade, ok_aie, ok_volcan, flag_volc_surfstrat, flag_aerosol, & flag_aerosol_strat, flag_aer_feedback, & tau_aero, piz_aero, cg_aero, & tau_aero_sw_rrtm, piz_aero_sw_rrtm, cg_aero_sw_rrtm, & ! rajoute par OB RRTM tau_aero_lw_rrtm, & ! rajoute par C.Kleinschmitt pour RRTM cldtaupi, m_allaer, & qsat, flwc, fiwc, & ref_liq, ref_ice, ref_liq_pi, ref_ice_pi, & namelist_ecrad_file, & heat, heat0, cool, cool0, albpla, & heat_volc, cool_volc, & topsw, toplw, solsw, solswfdiff, sollw, & sollwdown, & topsw0, toplw0, solsw0, sollw0, & lwdnc0, lwdn0, lwdn, lwupc0, lwup0, lwup, & swdnc0, swdn0, swdn, swupc0, swup0, swup, & topswad_aero, solswad_aero, & topswai_aero, solswai_aero, & topswad0_aero, solswad0_aero, & topsw_aero, topsw0_aero, & solsw_aero, solsw0_aero, & topswcf_aero, solswcf_aero, & !-C. Kleinschmitt for LW diagnostics toplwad_aero, sollwad_aero, & toplwai_aero, sollwai_aero, & toplwad0_aero, sollwad0_aero, & !-end ZLWFT0_i, ZFLDN0, ZFLUP0, & ZSWFT0_i, ZFSDN0, ZFSUP0, & cloud_cover_sw) ! Modules necessaires USE DIMPHY USE lmdz_assert, ONLY: assert USE infotrac_phy, ONLY: type_trac USE lmdz_write_field_phy #ifdef REPROBUS USE CHEM_REP, ONLY: solaireTIME, ok_SUNTIME, ndimozon #endif #ifdef CPP_RRTM ! modules necessaires au rayonnement ! ----------------------------------------- USE YOERAD , ONLY: NLW, LRRTM ,LCCNL ,LCCNO ,& NRADIP , NRADLP , NICEOPT, NLIQOPT ,RCCNLND , RCCNSEA USE YOELW , ONLY: NSIL ,NTRA ,NUA ,TSTAND ,XP USE YOESW , ONLY: RYFWCA ,RYFWCB ,RYFWCC ,RYFWCD,& RYFWCE ,RYFWCF ,REBCUA ,REBCUB ,REBCUC,& REBCUD ,REBCUE ,REBCUF ,REBCUI ,REBCUJ,& REBCUG ,REBCUH ,RHSAVI ,RFULIO ,RFLAA0,& RFLAA1 ,RFLBB0 ,RFLBB1 ,RFLBB2 ,RFLBB3,& RFLCC0 ,RFLCC1 ,RFLCC2 ,RFLCC3 ,RFLDD0,& RFLDD1 ,RFLDD2 ,RFLDD3 ,RFUETA ,RASWCA,& RASWCB ,RASWCC ,RASWCD ,RASWCE ,RASWCF USE YOERDU , ONLY: NUAER ,NTRAER ,REPLOG ,REPSC ,REPSCW ,DIFF USE YOERRTWN , ONLY: DELWAVE ,TOTPLNK USE YOMPHY3 , ONLY: RII0 #endif USE aero_mod ! AI 02.2021 ! Besoin pour ECRAD de pctsrf, zmasq, longitude, altitude #ifdef CPP_ECRAD USE lmdz_geometry, ONLY: latitude, longitude USE phys_state_var_mod, ONLY: pctsrf USE indice_sol_mod USE time_phylmdz_mod, ONLY: current_time USE phys_cal_mod, ONLY: day_cur USE interface_lmdz_ecrad #endif !====================================================================== ! Auteur(s): Z.X. Li (LMD/CNRS) date: 19960719 ! Objet: interface entre le modele et les rayonnements ! Arguments: ! INPUTS ! dist----- input-R- distance astronomique terre-soleil ! rmu0----- input-R- cosinus de l'angle zenithal ! fract---- input-R- duree d'ensoleillement normalisee ! co2_ppm-- input-R- concentration du gaz carbonique (en ppm) ! paprs---- input-R- pression a inter-couche (Pa) ! pplay---- input-R- pression au milieu de couche (Pa) ! tsol----- input-R- temperature du sol (en K) ! alb1----- input-R- albedo du sol(entre 0 et 1) dans l'interval visible ! alb2----- input-R- albedo du sol(entre 0 et 1) dans l'interval proche infra-rouge ! t-------- input-R- temperature (K) ! q-------- input-R- vapeur d'eau (en kg/kg) ! cldfra--- input-R- fraction nuageuse (entre 0 et 1) ! cldtaupd- input-R- epaisseur optique des nuages dans le visible (present-day value) ! cldemi--- input-R- emissivite des nuages dans l'IR (entre 0 et 1) ! ok_ade--- input-L- apply the Aerosol Direct Effect or not? ! ok_aie--- input-L- apply the Aerosol Indirect Effect or not? ! ok_volcan input-L- activate volcanic diags (SW heat & LW cool rate, SW & LW flux) ! flag_volc_surfstrat input-I- activate volcanic surf cooling or strato heating (or nothing) ! flag_aerosol input-I- aerosol flag from 0 to 6 ! flag_aerosol_strat input-I- use stratospheric aerosols flag (0, 1, 2) ! flag_aer_feedback input-I- activate aerosol radiative feedback (T, F) ! tau_ae, piz_ae, cg_ae input-R- aerosol optical properties (calculated in aeropt.F) ! cldtaupi input-R- epaisseur optique des nuages dans le visible ! calculated for pre-industrial (pi) aerosol concentrations, i.e. with smaller ! droplet concentration, thus larger droplets, thus generally cdltaupi cldtaupd ! it is needed for the diagnostics of the aerosol indirect radiative forcing ! OUTPUTS ! heat-----output-R- echauffement atmospherique (visible) (K/jour) ! cool-----output-R- refroidissement dans l'IR (K/jour) ! albpla---output-R- albedo planetaire (entre 0 et 1) ! topsw----output-R- flux solaire net au sommet de l'atm. ! toplw----output-R- ray. IR montant au sommet de l'atmosphere ! solsw----output-R- flux solaire net a la surface ! solswfdiff----output-R- fraction de rayonnement diffus pour le flux solaire descendant a la surface ! sollw----output-R- ray. IR montant a la surface ! solswad---output-R- ray. solaire net absorbe a la surface (aerosol dir) ! topswad---output-R- ray. solaire absorbe au sommet de l'atm. (aerosol dir) ! solswai---output-R- ray. solaire net absorbe a la surface (aerosol ind) ! topswai---output-R- ray. solaire absorbe au sommet de l'atm. (aerosol ind) ! heat_volc-----output-R- echauffement atmospherique du au forcage volcanique (visible) (K/s) ! cool_volc-----output-R- refroidissement dans l'IR du au forcage volcanique (K/s) ! ATTENTION: swai and swad have to be interpreted in the following manner: ! --------- ! ok_ade=F & ok_aie=F -both are zero ! ok_ade=T & ok_aie=F -aerosol direct forcing is F_{AD} = topsw-topswad ! indirect is zero ! ok_ade=F & ok_aie=T -aerosol indirect forcing is F_{AI} = topsw-topswai ! direct is zero ! ok_ade=T & ok_aie=T -aerosol indirect forcing is F_{AI} = topsw-topswai ! aerosol direct forcing is F_{AD} = topswai-topswad ! --------- RRTM: output RECMWFL ! ZEMTD (KPROMA,KLEV+1) ; TOTAL DOWNWARD LONGWAVE EMISSIVITY ! ZEMTU (KPROMA,KLEV+1) ; TOTAL UPWARD LONGWAVE EMISSIVITY ! ZTRSO (KPROMA,KLEV+1) ; TOTAL SHORTWAVE TRANSMISSIVITY ! ZTH (KPROMA,KLEV+1) ; HALF LEVEL TEMPERATURE ! ZCTRSO(KPROMA,2) ; CLEAR-SKY SHORTWAVE TRANSMISSIVITY ! ZCEMTR(KPROMA,2) ; CLEAR-SKY NET LONGWAVE EMISSIVITY ! ZTRSOD(KPROMA) ; TOTAL-SKY SURFACE SW TRANSMISSITY ! ZLWFC (KPROMA,2) ; CLEAR-SKY LONGWAVE FLUXES ! ZLWFT (KPROMA,KLEV+1) ; TOTAL-SKY LONGWAVE FLUXES ! ZLWFT0(KPROMA,KLEV+1) ; CLEAR-SKY LONGWAVE FLUXES ! added by MPL 090109 ! ZSWFC (KPROMA,2) ; CLEAR-SKY SHORTWAVE FLUXES ! ZSWFT (KPROMA,KLEV+1) ; TOTAL-SKY SHORTWAVE FLUXES ! ZSWFT0(KPROMA,KLEV+1) ; CLEAR-SKY SHORTWAVE FLUXES ! added by MPL 090109 ! ZFLUX (KLON,2,KLEV+1) ; TOTAL LW FLUXES 1=up, 2=DWN ! added by MPL 080411 ! ZFLUC (KLON,2,KLEV+1) ; CLEAR SKY LW FLUXES ! added by MPL 080411 ! ZFSDWN(klon,KLEV+1) ; TOTAL SW DWN FLUXES ! added by MPL 080411 ! ZFCDWN(klon,KLEV+1) ; CLEAR SKY SW DWN FLUXES ! added by MPL 080411 ! ZFCCDWN(klon,KLEV+1) ; CLEAR SKY CLEAN (NO AEROSOL) SW DWN FLUXES ! added by OB 211117 ! ZFSUP (klon,KLEV+1) ; TOTAL SW UP FLUXES ! added by MPL 080411 ! ZFCUP (klon,KLEV+1) ; CLEAR SKY SW UP FLUXES ! added by MPL 080411 ! ZFCCUP (klon,KLEV+1) ; CLEAR SKY CLEAN (NO AEROSOL) SW UP FLUXES ! added by OB 211117 ! ZFLCCDWN(klon,KLEV+1) ; CLEAR SKY CLEAN (NO AEROSOL) LW DWN FLUXES ! added by OB 211117 ! ZFLCCUP (klon,KLEV+1) ; CLEAR SKY CLEAN (NO AEROSOL) LW UP FLUXES ! added by OB 211117 !====================================================================== ! ==================================================================== ! Adapte au modele de chimie INCA par Celine Deandreis & Anne Cozic -- 2009 ! 1 = ZERO ! 2 = AER total ! 3 = NAT ! 4 = BC ! 5 = SO4 ! 6 = POM ! 7 = DUST ! 8 = SS ! 9 = NO3 ! ==================================================================== ! ============== ! DECLARATIONS ! ============== include "YOETHF.h" include "YOMCST.h" include "clesphys.h" ! Input arguments REAL, INTENT(IN) :: dist REAL, INTENT(IN) :: rmu0(KLON), fract(KLON) REAL, INTENT(IN) :: paprs(KLON, KLEV + 1), pplay(KLON, KLEV) !albedo SB >>> ! REAL, INTENT(IN) :: alb1(KLON), alb2(KLON), tsol(KLON) REAL, INTENT(IN) :: tsol(KLON) REAL, INTENT(IN) :: alb_dir(KLON, NSW), alb_dif(KLON, NSW) REAL, INTENT(IN) :: SFRWL(6) !albedo SB <<< REAL, INTENT(IN) :: t(KLON, KLEV), q(KLON, KLEV) REAL, INTENT(IN) :: wo(:, :, :) ! DIMENSION(KLON,KLEV, 1 or 2) ! column-density of ozone in a layer, in kilo-Dobsons ! "wo(:, :, 1)" is for the average day-night field, ! "wo(:, :, 2)" is for daylight time. LOGICAL, INTENT(IN) :: ok_ade, ok_aie ! switches whether to use aerosol direct (indirect) effects or not LOGICAL, INTENT(IN) :: ok_volcan ! produce volcanic diags (SW/LW heat flux and rate) INTEGER, INTENT(IN) :: flag_volc_surfstrat ! allow to impose volcanic cooling rate at surf or heating in strato LOGICAL :: lldebug = .FALSE. INTEGER, INTENT(IN) :: flag_aerosol ! takes value 0 (no aerosol) or 1 to 6 (aerosols) INTEGER, INTENT(IN) :: flag_aerosol_strat ! use stratospheric aerosols LOGICAL, INTENT(IN) :: flag_aer_feedback ! activate aerosol radiative feedback REAL, INTENT(IN) :: cldfra(KLON, KLEV), cldemi(KLON, KLEV), cldtaupd(KLON, KLEV) REAL, INTENT(IN) :: tau_aero(KLON, KLEV, naero_grp, 2) ! aerosol optical properties (see aeropt.F) REAL, INTENT(IN) :: piz_aero(KLON, KLEV, naero_grp, 2) ! aerosol optical properties (see aeropt.F) REAL, INTENT(IN) :: cg_aero(KLON, KLEV, naero_grp, 2) ! aerosol optical properties (see aeropt.F) !--OB REAL, INTENT(IN) :: tau_aero_sw_rrtm(KLON, KLEV, 2, NSW) ! aerosol optical properties RRTM REAL, INTENT(IN) :: piz_aero_sw_rrtm(KLON, KLEV, 2, NSW) ! aerosol optical properties RRTM REAL, INTENT(IN) :: cg_aero_sw_rrtm(KLON, KLEV, 2, NSW) ! aerosol optical properties RRTM ! AI !--OB fin !--C. Kleinschmitt #ifdef CPP_RRTM REAL, INTENT(IN) :: tau_aero_lw_rrtm(KLON,KLEV,2,NLW) ! LW aerosol optical properties RRTM #else REAL, INTENT(IN) :: tau_aero_lw_rrtm(KLON, KLEV, 2, nbands_lw_rrtm) #endif !--C. Kleinschmitt end REAL, INTENT(IN) :: cldtaupi(KLON, KLEV) ! cloud optical thickness for pre-industrial aerosol concentrations REAL, INTENT(IN) :: qsat(klon, klev) ! Variable pour iflag_rrtm=1 REAL, INTENT(IN) :: flwc(klon, klev) ! Variable pour iflag_rrtm=1 REAL, INTENT(IN) :: fiwc(klon, klev) ! Variable pour iflag_rrtm=1 REAL, INTENT(IN) :: ref_liq(klon, klev) ! cloud droplet radius present-day from newmicro REAL, INTENT(IN) :: ref_ice(klon, klev) ! ice crystal radius present-day from newmicro REAL, INTENT(IN) :: ref_liq_pi(klon, klev) ! cloud droplet radius pre-industrial from newmicro REAL, INTENT(IN) :: ref_ice_pi(klon, klev) ! ice crystal radius pre-industrial from newmicro REAL, INTENT(IN) :: m_allaer(klon, klev, naero_tot) ! mass aero CHARACTER(len = 512), INTENT(IN) :: namelist_ecrad_file LOGICAL, INTENT(IN) :: debut ! Output arguments REAL, INTENT(OUT) :: heat(KLON, KLEV), cool(KLON, KLEV) REAL, INTENT(OUT) :: heat0(KLON, KLEV), cool0(KLON, KLEV) REAL, INTENT(OUT) :: heat_volc(KLON, KLEV), cool_volc(KLON, KLEV) !NL REAL, INTENT(OUT) :: topsw(KLON), toplw(KLON) REAL, INTENT(OUT) :: solsw(KLON), sollw(KLON), albpla(KLON), solswfdiff(KLON) REAL, INTENT(OUT) :: topsw0(KLON), toplw0(KLON), solsw0(KLON), sollw0(KLON) REAL, INTENT(OUT) :: sollwdown(KLON) REAL, INTENT(OUT) :: swdn(KLON, kflev + 1), swdn0(KLON, kflev + 1), swdnc0(KLON, kflev + 1) REAL, INTENT(OUT) :: swup(KLON, kflev + 1), swup0(KLON, kflev + 1), swupc0(KLON, kflev + 1) REAL, INTENT(OUT) :: lwdn(KLON, kflev + 1), lwdn0(KLON, kflev + 1), lwdnc0(KLON, kflev + 1) REAL, INTENT(OUT) :: lwup(KLON, kflev + 1), lwup0(KLON, kflev + 1), lwupc0(KLON, kflev + 1) REAL, INTENT(OUT) :: topswad_aero(KLON), solswad_aero(KLON) ! output: aerosol direct forcing at TOA and surface REAL, INTENT(OUT) :: topswai_aero(KLON), solswai_aero(KLON) ! output: aerosol indirect forcing atTOA and surface REAL, INTENT(OUT) :: toplwad_aero(KLON), sollwad_aero(KLON) ! output: LW aerosol direct forcing at TOA and surface REAL, INTENT(OUT) :: toplwai_aero(KLON), sollwai_aero(KLON) ! output: LW aerosol indirect forcing atTOA and surface REAL, DIMENSION(klon), INTENT(OUT) :: topswad0_aero REAL, DIMENSION(klon), INTENT(OUT) :: solswad0_aero REAL, DIMENSION(klon), INTENT(OUT) :: toplwad0_aero REAL, DIMENSION(klon), INTENT(OUT) :: sollwad0_aero REAL, DIMENSION(kdlon, 9), INTENT(OUT) :: topsw_aero REAL, DIMENSION(kdlon, 9), INTENT(OUT) :: topsw0_aero REAL, DIMENSION(kdlon, 9), INTENT(OUT) :: solsw_aero REAL, DIMENSION(kdlon, 9), INTENT(OUT) :: solsw0_aero REAL, DIMENSION(kdlon, 3), INTENT(OUT) :: topswcf_aero REAL, DIMENSION(kdlon, 3), INTENT(OUT) :: solswcf_aero REAL, DIMENSION(kdlon, kflev + 1), INTENT(OUT) :: ZSWFT0_i REAL, DIMENSION(kdlon, kflev + 1), INTENT(OUT) :: ZLWFT0_i ! Local variables REAL(KIND = 8) ZFSUP(KDLON, KFLEV + 1) REAL(KIND = 8) ZFSDN(KDLON, KFLEV + 1) REAL(KIND = 8) ZFSUP0(KDLON, KFLEV + 1) REAL(KIND = 8) ZFSDN0(KDLON, KFLEV + 1) REAL(KIND = 8) ZFSUPC0(KDLON, KFLEV + 1) REAL(KIND = 8) ZFSDNC0(KDLON, KFLEV + 1) REAL(KIND = 8) ZFLUP(KDLON, KFLEV + 1) REAL(KIND = 8) ZFLDN(KDLON, KFLEV + 1) REAL(KIND = 8) ZFLUP0(KDLON, KFLEV + 1) REAL(KIND = 8) ZFLDN0(KDLON, KFLEV + 1) REAL(KIND = 8) ZFLUPC0(KDLON, KFLEV + 1) REAL(KIND = 8) ZFLDNC0(KDLON, KFLEV + 1) REAL(KIND = 8) zx_alpha1, zx_alpha2 INTEGER k, kk, i, j, iof, nb_gr INTEGER ist, iend, ktdia, kmode REAL(KIND = 8) PSCT REAL(KIND = 8) PALBD(kdlon, 2), PALBP(kdlon, 2) ! MPL 06.01.09: pour RRTM, creation de PALBD_NEW et PALBP_NEW ! avec NSW en deuxieme dimension REAL(KIND = 8) PALBD_NEW(kdlon, NSW), PALBP_NEW(kdlon, NSW) REAL(KIND = 8) PEMIS(kdlon), PDT0(kdlon), PVIEW(kdlon) REAL(KIND = 8) PPSOL(kdlon), PDP(kdlon, KLEV) REAL(KIND = 8) PTL(kdlon, kflev + 1), PPMB(kdlon, kflev + 1) REAL(KIND = 8) PTAVE(kdlon, kflev) REAL(KIND = 8) PWV(kdlon, kflev), PQS(kdlon, kflev) REAL(KIND = 8) cloud_cover_sw(klon) !!!!!!! Declarations specifiques pour ECRAD !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! AI 02.2021 #ifdef CPP_ECRAD ! ATTENTION les dimensions klon, kdlon ??? ! INPUTS REAL, DIMENSION(kdlon,kflev+1) :: ZSWFT0_ii, ZLWFT0_ii REAL(KIND=8) ZEMISW(klon), & ! LW emissivity inside the window region ZEMIS(klon) ! LW emissivity outside the window region REAL(KIND=8) ZGELAM(klon), & ! longitudes en rad ZGEMU(klon) ! sin(latitude) REAL(KIND=8) ZCO2, & ! CO2 mass mixing ratios on full levels ZCH4, & ! CH4 mass mixing ratios on full levels ZN2O, & ! N2O mass mixing ratios on full levels ZNO2, & ! NO2 mass mixing ratios on full levels ZCFC11, & ! CFC11 ZCFC12, & ! CFC12 ZHCFC22, & ! HCFC22 ZCCL4, & ! CCL4 ZO2 ! O2 REAL(KIND=8) ZQ_RAIN(klon,klev), & ! Rain cloud mass mixing ratio (kg/kg) ? ZQ_SNOW(klon,klev) ! Snow cloud mass mixing ratio (kg/kg) ? REAL(KIND=8) ZAEROSOL_OLD(KLON,6,KLEV), & ! ZAEROSOL(KLON,KLEV,naero_spc) ! ! OUTPUTS REAL(KIND=8) ZFLUX_DIR(klon), & ! Direct compt of surf flux into horizontal plane ZFLUX_DIR_CLEAR(klon), & ! CS Direct ZFLUX_DIR_INTO_SUN(klon), & ! ZFLUX_UV(klon), & ! UV flux ZFLUX_PAR(klon), & ! photosynthetically active radiation similarly ZFLUX_PAR_CLEAR(klon), & ! CS photosynthetically ZFLUX_SW_DN_TOA(klon), & ! DN SW flux at TOA ZEMIS_OUT(klon) ! effective broadband emissivity REAL(KIND=8) ZLWDERIVATIVE(klon,klev+1) ! LW derivatives REAL(KIND=8) ZSWDIFFUSEBAND(klon,NSW), & ! SW DN flux in diffuse albedo band ZSWDIRECTBAND(klon,NSW) ! SW DN flux in direct albedo band REAL(KIND=8) SOLARIRAD REAL(KIND=8) seuilmach ! AI 10 mars 22 : Pour les tests Offline logical :: lldebug_for_offline = .FALSE. REAL(KIND=8) solaire_off(klon), & ZCO2_off(klon,klev), & ZCH4_off(klon,klev), & ! CH4 mass mixing ratios on full levels ZN2O_off(klon,klev), & ! N2O mass mixing ratios on full levels ZNO2_off(klon,klev), & ! NO2 mass mixing ratios on full levels ZCFC11_off(klon,klev), & ! CFC11 ZCFC12_off(klon,klev), & ! CFC12 ZHCFC22_off(klon,klev), & ! HCFC22 ZCCL4_off(klon,klev), & ! CCL4 ZO2_off(klon,klev) ! O2#endif #endif !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! REAL(kind = 8) POZON(kdlon, kflev, size(wo, 3)) ! mass fraction of ozone ! "POZON(:, :, 1)" is for the average day-night field, ! "POZON(:, :, 2)" is for daylight time. !!!!! Modif MPL 6.01.09 avec RRTM, on passe de 5 a 6 REAL(KIND = 8) PAER(kdlon, kflev, 6) REAL(KIND = 8) PCLDLD(kdlon, kflev) REAL(KIND = 8) PCLDLU(kdlon, kflev) REAL(KIND = 8) PCLDSW(kdlon, kflev) REAL(KIND = 8) PTAU(kdlon, 2, kflev) REAL(KIND = 8) POMEGA(kdlon, 2, kflev) REAL(KIND = 8) PCG(kdlon, 2, kflev) REAL(KIND = 8) zfract(kdlon), zrmu0(kdlon), zdist REAL(KIND = 8) zheat(kdlon, kflev), zcool(kdlon, kflev) REAL(KIND = 8) zheat0(kdlon, kflev), zcool0(kdlon, kflev) REAL(KIND = 8) zheat_volc(kdlon, kflev), zcool_volc(kdlon, kflev) !NL REAL(KIND = 8) ztopsw(kdlon), ztoplw(kdlon) REAL(KIND = 8) zsolsw(kdlon), zsollw(kdlon), zalbpla(kdlon), zsolswfdiff(kdlon) REAL(KIND = 8) zsollwdown(kdlon) REAL(KIND = 8) ztopsw0(kdlon), ztoplw0(kdlon) REAL(KIND = 8) zsolsw0(kdlon), zsollw0(kdlon) REAL(KIND = 8) zznormcp REAL(KIND = 8) tauaero(kdlon, kflev, naero_grp, 2) ! aer opt properties REAL(KIND = 8) pizaero(kdlon, kflev, naero_grp, 2) REAL(KIND = 8) cgaero(kdlon, kflev, naero_grp, 2) REAL(KIND = 8) PTAUA(kdlon, 2, kflev) ! present-day value of cloud opt thickness (PTAU is pre-industrial value), local use REAL(KIND = 8) POMEGAA(kdlon, 2, kflev) ! dito for single scatt albedo REAL(KIND = 8) ztopswadaero(kdlon), zsolswadaero(kdlon) ! Aerosol direct forcing at TOAand surface REAL(KIND = 8) ztopswad0aero(kdlon), zsolswad0aero(kdlon) ! Aerosol direct forcing at TOAand surface REAL(KIND = 8) ztopswaiaero(kdlon), zsolswaiaero(kdlon) ! dito, indirect !--NL REAL(KIND = 8) zswadaero(kdlon, kflev + 1) ! SW Aerosol direct forcing REAL(KIND = 8) zlwadaero(kdlon, kflev + 1) ! LW Aerosol direct forcing REAL(KIND = 8) volmip_solsw(kdlon) ! SW clear sky in the case of VOLMIP !-LW by CK REAL(KIND = 8) ztoplwadaero(kdlon), zsollwadaero(kdlon) ! LW Aerosol direct forcing at TOAand surface REAL(KIND = 8) ztoplwad0aero(kdlon), zsollwad0aero(kdlon) ! LW Aerosol direct forcing at TOAand surface REAL(KIND = 8) ztoplwaiaero(kdlon), zsollwaiaero(kdlon) ! dito, indirect !-end REAL(KIND = 8) ztopsw_aero(kdlon, 9), ztopsw0_aero(kdlon, 9) REAL(KIND = 8) zsolsw_aero(kdlon, 9), zsolsw0_aero(kdlon, 9) REAL(KIND = 8) ztopswcf_aero(kdlon, 3), zsolswcf_aero(kdlon, 3) ! REAL, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2 deje declare dans physiq.F MPL 20130618 !MPL input supplementaires pour RECMWFL ! flwc, fiwc = Liquid Water Content & Ice Water Content (kg/kg) REAL(KIND = 8) GEMU(klon) !MPL input RECMWFL: ! Tableaux aux niveaux inverses pour respecter convention Arpege REAL(KIND = 8) ref_liq_i(klon, klev) ! cloud droplet radius present-day from newmicro (inverted) REAL(KIND = 8) ref_ice_i(klon, klev) ! ice crystal radius present-day from newmicro (inverted) !--OB REAL(KIND = 8) ref_liq_pi_i(klon, klev) ! cloud droplet radius pre-industrial from newmicro (inverted) REAL(KIND = 8) ref_ice_pi_i(klon, klev) ! ice crystal radius pre-industrial from newmicro (inverted) !--end OB REAL(KIND = 8) paprs_i(klon, klev + 1) REAL(KIND = 8) pplay_i(klon, klev) REAL(KIND = 8) cldfra_i(klon, klev) REAL(KIND = 8) POZON_i(kdlon, kflev, size(wo, 3)) ! mass fraction of ozone ! "POZON(:, :, 1)" is for the average day-night field, ! "POZON(:, :, 2)" is for daylight time. !!!!! Modif MPL 6.01.09 avec RRTM, on passe de 5 a 6 REAL(KIND = 8) PAER_i(kdlon, kflev, 6) REAL(KIND = 8) PDP_i(klon, klev) REAL(KIND = 8) t_i(klon, klev), q_i(klon, klev), qsat_i(klon, klev) REAL(KIND = 8) flwc_i(klon, klev), fiwc_i(klon, klev) !MPL output RECMWFL: REAL(KIND = 8) ZEMTD (klon, klev + 1), ZEMTD_i (klon, klev + 1) REAL(KIND = 8) ZEMTU (klon, klev + 1), ZEMTU_i (klon, klev + 1) REAL(KIND = 8) ZTRSO (klon, klev + 1), ZTRSO_i (klon, klev + 1) REAL(KIND = 8) ZTH (klon, klev + 1), ZTH_i (klon, klev + 1) REAL(KIND = 8) ZCTRSO(klon, 2) REAL(KIND = 8) ZCEMTR(klon, 2) REAL(KIND = 8) ZTRSOD(klon) REAL(KIND = 8) ZLWFC (klon, 2) REAL(KIND = 8) ZLWFT (klon, klev + 1), ZLWFT_i (klon, klev + 1) REAL(KIND = 8) ZSWFC (klon, 2) REAL(KIND = 8) ZSWFT (klon, klev + 1), ZSWFT_i (klon, klev + 1) REAL(KIND = 8) ZFLUCDWN_i(klon, klev + 1), ZFLUCUP_i(klon, klev + 1) REAL(KIND = 8) PPIZA_TOT(klon, klev, NSW) REAL(KIND = 8) PCGA_TOT(klon, klev, NSW) REAL(KIND = 8) PTAU_TOT(klon, klev, NSW) REAL(KIND = 8) PPIZA_NAT(klon, klev, NSW) REAL(KIND = 8) PCGA_NAT(klon, klev, NSW) REAL(KIND = 8) PTAU_NAT(klon, klev, NSW) #ifdef CPP_RRTM REAL(KIND=8) PTAU_LW_TOT(klon,klev,NLW) REAL(KIND=8) PTAU_LW_NAT(klon,klev,NLW) #endif REAL(KIND = 8) PSFSWDIR(klon, NSW) REAL(KIND = 8) PSFSWDIF(klon, NSW) REAL(KIND = 8) PFSDNN(klon) REAL(KIND = 8) PFSDNV(klon) !MPL On ne redefinit pas les tableaux ZFLUX,ZFLUC, !MPL ZFSDWN,ZFCDWN,ZFSUP,ZFCUP car ils existent deja !MPL sous les noms de ZFLDN,ZFLDN0,ZFLUP,ZFLUP0, !MPL ZFSDN,ZFSDN0,ZFSUP,ZFSUP0 REAL(KIND = 8) ZFLUX_i (klon, 2, klev + 1) REAL(KIND = 8) ZFLUC_i (klon, 2, klev + 1) REAL(KIND = 8) ZFSDWN_i (klon, klev + 1) REAL(KIND = 8) ZFCDWN_i (klon, klev + 1) REAL(KIND = 8) ZFCCDWN_i (klon, klev + 1) REAL(KIND = 8) ZFSUP_i (klon, klev + 1) REAL(KIND = 8) ZFCUP_i (klon, klev + 1) REAL(KIND = 8) ZFCCUP_i (klon, klev + 1) REAL(KIND = 8) ZFLCCDWN_i (klon, klev + 1) REAL(KIND = 8) ZFLCCUP_i (klon, klev + 1) ! 3 lignes suivantes a activer pour CCMVAL (MPL 20100412) ! REAL(KIND=8) RSUN(3,2) ! REAL(KIND=8) SUN(3) ! REAL(KIND=8) SUN_FRACT(2) REAL, PARAMETER :: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2 CHARACTER (LEN = 80) :: abort_message CHARACTER (LEN = 80) :: modname = 'radlwsw_m' REAL zdir, zdif ! ========= INITIALISATIONS ============================================== IF (lldebug) THEN PRINT*, 'Entree dans radlwsw ' PRINT*, '************* INITIALISATIONS *****************************' PRINT*, 'klon, kdlon, klev, kflev =', klon, kdlon, klev, kflev ENDIF CALL assert(size(wo, 1) == klon, size(wo, 2) == klev, "radlwsw wo") ist = 1 iend = klon ktdia = 1 kmode = ist ! Aeros tauaero(:, :, :, :) = 0. pizaero(:, :, :, :) = 0. cgaero(:, :, :, :) = 0. ! lldebug=.FALSE. ztopsw_aero(:, :) = 0. !ym missing init : warning : not initialized in SW_AEROAR4 ztopsw0_aero(:, :) = 0. !ym missing init : warning : not initialized in SW_AEROAR4 zsolsw_aero(:, :) = 0. !ym missing init : warning : not initialized in SW_AEROAR4 zsolsw0_aero(:, :) = 0. !ym missing init : warning : not initialized in SW_AEROAR4 ZTOPSWADAERO(:) = 0. !ym missing init ZSOLSWADAERO(:) = 0. !ym missing init ZTOPSWAD0AERO(:) = 0. !ym missing init ZSOLSWAD0AERO(:) = 0. !ym missing init ZTOPSWAIAERO(:) = 0. !ym missing init ZSOLSWAIAERO(:) = 0. !ym missing init ZTOPSWCF_AERO(:, :) = 0.!ym missing init ZSOLSWCF_AERO(:, :) = 0. !ym missing init ! AI 02.2021 #ifdef CPP_ECRAD ZEMIS = 1.0 ZEMISW = 1.0 ZGELAM = longitude ZGEMU = sin(latitude) ZCO2 = RCO2 ZCH4 = RCH4 ZN2O = RN2O ZNO2 = 0.0 ZCFC11 = RCFC11 ZCFC12 = RCFC12 ZHCFC22 = 0.0 ZO2 = 0.0 ZCCL4 = 0.0 ZQ_RAIN = 0.0 ZQ_SNOW = 0.0 ZAEROSOL_OLD = 0.0 ZAEROSOL = 0.0 seuilmach=tiny(seuilmach) #endif !------------------------------------------- nb_gr = KLON / kdlon IF (nb_gr * kdlon /= KLON) THEN PRINT*, "kdlon mauvais:", KLON, kdlon, nb_gr CALL abort_physic("radlwsw", "", 1) ENDIF IF (kflev /= KLEV) THEN PRINT*, "kflev differe de KLEV, kflev, KLEV" CALL abort_physic("radlwsw", "", 1) ENDIF !------------------------------------------- DO k = 1, KLEV DO i = 1, KLON heat(i, k) = 0. cool(i, k) = 0. heat_volc(i, k) = 0. !NL cool_volc(i, k) = 0. !NL heat0(i, k) = 0. cool0(i, k) = 0. ENDDO ENDDO zdist = dist PSCT = solaire / zdist / zdist IF (type_trac == 'repr') THEN #ifdef REPROBUS IF (iflag_rrtm==0) THEN IF (ok_SUNTIME) PSCT = solaireTIME/zdist/zdist PRINT*,'Constante solaire: ',PSCT*zdist*zdist ENDIF #endif ENDIF IF (lldebug) THEN PRINT*, '************** Debut boucle de 1 a ', nb_gr ENDIF DO j = 1, nb_gr iof = kdlon * (j - 1) DO i = 1, kdlon zfract(i) = fract(iof + i) zrmu0(i) = rmu0(iof + i) IF (iflag_rrtm==0) THEN ! Albedo PALBD(i, 1) = alb_dif(iof + i, 1) PALBD(i, 2) = alb_dif(iof + i, 2) PALBP(i, 1) = alb_dir(iof + i, 1) PALBP(i, 2) = alb_dir(iof + i, 2) ! AI 02.2021 cas iflag_rrtm=1 et 2 ELSEIF (iflag_rrtm==1.OR.iflag_rrtm==2) THEN DO kk = 1, NSW PALBD_NEW(i, kk) = alb_dif(iof + i, kk) PALBP_NEW(i, kk) = alb_dir(iof + i, kk) ENDDO ENDIF !albedo SB <<< PEMIS(i) = 1.0 !!!!! A REVOIR (MPL) PVIEW(i) = 1.66 PPSOL(i) = paprs(iof + i, 1) zx_alpha1 = (paprs(iof + i, 1) - pplay(iof + i, 2)) / (pplay(iof + i, 1) - pplay(iof + i, 2)) zx_alpha2 = 1.0 - zx_alpha1 PTL(i, 1) = t(iof + i, 1) * zx_alpha1 + t(iof + i, 2) * zx_alpha2 PTL(i, KLEV + 1) = t(iof + i, KLEV) PDT0(i) = tsol(iof + i) - PTL(i, 1) ENDDO DO k = 2, kflev DO i = 1, kdlon PTL(i, k) = (t(iof + i, k) + t(iof + i, k - 1)) * 0.5 ENDDO ENDDO DO k = 1, kflev DO i = 1, kdlon PDP(i, k) = paprs(iof + i, k) - paprs(iof + i, k + 1) PTAVE(i, k) = t(iof + i, k) PWV(i, k) = MAX (q(iof + i, k), 1.0e-12) PQS(i, k) = PWV(i, k) ! Confert from column density of ozone in a cell, in kDU, to a mass fraction POZON(i, k, :) = wo(iof + i, k, :) * RG * dobson_u * 1e3 & / (paprs(iof + i, k) - paprs(iof + i, k + 1)) ! A activer pour CCMVAL on prend l'ozone impose (MPL 07042010) ! POZON(i,k,:) = wo(i,k,:) ! print *,'RADLWSW: POZON',k, POZON(i,k,1) PCLDLD(i, k) = cldfra(iof + i, k) * cldemi(iof + i, k) PCLDLU(i, k) = cldfra(iof + i, k) * cldemi(iof + i, k) PCLDSW(i, k) = cldfra(iof + i, k) PTAU(i, 1, k) = MAX(cldtaupi(iof + i, k), 1.0e-05)! 1e-12 serait instable PTAU(i, 2, k) = MAX(cldtaupi(iof + i, k), 1.0e-05)! pour 32-bit machines POMEGA(i, 1, k) = 0.9999 - 5.0e-04 * EXP(-0.5 * PTAU(i, 1, k)) POMEGA(i, 2, k) = 0.9988 - 2.5e-03 * EXP(-0.05 * PTAU(i, 2, k)) PCG(i, 1, k) = 0.865 PCG(i, 2, k) = 0.910 !- ! Introduced for aerosol indirect forcings. ! The following values use the cloud optical thickness calculated from ! present-day aerosol concentrations whereas the quantities without the ! "A" at the end are for pre-industial (natural-only) aerosol concentrations PTAUA(i, 1, k) = MAX(cldtaupd(iof + i, k), 1.0e-05)! 1e-12 serait instable PTAUA(i, 2, k) = MAX(cldtaupd(iof + i, k), 1.0e-05)! pour 32-bit machines POMEGAA(i, 1, k) = 0.9999 - 5.0e-04 * EXP(-0.5 * PTAUA(i, 1, k)) POMEGAA(i, 2, k) = 0.9988 - 2.5e-03 * EXP(-0.05 * PTAUA(i, 2, k)) ENDDO ENDDO IF (type_trac == 'repr') THEN #ifdef REPROBUS ndimozon = size(wo, 3) CALL RAD_INTERACTIF(POZON,iof) #endif ENDIF DO k = 1, kflev + 1 DO i = 1, kdlon PPMB(i, k) = paprs(iof + i, k) / 100.0 ENDDO ENDDO !!!!! Modif MPL 6.01.09 avec RRTM, on passe de 5 a 6 DO kk = 1, 6 DO k = 1, kflev DO i = 1, kdlon PAER(i, k, kk) = 1.0E-15 !!!!! A REVOIR (MPL) ENDDO ENDDO ENDDO DO k = 1, kflev DO i = 1, kdlon tauaero(i, k, :, 1) = tau_aero(iof + i, k, :, 1) pizaero(i, k, :, 1) = piz_aero(iof + i, k, :, 1) cgaero(i, k, :, 1) = cg_aero(iof + i, k, :, 1) tauaero(i, k, :, 2) = tau_aero(iof + i, k, :, 2) pizaero(i, k, :, 2) = piz_aero(iof + i, k, :, 2) cgaero(i, k, :, 2) = cg_aero(iof + i, k, :, 2) ENDDO ENDDO !===== iflag_rrtm ================================================ IF (iflag_rrtm == 0) THEN !!!! remettre 0 juste pour tester l'ancien rayt via rrtm !--- Mise a zero des tableaux output du rayonnement LW-AR4 ---------- DO k = 1, kflev + 1 DO i = 1, kdlon ! print *,'RADLWSW: boucle mise a zero i k',i,k ZFLUP(i, k) = 0. ZFLDN(i, k) = 0. ZFLUP0(i, k) = 0. ZFLDN0(i, k) = 0. ZLWFT0_i(i, k) = 0. ZFLUCUP_i(i, k) = 0. ZFLUCDWN_i(i, k) = 0. ENDDO ENDDO DO k = 1, kflev DO i = 1, kdlon zcool(i, k) = 0. zcool_volc(i, k) = 0. !NL zcool0(i, k) = 0. ENDDO ENDDO DO i = 1, kdlon ztoplw(i) = 0. zsollw(i) = 0. ztoplw0(i) = 0. zsollw0(i) = 0. zsollwdown(i) = 0. ztoplwad0aero(i) = 0. ztoplwadaero(i) = 0. ENDDO ! Old radiation scheme, used for AR4 runs ! average day-night ozone for longwave CALL LW_LMDAR4(& PPMB, PDP, & PPSOL, PDT0, PEMIS, & PTL, PTAVE, PWV, POZON(:, :, 1), PAER, & PCLDLD, PCLDLU, & PVIEW, & zcool, zcool0, & ztoplw, zsollw, ztoplw0, zsollw0, & zsollwdown, & ZFLUP, ZFLDN, ZFLUP0, ZFLDN0) !----- Mise a zero des tableaux output du rayonnement SW-AR4 DO k = 1, kflev + 1 DO i = 1, kdlon ZFSUP(i, k) = 0. ZFSDN(i, k) = 0. ZFSUP0(i, k) = 0. ZFSDN0(i, k) = 0. ZFSUPC0(i, k) = 0. ZFSDNC0(i, k) = 0. ZFLUPC0(i, k) = 0. ZFLDNC0(i, k) = 0. ZSWFT0_i(i, k) = 0. ZFCUP_i(i, k) = 0. ZFCDWN_i(i, k) = 0. ZFCCUP_i(i, k) = 0. ZFCCDWN_i(i, k) = 0. ZFLCCUP_i(i, k) = 0. ZFLCCDWN_i(i, k) = 0. zswadaero(i, k) = 0. !--NL ENDDO ENDDO DO k = 1, kflev DO i = 1, kdlon zheat(i, k) = 0. zheat_volc(i, k) = 0. zheat0(i, k) = 0. ENDDO ENDDO DO i = 1, kdlon zalbpla(i) = 0. ztopsw(i) = 0. zsolsw(i) = 0. ztopsw0(i) = 0. zsolsw0(i) = 0. ztopswadaero(i) = 0. zsolswadaero(i) = 0. ztopswaiaero(i) = 0. zsolswaiaero(i) = 0. ENDDO !--fraction of diffuse radiation in surface SW downward radiation !--not computed with old radiation scheme zsolswfdiff(:) = -999.999 ! print *,'Avant SW_LMDAR4: PSCT zrmu0 zfract',PSCT, zrmu0, zfract ! daylight ozone, if we have it, for short wave CALL SW_AEROAR4(PSCT, zrmu0, zfract, & PPMB, PDP, & PPSOL, PALBD, PALBP, & PTAVE, PWV, PQS, POZON(:, :, size(wo, 3)), PAER, & PCLDSW, PTAU, POMEGA, PCG, & zheat, zheat0, & zalbpla, ztopsw, zsolsw, ztopsw0, zsolsw0, & ZFSUP, ZFSDN, ZFSUP0, ZFSDN0, & tauaero, pizaero, cgaero, & PTAUA, POMEGAA, & ztopswadaero, zsolswadaero, & ztopswad0aero, zsolswad0aero, & ztopswaiaero, zsolswaiaero, & ztopsw_aero, ztopsw0_aero, & zsolsw_aero, zsolsw0_aero, & ztopswcf_aero, zsolswcf_aero, & ok_ade, ok_aie, flag_aerosol, flag_aerosol_strat) ZSWFT0_i(:, :) = ZFSDN0(:, :) - ZFSUP0(:, :) ZLWFT0_i(:, :) = -ZFLDN0(:, :) - ZFLUP0(:, :) DO i = 1, kdlon DO k = 1, kflev + 1 lwdn0 (iof + i, k) = ZFLDN0 (i, k) lwdn (iof + i, k) = ZFLDN (i, k) lwup0 (iof + i, k) = ZFLUP0 (i, k) lwup (iof + i, k) = ZFLUP (i, k) swdn0 (iof + i, k) = ZFSDN0 (i, k) swdn (iof + i, k) = ZFSDN (i, k) swup0 (iof + i, k) = ZFSUP0 (i, k) swup (iof + i, k) = ZFSUP (i, k) ENDDO ENDDO ELSE IF (iflag_rrtm == 1) THEN #ifdef CPP_RRTM ! if (prt_level.gt.10)WRITE(lunout,*)'CPP_RRTM=.T.' !===== iflag_rrtm=1, on passe dans SW via RECMWFL =============== DO k = 1, kflev+1 DO i = 1, kdlon ZEMTD_i(i,k)=0. ZEMTU_i(i,k)=0. ZTRSO_i(i,k)=0. ZTH_i(i,k)=0. ZLWFT_i(i,k)=0. ZSWFT_i(i,k)=0. ZFLUX_i(i,1,k)=0. ZFLUX_i(i,2,k)=0. ZFLUC_i(i,1,k)=0. ZFLUC_i(i,2,k)=0. ZFSDWN_i(i,k)=0. ZFCDWN_i(i,k)=0. ZFCCDWN_i(i,k)=0. ZFSUP_i(i,k)=0. ZFCUP_i(i,k)=0. ZFCCUP_i(i,k)=0. ZFLCCDWN_i(i,k)=0. ZFLCCUP_i(i,k)=0. ENDDO ENDDO !--OB !--aerosol TOT - anthropogenic+natural - index 2 !--aerosol NAT - natural only - index 1 DO i = 1, kdlon DO k = 1, kflev DO kk=1, NSW PTAU_TOT(i,kflev+1-k,kk)=tau_aero_sw_rrtm(i,k,2,kk) PPIZA_TOT(i,kflev+1-k,kk)=piz_aero_sw_rrtm(i,k,2,kk) PCGA_TOT(i,kflev+1-k,kk)=cg_aero_sw_rrtm(i,k,2,kk) PTAU_NAT(i,kflev+1-k,kk)=tau_aero_sw_rrtm(i,k,1,kk) PPIZA_NAT(i,kflev+1-k,kk)=piz_aero_sw_rrtm(i,k,1,kk) PCGA_NAT(i,kflev+1-k,kk)=cg_aero_sw_rrtm(i,k,1,kk) ENDDO ENDDO ENDDO !-end OB !--C. Kleinschmitt !--aerosol TOT - anthropogenic+natural - index 2 !--aerosol NAT - natural only - index 1 DO i = 1, kdlon DO k = 1, kflev DO kk=1, NLW PTAU_LW_TOT(i,kflev+1-k,kk)=tau_aero_lw_rrtm(i,k,2,kk) PTAU_LW_NAT(i,kflev+1-k,kk)=tau_aero_lw_rrtm(i,k,1,kk) ENDDO ENDDO ENDDO !-end C. Kleinschmitt DO i = 1, kdlon ZCTRSO(i,1)=0. ZCTRSO(i,2)=0. ZCEMTR(i,1)=0. ZCEMTR(i,2)=0. ZTRSOD(i)=0. ZLWFC(i,1)=0. ZLWFC(i,2)=0. ZSWFC(i,1)=0. ZSWFC(i,2)=0. PFSDNN(i)=0. PFSDNV(i)=0. DO kk = 1, NSW PSFSWDIR(i,kk)=0. PSFSWDIF(i,kk)=0. ENDDO ENDDO !----- Fin des mises a zero des tableaux output de RECMWF ------------------- ! GEMU(1:klon)=sin(rlatd(1:klon)) ! On met les donnees dans l'ordre des niveaux arpege paprs_i(:,1)=paprs(:,klev+1) DO k=1,klev paprs_i(1:klon,k+1) =paprs(1:klon,klev+1-k) pplay_i(1:klon,k) =pplay(1:klon,klev+1-k) cldfra_i(1:klon,k) =cldfra(1:klon,klev+1-k) PDP_i(1:klon,k) =PDP(1:klon,klev+1-k) t_i(1:klon,k) =t(1:klon,klev+1-k) q_i(1:klon,k) =q(1:klon,klev+1-k) qsat_i(1:klon,k) =qsat(1:klon,klev+1-k) flwc_i(1:klon,k) =flwc(1:klon,klev+1-k) fiwc_i(1:klon,k) =fiwc(1:klon,klev+1-k) ref_liq_i(1:klon,k) =ref_liq(1:klon,klev+1-k) ref_ice_i(1:klon,k) =ref_ice(1:klon,klev+1-k) !-OB ref_liq_pi_i(1:klon,k) =ref_liq_pi(1:klon,klev+1-k) ref_ice_pi_i(1:klon,k) =ref_ice_pi(1:klon,klev+1-k) ENDDO DO k=1,kflev POZON_i(1:klon,k,:)=POZON(1:klon,kflev+1-k,:) !!! POZON_i(1:klon,k)=POZON(1:klon,k) !!! on laisse 1=sol et klev=top ! print *,'Juste avant RECMWFL: k tsol temp',k,tsol,t(1,k) !!!!!!! Modif MPL 6.01.09 avec RRTM, on passe de 5 a 6 DO i=1,6 PAER_i(1:klon,k,i)=PAER(1:klon,kflev+1-k,i) ENDDO ENDDO ! print *,'RADLWSW: avant RECMWFL, RI0,rmu0=',solaire,rmu0 ! %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ! La version ARPEGE1D utilise differentes valeurs de la constante ! solaire suivant le rayonnement utilise. ! A controler ... ! SOLAR FLUX AT THE TOP (/YOMPHY3/) ! introduce season correction !-------------------------------------- ! RII0 = RIP0 ! IF(LRAYFM) ! RII0 = RIP0M ! =rip0m if Morcrette non-each time step call. ! IF(LRAYFM15) ! RII0 = RIP0M15 ! =rip0m if Morcrette non-each time step call. RII0=solaire/zdist/zdist ! %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ! Ancien appel a RECMWF (celui du cy25) ! CALL RECMWF (ist , iend, klon , ktdia , klev , kmode , ! s PALBD , PALBP , paprs_i , pplay_i , RCO2 , cldfra_i, ! s POZON_i , PAER_i , PDP_i , PEMIS , GEMU , rmu0, ! s q_i , qsat_i , fiwc_i , flwc_i , zmasq , t_i ,tsol, ! s ZEMTD_i , ZEMTU_i , ZTRSO_i , ! s ZTH_i , ZCTRSO , ZCEMTR , ZTRSOD , ! s ZLWFC , ZLWFT_i , ZSWFC , ZSWFT_i , ! s ZFLUX_i , ZFLUC_i , ZFSDWN_i, ZFSUP_i , ZFCDWN_i,ZFCUP_i) ! s 'RECMWF ') IF (lldebug) THEN CALL writefield_phy('paprs_i',paprs_i,klev+1) CALL writefield_phy('pplay_i',pplay_i,klev) CALL writefield_phy('cldfra_i',cldfra_i,klev) CALL writefield_phy('pozon_i',POZON_i,klev) CALL writefield_phy('paer_i',PAER_i,klev) CALL writefield_phy('pdp_i',PDP_i,klev) CALL writefield_phy('q_i',q_i,klev) CALL writefield_phy('qsat_i',qsat_i,klev) CALL writefield_phy('fiwc_i',fiwc_i,klev) CALL writefield_phy('flwc_i',flwc_i,klev) CALL writefield_phy('t_i',t_i,klev) CALL writefield_phy('palbd_new',PALBD_NEW,NSW) CALL writefield_phy('palbp_new',PALBP_NEW,NSW) ENDIF ! Nouvel appel a RECMWF (celui du cy32t0) CALL RECMWF_AERO (ist , iend, klon , ktdia , klev , kmode ,& PALBD_NEW,PALBP_NEW, paprs_i , pplay_i , RCO2 , cldfra_i,& POZON_i , PAER_i , PDP_i , PEMIS , rmu0 ,& q_i , qsat_i , fiwc_i , flwc_i , zmasq , t_i ,tsol,& ref_liq_i, ref_ice_i, & ref_liq_pi_i, ref_ice_pi_i, & ! rajoute par OB pour diagnostiquer effet indirect ZEMTD_i , ZEMTU_i , ZTRSO_i ,& ZTH_i , ZCTRSO , ZCEMTR , ZTRSOD ,& ZLWFC , ZLWFT_i , ZSWFC , ZSWFT_i ,& PSFSWDIR , PSFSWDIF, PFSDNN , PFSDNV ,& PPIZA_TOT, PCGA_TOT,PTAU_TOT,& PPIZA_NAT, PCGA_NAT,PTAU_NAT, & ! rajoute par OB pour diagnostiquer effet direct PTAU_LW_TOT, PTAU_LW_NAT, & ! rajoute par C. Kleinschmitt ZFLUX_i , ZFLUC_i ,& ZFSDWN_i , ZFSUP_i , ZFCDWN_i, ZFCUP_i, ZFCCDWN_i, ZFCCUP_i, ZFLCCDWN_i, ZFLCCUP_i, & ZTOPSWADAERO,ZSOLSWADAERO,& ! rajoute par OB pour diagnostics ZTOPSWAD0AERO,ZSOLSWAD0AERO,& ZTOPSWAIAERO,ZSOLSWAIAERO, & ZTOPSWCF_AERO,ZSOLSWCF_AERO, & ZSWADAERO, & !--NL ZTOPLWADAERO,ZSOLLWADAERO,& ! rajoute par C. Kleinscmitt pour LW diagnostics ZTOPLWAD0AERO,ZSOLLWAD0AERO,& ZTOPLWAIAERO,ZSOLLWAIAERO, & ZLWADAERO, & !--NL volmip_solsw, flag_volc_surfstrat, & !--VOLMIP ok_ade, ok_aie, ok_volcan, flag_aerosol,flag_aerosol_strat, flag_aer_feedback) ! flags aerosols !--OB diagnostics ! & PTOPSWAIAERO,PSOLSWAIAERO,& ! & PTOPSWCFAERO,PSOLSWCFAERO,& ! & PSWADAERO,& !--NL !!--LW diagnostics CK ! & PTOPLWADAERO,PSOLLWADAERO,& ! & PTOPLWAD0AERO,PSOLLWAD0AERO,& ! & PTOPLWAIAERO,PSOLLWAIAERO,& ! & PLWADAERO,& !--NL !!..end ! & ok_ade, ok_aie, ok_volcan, flag_aerosol,flag_aerosol_strat,& ! & flag_aer_feedback) ! print *,'RADLWSW: apres RECMWF' IF (lldebug) THEN CALL writefield_phy('zemtd_i',ZEMTD_i,klev+1) CALL writefield_phy('zemtu_i',ZEMTU_i,klev+1) CALL writefield_phy('ztrso_i',ZTRSO_i,klev+1) CALL writefield_phy('zth_i',ZTH_i,klev+1) CALL writefield_phy('zctrso',ZCTRSO,2) CALL writefield_phy('zcemtr',ZCEMTR,2) CALL writefield_phy('ztrsod',ZTRSOD,1) CALL writefield_phy('zlwfc',ZLWFC,2) CALL writefield_phy('zlwft_i',ZLWFT_i,klev+1) CALL writefield_phy('zswfc',ZSWFC,2) CALL writefield_phy('zswft_i',ZSWFT_i,klev+1) CALL writefield_phy('psfswdir',PSFSWDIR,6) CALL writefield_phy('psfswdif',PSFSWDIF,6) CALL writefield_phy('pfsdnn',PFSDNN,1) CALL writefield_phy('pfsdnv',PFSDNV,1) CALL writefield_phy('ppiza_dst',PPIZA_TOT,klev) CALL writefield_phy('pcga_dst',PCGA_TOT,klev) CALL writefield_phy('ptaurel_dst',PTAU_TOT,klev) CALL writefield_phy('zflux_i',ZFLUX_i,klev+1) CALL writefield_phy('zfluc_i',ZFLUC_i,klev+1) CALL writefield_phy('zfsdwn_i',ZFSDWN_i,klev+1) CALL writefield_phy('zfsup_i',ZFSUP_i,klev+1) CALL writefield_phy('zfcdwn_i',ZFCDWN_i,klev+1) CALL writefield_phy('zfcup_i',ZFCUP_i,klev+1) ENDIF ! --------- ! --------- ! On retablit l'ordre des niveaux lmd pour les tableaux de sortie ! D autre part, on multiplie les resultats SW par fract pour etre coherent ! avec l ancien rayonnement AR4. Si nuit, fract=0 donc pas de ! rayonnement SW. (MPL 260609) DO k=0,klev DO i=1,klon ZEMTD(i,k+1) = ZEMTD_i(i,k+1) ZEMTU(i,k+1) = ZEMTU_i(i,k+1) ZTRSO(i,k+1) = ZTRSO_i(i,k+1) ZTH(i,k+1) = ZTH_i(i,k+1) ! ZLWFT(i,k+1) = ZLWFT_i(i,klev+1-k) ! ZSWFT(i,k+1) = ZSWFT_i(i,klev+1-k) ZFLUP(i,k+1) = ZFLUX_i(i,1,k+1) ZFLDN(i,k+1) = ZFLUX_i(i,2,k+1) ZFLUP0(i,k+1) = ZFLUC_i(i,1,k+1) ZFLDN0(i,k+1) = ZFLUC_i(i,2,k+1) ZFSDN(i,k+1) = ZFSDWN_i(i,k+1)*fract(i) ZFSDN0(i,k+1) = ZFCDWN_i(i,k+1)*fract(i) ZFSDNC0(i,k+1)= ZFCCDWN_i(i,k+1)*fract(i) ZFSUP (i,k+1) = ZFSUP_i(i,k+1)*fract(i) ZFSUP0(i,k+1) = ZFCUP_i(i,k+1)*fract(i) ZFSUPC0(i,k+1)= ZFCCUP_i(i,k+1)*fract(i) ZFLDNC0(i,k+1)= ZFLCCDWN_i(i,k+1) ZFLUPC0(i,k+1)= ZFLCCUP_i(i,k+1) IF (ok_volcan) THEN ZSWADAERO(i,k+1)=ZSWADAERO(i,k+1)*fract(i) !--NL ENDIF ! Nouveau calcul car visiblement ZSWFT et ZSWFC sont nuls dans RRTM cy32 ! en sortie de radlsw.F90 - MPL 7.01.09 ZSWFT(i,k+1) = (ZFSDWN_i(i,k+1)-ZFSUP_i(i,k+1))*fract(i) ZSWFT0_i(i,k+1) = (ZFCDWN_i(i,k+1)-ZFCUP_i(i,k+1))*fract(i) ! WRITE(*,'("FSDN FSUP FCDN FCUP: ",4E12.5)') ZFSDWN_i(i,k+1),& ! ZFSUP_i(i,k+1),ZFCDWN_i(i,k+1),ZFCUP_i(i,k+1) ZLWFT(i,k+1) =-ZFLUX_i(i,2,k+1)-ZFLUX_i(i,1,k+1) ZLWFT0_i(i,k+1)=-ZFLUC_i(i,2,k+1)-ZFLUC_i(i,1,k+1) ! print *,'FLUX2 FLUX1 FLUC2 FLUC1',ZFLUX_i(i,2,k+1),& ! & ZFLUX_i(i,1,k+1),ZFLUC_i(i,2,k+1),ZFLUC_i(i,1,k+1) ENDDO ENDDO !--ajout OB ZTOPSWADAERO(:) =ZTOPSWADAERO(:) *fract(:) ZSOLSWADAERO(:) =ZSOLSWADAERO(:) *fract(:) ZTOPSWAD0AERO(:)=ZTOPSWAD0AERO(:)*fract(:) ZSOLSWAD0AERO(:)=ZSOLSWAD0AERO(:)*fract(:) ZTOPSWAIAERO(:) =ZTOPSWAIAERO(:) *fract(:) ZSOLSWAIAERO(:) =ZSOLSWAIAERO(:) *fract(:) ZTOPSWCF_AERO(:,1)=ZTOPSWCF_AERO(:,1)*fract(:) ZTOPSWCF_AERO(:,2)=ZTOPSWCF_AERO(:,2)*fract(:) ZTOPSWCF_AERO(:,3)=ZTOPSWCF_AERO(:,3)*fract(:) ZSOLSWCF_AERO(:,1)=ZSOLSWCF_AERO(:,1)*fract(:) ZSOLSWCF_AERO(:,2)=ZSOLSWCF_AERO(:,2)*fract(:) ZSOLSWCF_AERO(:,3)=ZSOLSWCF_AERO(:,3)*fract(:) ! --------- ! --------- ! On renseigne les champs LMDz, pour avoir la meme chose qu'en sortie de ! LW_LMDAR4 et SW_LMDAR4 !--fraction of diffuse radiation in surface SW downward radiation DO i = 1, kdlon IF (fract(i).GT.0.0) THEN zdir=SUM(PSFSWDIR(i,:)) zdif=SUM(PSFSWDIF(i,:)) zsolswfdiff(i) = zdif/(zdir+zdif) ELSE !--night zsolswfdiff(i) = 1.0 ENDIF ENDDO DO i = 1, kdlon zsolsw(i) = ZSWFT(i,1) zsolsw0(i) = ZSWFT0_i(i,1) ! zsolsw0(i) = ZFSDN0(i,1) -ZFSUP0(i,1) ztopsw(i) = ZSWFT(i,klev+1) ztopsw0(i) = ZSWFT0_i(i,klev+1) ! ztopsw0(i) = ZFSDN0(i,klev+1)-ZFSUP0(i,klev+1) ! zsollw(i) = ZFLDN(i,1) -ZFLUP(i,1) ! zsollw0(i) = ZFLDN0(i,1) -ZFLUP0(i,1) ! ztoplw(i) = ZFLDN(i,klev+1) -ZFLUP(i,klev+1) ! ztoplw0(i) = ZFLDN0(i,klev+1)-ZFLUP0(i,klev+1) zsollw(i) = ZLWFT(i,1) zsollw0(i) = ZLWFT0_i(i,1) ztoplw(i) = ZLWFT(i,klev+1)*(-1) ztoplw0(i) = ZLWFT0_i(i,klev+1)*(-1) IF (fract(i) == 0.) THEN !!!!! A REVOIR MPL (20090630) ca n a pas de sens quand fract=0 ! pas plus que dans le sw_AR4 zalbpla(i) = 1.0e+39 ELSE zalbpla(i) = ZFSUP(i,klev+1)/ZFSDN(i,klev+1) ENDIF !!! 5 juin 2015 !!! Correction MP bug RRTM zsollwdown(i)= -1.*ZFLDN(i,1) ENDDO ! PRINT*,'OK2' !--add VOLMIP (surf cool or strat heat activate) IF (flag_volc_surfstrat > 0) THEN DO i = 1, kdlon zsolsw(i) = volmip_solsw(i)*fract(i) ENDDO ENDIF ! extrait de SW_AR4 ! DO k = 1, KFLEV ! kpl1 = k+1 ! DO i = 1, KDLON ! PHEAT(i,k) = -(ZFSUP(i,kpl1)-ZFSUP(i,k)) -(ZFSDN(i,k)-ZFSDN(i,kpl1)) ! PHEAT(i,k) = PHEAT(i,k) * RDAY*RG/RCPD / PDP(i,k) ! ZLWFT(klon,k),ZSWFT DO k=1,kflev DO i=1,kdlon zheat(i,k)=(ZSWFT(i,k+1)-ZSWFT(i,k))*RDAY*RG/RCPD/PDP(i,k) zheat0(i,k)=(ZSWFT0_i(i,k+1)-ZSWFT0_i(i,k))*RDAY*RG/RCPD/PDP(i,k) zcool(i,k)=(ZLWFT(i,k)-ZLWFT(i,k+1))*RDAY*RG/RCPD/PDP(i,k) zcool0(i,k)=(ZLWFT0_i(i,k)-ZLWFT0_i(i,k+1))*RDAY*RG/RCPD/PDP(i,k) IF (ok_volcan) THEN zheat_volc(i,k)=(ZSWADAERO(i,k+1)-ZSWADAERO(i,k))*RG/RCPD/PDP(i,k) !NL zcool_volc(i,k)=(ZLWADAERO(i,k)-ZLWADAERO(i,k+1))*RG/RCPD/PDP(i,k) !NL ENDIF ! print *,'heat cool heat0 cool0 ',zheat(i,k),zcool(i,k),zheat0(i,k),zcool0(i,k) ! ZFLUCUP_i(i,k)=ZFLUC_i(i,1,k) ! ZFLUCDWN_i(i,k)=ZFLUC_i(i,2,k) ENDDO ENDDO #else abort_message = "You should compile with -rrtm if running with iflag_rrtm=1" CALL abort_physic(modname, abort_message, 1) #endif !====================================================================== ! AI fev 2021 ELSE IF(iflag_rrtm == 2) THEN PRINT*, 'Traitement cas iflag_rrtm = ', iflag_rrtm ! PRINT*,'Mise a zero des flux ' #ifdef CPP_ECRAD DO k = 1, kflev+1 DO i = 1, kdlon ZEMTD_i(i,k)=0. ZEMTU_i(i,k)=0. ZTRSO_i(i,k)=0. ZTH_i(i,k)=0. ZLWFT_i(i,k)=0. ZSWFT_i(i,k)=0. ZFLUX_i(i,1,k)=0. ZFLUX_i(i,2,k)=0. ZFLUC_i(i,1,k)=0. ZFLUC_i(i,2,k)=0. ZFSDWN_i(i,k)=0. ZFCDWN_i(i,k)=0. ZFCCDWN_i(i,k)=0. ZFSUP_i(i,k)=0. ZFCUP_i(i,k)=0. ZFCCUP_i(i,k)=0. ZFLCCDWN_i(i,k)=0. ZFLCCUP_i(i,k)=0. ENDDO ENDDO ! AI ATTENTION Aerosols A REVOIR DO i = 1, kdlon DO k = 1, kflev DO kk= 1, naero_spc ! DO kk=1, NSW ! PTAU_TOT(i,kflev+1-k,kk)=tau_aero_sw_rrtm(i,k,2,kk) ! PPIZA_TOT(i,kflev+1-k,kk)=piz_aero_sw_rrtm(i,k,2,kk) ! PCGA_TOT(i,kflev+1-k,kk)=cg_aero_sw_rrtm(i,k,2,kk) ! PTAU_NAT(i,kflev+1-k,kk)=tau_aero_sw_rrtm(i,k,1,kk) ! PPIZA_NAT(i,kflev+1-k,kk)=piz_aero_sw_rrtm(i,k,1,kk) ! PCGA_NAT(i,kflev+1-k,kk)=cg_aero_sw_rrtm(i,k,1,kk) ! ZAEROSOL(i,kflev+1-k,kk)=m_allaer(i,k,kk) ZAEROSOL(i,kflev+1-k,kk)=m_allaer(i,k,kk) ENDDO ENDDO ENDDO !-end OB ! DO i = 1, kdlon ! DO k = 1, kflev ! DO kk=1, NLW ! PTAU_LW_TOT(i,kflev+1-k,kk)=tau_aero_lw_rrtm(i,k,2,kk) ! PTAU_LW_NAT(i,kflev+1-k,kk)=tau_aero_lw_rrtm(i,k,1,kk) ! ENDDO ! ENDDO ! ENDDO !-end C. Kleinschmitt DO i = 1, kdlon ZCTRSO(i,1)=0. ZCTRSO(i,2)=0. ZCEMTR(i,1)=0. ZCEMTR(i,2)=0. ZTRSOD(i)=0. ZLWFC(i,1)=0. ZLWFC(i,2)=0. ZSWFC(i,1)=0. ZSWFC(i,2)=0. PFSDNN(i)=0. PFSDNV(i)=0. DO kk = 1, NSW PSFSWDIR(i,kk)=0. PSFSWDIF(i,kk)=0. ENDDO ENDDO !----- Fin des mises a zero des tableaux output ------------------- ! On met les donnees dans l'ordre des niveaux ecrad ! PRINT*,'On inverse sur la verticale ' paprs_i(:,1)=paprs(:,klev+1) DO k=1,klev paprs_i(1:klon,k+1) =paprs(1:klon,klev+1-k) pplay_i(1:klon,k) =pplay(1:klon,klev+1-k) cldfra_i(1:klon,k) =cldfra(1:klon,klev+1-k) PDP_i(1:klon,k) =PDP(1:klon,klev+1-k) t_i(1:klon,k) =t(1:klon,klev+1-k) q_i(1:klon,k) =q(1:klon,klev+1-k) qsat_i(1:klon,k) =qsat(1:klon,klev+1-k) flwc_i(1:klon,k) =flwc(1:klon,klev+1-k) fiwc_i(1:klon,k) =fiwc(1:klon,klev+1-k) ref_liq_i(1:klon,k) =ref_liq(1:klon,klev+1-k)*1.0e-6 ref_ice_i(1:klon,k) =ref_ice(1:klon,klev+1-k)*1.0e-6 !-OB ref_liq_pi_i(1:klon,k) =ref_liq_pi(1:klon,klev+1-k) ref_ice_pi_i(1:klon,k) =ref_ice_pi(1:klon,klev+1-k) ENDDO DO k=1,kflev POZON_i(1:klon,k,:)=POZON(1:klon,kflev+1-k,:) ! ZO3_DP_i(1:klon,k)=ZO3_DP(1:klon,kflev+1-k) ! DO i=1,6 PAER_i(1:klon,k,:)=PAER(1:klon,kflev+1-k,:) ! ENDDO ENDDO ! AI 11.2021 ! Calcul de ZTH_i (temp aux interfaces 1:klev+1) ! IFS currently sets the half-level temperature at the surface to be ! equal to the skin temperature. The radiation scheme takes as input ! only the half-level temperatures and assumes the Planck function to ! vary linearly in optical depth between half levels. In the lowest ! atmospheric layer, where the atmospheric temperature can be much ! cooler than the skin temperature, this can lead to significant ! differences between the effective temperature of this lowest layer ! and the true value in the model. ! We may approximate the temperature profile in the lowest model level ! as piecewise linear between the top of the layer T[k-1/2], the ! centre of the layer T[k] and the base of the layer Tskin. The mean ! temperature of the layer is then 0.25*T[k-1/2] + 0.5*T[k] + ! 0.25*Tskin, which can be achieved by setting the atmospheric ! temperature at the half-level corresponding to the surface as ! follows: ! AI ATTENTION fais dans interface radlw !thermodynamics%temperature_hl(KIDIA:KFDIA,KLEV+1) & ! & = PTEMPERATURE(KIDIA:KFDIA,KLEV) & ! & + 0.5_JPRB * (PTEMPERATURE_H(KIDIA:KFDIA,KLEV+1) & ! & -PTEMPERATURE_H(KIDIA:KFDIA,KLEV)) DO K=2,KLEV DO i = 1, kdlon ZTH_i(i,K)=& (t_i(i,K-1)*pplay_i(i,K-1)*(pplay_i(i,K)-paprs_i(i,K))& +t_i(i,K)*pplay_i(i,K)*(paprs_i(i,K)-pplay_i(i,K-1)))& *(1.0/(paprs_i(i,K)*(pplay_i(i,K)-pplay_i(i,K-1)))) ENDDO ENDDO DO i = 1, kdlon ! Sommet ZTH_i(i,1)=t_i(i,1)-pplay_i(i,1)*(t_i(i,1)-ZTH_i(i,2))& /(pplay_i(i,1)-paprs_i(i,2)) ! Vers le sol ZTH_i(i,KLEV+1)=t_i(i,KLEV) + 0.5 * & (tsol(i) - ZTH_i(i,KLEV)) ENDDO print *,'RADLWSW: avant RADIATION_SCHEME ' ! AI mars 2022 SOLARIRAD = solaire/zdist/zdist !! diagnos pour la comparaison a la version offline !!! - Gas en VMR pour offline et MMR pour online !!! - on utilise pour solarirrad une valeur constante IF (lldebug_for_offline) THEN SOLARIRAD = 1366.0896 ZCH4_off = CH4_ppb*1e-9 ZN2O_off = N2O_ppb*1e-9 ZNO2_off = 0.0 ZCFC11_off = CFC11_ppt*1e-12 ZCFC12_off = CFC12_ppt*1e-12 ZHCFC22_off = 0.0 ZCCL4_off = 0.0 ZO2_off = 0.0 ZCO2_off = co2_ppm*1e-6 CALL writefield_phy('rmu0',rmu0,1) CALL writefield_phy('tsol',tsol,1) CALL writefield_phy('emissiv_out',ZEMIS,1) CALL writefield_phy('paprs_i',paprs_i,klev+1) CALL writefield_phy('ZTH_i',ZTH_i,klev+1) CALL writefield_phy('cldfra_i',cldfra_i,klev) CALL writefield_phy('q_i',q_i,klev) CALL writefield_phy('fiwc_i',fiwc_i,klev) CALL writefield_phy('flwc_i',flwc_i,klev) CALL writefield_phy('palbd_new',PALBD_NEW,NSW) CALL writefield_phy('palbp_new',PALBP_NEW,NSW) CALL writefield_phy('POZON',POZON_i(:,:,1),klev) CALL writefield_phy('ZCO2',ZCO2_off,klev) CALL writefield_phy('ZCH4',ZCH4_off,klev) CALL writefield_phy('ZN2O',ZN2O_off,klev) CALL writefield_phy('ZO2',ZO2_off,klev) CALL writefield_phy('ZNO2',ZNO2_off,klev) CALL writefield_phy('ZCFC11',ZCFC11_off,klev) CALL writefield_phy('ZCFC12',ZCFC12_off,klev) CALL writefield_phy('ZHCFC22',ZHCFC22_off,klev) CALL writefield_phy('ZCCL4',ZCCL4_off,klev) CALL writefield_phy('ref_liq_i',ref_liq_i,klev) CALL writefield_phy('ref_ice_i',ref_ice_i,klev) endif ! lldebug_for_offline IF (namelist_ecrad_file.EQ.'namelist_ecrad') THEN PRINT*,' 1er apell Ecrad : ok_3Deffect, namelist_ecrad_file = ', & ok_3Deffect, namelist_ecrad_file CALL RADIATION_SCHEME & (ist, iend, klon, klev, naero_spc, NSW, & namelist_ecrad_file, ok_3Deffect, & debut, ok_volcan, flag_aerosol_strat, & day_cur, current_time, & ! Cste solaire/(d_Terre-Soleil)**2 SOLARIRAD, & ! Cos(angle zin), temp sol rmu0, tsol, & ! Albedo diffuse et directe PALBD_NEW,PALBP_NEW, & ! Emessivite : PEMIS_WINDOW (???), & ZEMIS, ZEMISW, & ! longitude(rad), sin(latitude), PMASQ_ ??? ZGELAM, ZGEMU, & ! Temp et pres aux interf, vapeur eau, Satur spec humid paprs_i, ZTH_i, q_i, qsat_i, & ! Gas ZCO2, ZCH4, ZN2O, ZNO2, ZCFC11, ZCFC12, ZHCFC22, & ZCCL4, POZON_i(:,:,1), ZO2, & ! nuages : cldfra_i, flwc_i, fiwc_i, ZQ_SNOW, & ! rayons effectifs des gouttelettes ref_liq_i, ref_ice_i, & ! aerosols ZAEROSOL_OLD, ZAEROSOL, & ! Outputs ! Net flux : ZSWFT_i, ZLWFT_i, ZSWFT0_ii, ZLWFT0_ii, & ! DWN flux : ZFSDWN_i, ZFLUX_i(:,2,:), ZFCDWN_i, ZFLUC_i(:,2,:), & ! UP flux : ZFSUP_i, ZFLUX_i(:,1,:), ZFCUP_i, ZFLUC_i(:,1,:), & ! Surf Direct flux : ATTENTION ZFLUX_DIR, ZFLUX_DIR_CLEAR, ZFLUX_DIR_INTO_SUN, & ! UV and para flux ZFLUX_UV, ZFLUX_PAR, ZFLUX_PAR_CLEAR, & ! & ZFLUX_SW_DN_TOA, ZEMIS_OUT, ZLWDERIVATIVE, & PSFSWDIF, PSFSWDIR, & cloud_cover_sw) else PRINT*,' 2e apell Ecrad : ok_3Deffect, namelist_ecrad_file = ', & ok_3Deffect, namelist_ecrad_file CALL RADIATION_SCHEME_S2 & (ist, iend, klon, klev, naero_grp, NSW, & namelist_ecrad_file, ok_3Deffect, & debut, ok_volcan, flag_aerosol_strat, & day_cur, current_time, & ! Cste solaire/(d_Terre-Soleil)**2 SOLARIRAD, & ! Cos(angle zin), temp sol rmu0, tsol, & ! Albedo diffuse et directe PALBD_NEW,PALBP_NEW, & ! Emessivite : PEMIS_WINDOW (???), & ZEMIS, ZEMISW, & ! longitude(rad), sin(latitude), PMASQ_ ??? ZGELAM, ZGEMU, & ! Temp et pres aux interf, vapeur eau, Satur spec humid paprs_i, ZTH_i, q_i, qsat_i, & ! Gas ZCO2, ZCH4, ZN2O, ZNO2, ZCFC11, ZCFC12, ZHCFC22, & ZCCL4, POZON_i(:,:,1), ZO2, & ! nuages : cldfra_i, flwc_i, fiwc_i, ZQ_SNOW, & ! rayons effectifs des gouttelettes ref_liq_i, ref_ice_i, & ! aerosols ZAEROSOL_OLD, ZAEROSOL, & ! Outputs ! Net flux : ZSWFT_i, ZLWFT_i, ZSWFT0_ii, ZLWFT0_ii, & ! DWN flux : ZFSDWN_i, ZFLUX_i(:,2,:), ZFCDWN_i, ZFLUC_i(:,2,:), & ! UP flux : ZFSUP_i, ZFLUX_i(:,1,:), ZFCUP_i, ZFLUC_i(:,1,:), & ! Surf Direct flux : ATTENTION ZFLUX_DIR, ZFLUX_DIR_CLEAR, ZFLUX_DIR_INTO_SUN, & ! UV and para flux ZFLUX_UV, ZFLUX_PAR, ZFLUX_PAR_CLEAR, & ! & ZFLUX_SW_DN_TOA, ZEMIS_OUT, ZLWDERIVATIVE, & PSFSWDIF, PSFSWDIR, & cloud_cover_sw) endif print *,'========= RADLWSW: apres RADIATION_SCHEME ==================== ' IF (lldebug_for_offline) THEN CALL writefield_phy('FLUX_LW',ZLWFT_i,klev+1) CALL writefield_phy('FLUX_LW_CLEAR',ZLWFT0_ii,klev+1) CALL writefield_phy('FLUX_SW',ZSWFT_i,klev+1) CALL writefield_phy('FLUX_SW_CLEAR',ZSWFT0_ii,klev+1) CALL writefield_phy('FLUX_DN_SW',ZFSDWN_i,klev+1) CALL writefield_phy('FLUX_DN_LW',ZFLUX_i(:,2,:),klev+1) CALL writefield_phy('FLUX_DN_SW_CLEAR',ZFCDWN_i,klev+1) CALL writefield_phy('FLUX_DN_LW_CLEAR',ZFLUC_i(:,2,:),klev+1) CALL writefield_phy('PSFSWDIR',PSFSWDIR,6) CALL writefield_phy('PSFSWDIF',PSFSWDIF,6) CALL writefield_phy('FLUX_UP_LW',ZFLUX_i(:,1,:),klev+1) CALL writefield_phy('FLUX_UP_LW_CLEAR',ZFLUC_i(:,1,:),klev+1) CALL writefield_phy('FLUX_UP_SW',ZFSUP_i,klev+1) CALL writefield_phy('FLUX_UP_SW_CLEAR',ZFCUP_i,klev+1) endif ! --------- ! On retablit l'ordre des niveaux lmd pour les tableaux de sortie ! D autre part, on multiplie les resultats SW par fract pour etre coherent ! avec l ancien rayonnement AR4. Si nuit, fract=0 donc pas de ! rayonnement SW. (MPL 260609) PRINT*,'On retablit l ordre des niveaux verticaux pour LMDZ' PRINT*,'On multiplie les flux SW par fract et LW dwn par -1' DO k=0,klev DO i=1,klon ZEMTD(i,k+1) = ZEMTD_i(i,klev+1-k) ZEMTU(i,k+1) = ZEMTU_i(i,klev+1-k) ZTRSO(i,k+1) = ZTRSO_i(i,klev+1-k) ! ZTH(i,k+1) = ZTH_i(i,klev+1-k) ! AI ATTENTION ZLWFT(i,k+1) = ZLWFT_i(i,klev+1-k) ZSWFT(i,k+1) = ZSWFT_i(i,klev+1-k)*fract(i) ZSWFT0_i(i,k+1) = ZSWFT0_ii(i,klev+1-k)*fract(i) ZLWFT0_i(i,k+1) = ZLWFT0_ii(i,klev+1-k) ZFLUP(i,k+1) = ZFLUX_i(i,1,klev+1-k) ZFLDN(i,k+1) = -1.*ZFLUX_i(i,2,klev+1-k) ZFLUP0(i,k+1) = ZFLUC_i(i,1,klev+1-k) ZFLDN0(i,k+1) = -1.*ZFLUC_i(i,2,klev+1-k) ZFSDN(i,k+1) = ZFSDWN_i(i,klev+1-k)*fract(i) ZFSDN0(i,k+1) = ZFCDWN_i(i,klev+1-k)*fract(i) ZFSDNC0(i,k+1)= ZFCCDWN_i(i,klev+1-k)*fract(i) ZFSUP (i,k+1) = ZFSUP_i(i,klev+1-k)*fract(i) ZFSUP0(i,k+1) = ZFCUP_i(i,klev+1-k)*fract(i) ZFSUPC0(i,k+1)= ZFCCUP_i(i,klev+1-k)*fract(i) ZFLDNC0(i,k+1)= -1.*ZFLCCDWN_i(i,klev+1-k) ZFLUPC0(i,k+1)= ZFLCCUP_i(i,klev+1-k) IF (ok_volcan) THEN ZSWADAERO(i,k+1)=ZSWADAERO(i,klev+1-k)*fract(i) !--NL ENDIF ! Nouveau calcul car visiblement ZSWFT et ZSWFC sont nuls dans RRTM cy32 ! en sortie de radlsw.F90 - MPL 7.01.09 ! AI ATTENTION ! ZSWFT(i,k+1) = (ZFSDWN_i(i,k+1)-ZFSUP_i(i,k+1))*fract(i) ! ZSWFT0_i(i,k+1) = (ZFCDWN_i(i,k+1)-ZFCUP_i(i,k+1))*fract(i) ! ZLWFT(i,k+1) =-ZFLUX_i(i,2,k+1)-ZFLUX_i(i,1,k+1) ! ZLWFT0_i(i,k+1)=-ZFLUC_i(i,2,k+1)-ZFLUC_i(i,1,k+1) ENDDO ENDDO !--ajout OB ZTOPSWADAERO(:) =ZTOPSWADAERO(:) *fract(:) ZSOLSWADAERO(:) =ZSOLSWADAERO(:) *fract(:) ZTOPSWAD0AERO(:)=ZTOPSWAD0AERO(:)*fract(:) ZSOLSWAD0AERO(:)=ZSOLSWAD0AERO(:)*fract(:) ZTOPSWAIAERO(:) =ZTOPSWAIAERO(:) *fract(:) ZSOLSWAIAERO(:) =ZSOLSWAIAERO(:) *fract(:) ZTOPSWCF_AERO(:,1)=ZTOPSWCF_AERO(:,1)*fract(:) ZTOPSWCF_AERO(:,2)=ZTOPSWCF_AERO(:,2)*fract(:) ZTOPSWCF_AERO(:,3)=ZTOPSWCF_AERO(:,3)*fract(:) ZSOLSWCF_AERO(:,1)=ZSOLSWCF_AERO(:,1)*fract(:) ZSOLSWCF_AERO(:,2)=ZSOLSWCF_AERO(:,2)*fract(:) ZSOLSWCF_AERO(:,3)=ZSOLSWCF_AERO(:,3)*fract(:) ! --------- ! On renseigne les champs LMDz, pour avoir la meme chose qu'en sortie de ! LW_LMDAR4 et SW_LMDAR4 !--fraction of diffuse radiation in surface SW downward radiation DO i = 1, kdlon zdir=SUM(PSFSWDIR(i,:)) zdif=SUM(PSFSWDIF(i,:)) IF (fract(i).GT.0.0.AND.(zdir+zdif).gt.seuilmach) THEN zsolswfdiff(i) = zdif/(zdir+zdif) ELSE !--night zsolswfdiff(i) = 1.0 ENDIF ENDDO DO i = 1, kdlon zsolsw(i) = ZSWFT(i,1) zsolsw0(i) = ZSWFT0_i(i,1) ztopsw(i) = ZSWFT(i,klev+1) ztopsw0(i) = ZSWFT0_i(i,klev+1) zsollw(i) = ZLWFT(i,1) zsollw0(i) = ZLWFT0_i(i,1) ztoplw(i) = ZLWFT(i,klev+1)*(-1) ztoplw0(i) = ZLWFT0_i(i,klev+1)*(-1) zsollwdown(i)= -1.*ZFLDN(i,1) ENDDO DO k=1,kflev DO i=1,kdlon zheat(i,k)=(ZSWFT(i,k+1)-ZSWFT(i,k))*RDAY*RG/RCPD/PDP(i,k) zheat0(i,k)=(ZSWFT0_i(i,k+1)-ZSWFT0_i(i,k))*RDAY*RG/RCPD/PDP(i,k) zcool(i,k)=(ZLWFT(i,k)-ZLWFT(i,k+1))*RDAY*RG/RCPD/PDP(i,k) zcool0(i,k)=(ZLWFT0_i(i,k)-ZLWFT0_i(i,k+1))*RDAY*RG/RCPD/PDP(i,k) IF (ok_volcan) THEN zheat_volc(i,k)=(ZSWADAERO(i,k+1)-ZSWADAERO(i,k))*RG/RCPD/PDP(i,k) !NL zcool_volc(i,k)=(ZLWADAERO(i,k)-ZLWADAERO(i,k+1))*RG/RCPD/PDP(i,k) !NL ENDIF ENDDO ENDDO #endif PRINT*, 'Fin traitement ECRAD' ! Fin ECRAD ENDIF ! iflag_rrtm ! ecrad !====================================================================== DO i = 1, kdlon topsw(iof + i) = ztopsw(i) toplw(iof + i) = ztoplw(i) solsw(iof + i) = zsolsw(i) solswfdiff(iof + i) = zsolswfdiff(i) sollw(iof + i) = zsollw(i) sollwdown(iof + i) = zsollwdown(i) DO k = 1, kflev + 1 lwdn0 (iof + i, k) = ZFLDN0 (i, k) lwdn (iof + i, k) = ZFLDN (i, k) lwup0 (iof + i, k) = ZFLUP0 (i, k) lwup (iof + i, k) = ZFLUP (i, k) ENDDO topsw0(iof + i) = ztopsw0(i) toplw0(iof + i) = ztoplw0(i) solsw0(iof + i) = zsolsw0(i) sollw0(iof + i) = zsollw0(i) albpla(iof + i) = zalbpla(i) DO k = 1, kflev + 1 swdnc0(iof + i, k) = ZFSDNC0(i, k) swdn0 (iof + i, k) = ZFSDN0 (i, k) swdn (iof + i, k) = ZFSDN (i, k) swupc0(iof + i, k) = ZFSUPC0(i, k) swup0 (iof + i, k) = ZFSUP0 (i, k) swup (iof + i, k) = ZFSUP (i, k) lwdnc0(iof + i, k) = ZFLDNC0(i, k) lwupc0(iof + i, k) = ZFLUPC0(i, k) ENDDO ENDDO !-transform the aerosol forcings, if they have ! to be calculated IF (ok_ade) THEN DO i = 1, kdlon topswad_aero(iof + i) = ztopswadaero(i) topswad0_aero(iof + i) = ztopswad0aero(i) solswad_aero(iof + i) = zsolswadaero(i) solswad0_aero(iof + i) = zsolswad0aero(i) topsw_aero(iof + i, :) = ztopsw_aero(i, :) topsw0_aero(iof + i, :) = ztopsw0_aero(i, :) solsw_aero(iof + i, :) = zsolsw_aero(i, :) solsw0_aero(iof + i, :) = zsolsw0_aero(i, :) topswcf_aero(iof + i, :) = ztopswcf_aero(i, :) solswcf_aero(iof + i, :) = zsolswcf_aero(i, :) !-LW toplwad_aero(iof + i) = ztoplwadaero(i) toplwad0_aero(iof + i) = ztoplwad0aero(i) sollwad_aero(iof + i) = zsollwadaero(i) sollwad0_aero(iof + i) = zsollwad0aero(i) ENDDO ELSE DO i = 1, kdlon topswad_aero(iof + i) = 0.0 solswad_aero(iof + i) = 0.0 topswad0_aero(iof + i) = 0.0 solswad0_aero(iof + i) = 0.0 topsw_aero(iof + i, :) = 0. topsw0_aero(iof + i, :) = 0. solsw_aero(iof + i, :) = 0. solsw0_aero(iof + i, :) = 0. !-LW toplwad_aero(iof + i) = 0.0 sollwad_aero(iof + i) = 0.0 toplwad0_aero(iof + i) = 0.0 sollwad0_aero(iof + i) = 0.0 ENDDO ENDIF IF (ok_aie) THEN DO i = 1, kdlon topswai_aero(iof + i) = ztopswaiaero(i) solswai_aero(iof + i) = zsolswaiaero(i) !-LW toplwai_aero(iof + i) = ztoplwaiaero(i) sollwai_aero(iof + i) = zsollwaiaero(i) ENDDO ELSE DO i = 1, kdlon topswai_aero(iof + i) = 0.0 solswai_aero(iof + i) = 0.0 !-LW toplwai_aero(iof + i) = 0.0 sollwai_aero(iof + i) = 0.0 ENDDO ENDIF DO k = 1, kflev DO i = 1, kdlon ! scale factor to take into account the difference between ! dry air and watter vapour scpecifi! heat capacity zznormcp = 1.0 + RVTMP2 * PWV(i, k) heat(iof + i, k) = zheat(i, k) / zznormcp cool(iof + i, k) = zcool(i, k) / zznormcp heat0(iof + i, k) = zheat0(i, k) / zznormcp cool0(iof + i, k) = zcool0(i, k) / zznormcp IF(ok_volcan) THEN !NL heat_volc(iof + i, k) = zheat_volc(i, k) / zznormcp cool_volc(iof + i, k) = zcool_volc(i, k) / zznormcp ENDIF ENDDO ENDDO ENDDO ! j = 1, nb_gr IF (lldebug) THEN IF (0==1) THEN ! Verifs dans le cas 1D PRINT*, '================== Sortie de radlw =================' PRINT*, '******** LW LW LW *******************' PRINT*, 'ZLWFT =', ZLWFT PRINT*, 'ZLWFT0_i =', ZLWFT0_i PRINT*, 'ZFLUP0 =', ZFLUP0 PRINT*, 'ZFLDN0 =', ZFLDN0 PRINT*, 'ZFLDNC0 =', ZFLDNC0 PRINT*, 'ZFLUPC0 =', ZFLUPC0 PRINT*, '******** SW SW SW *******************' PRINT*, 'ZSWFT =', ZSWFT PRINT*, 'ZSWFT0_i =', ZSWFT0_i PRINT*, 'ZFSDN =', ZFSDN PRINT*, 'ZFSDN0 =', ZFSDN0 PRINT*, 'ZFSDNC0 =', ZFSDNC0 PRINT*, 'ZFSUP =', ZFSUP PRINT*, 'ZFSUP0 =', ZFSUP0 PRINT*, 'ZFSUPC0 =', ZFSUPC0 PRINT*, '******** LMDZ *******************' PRINT*, 'cool = ', cool PRINT*, 'heat = ', heat PRINT*, 'topsw = ', topsw PRINT*, 'toplw = ', toplw PRINT*, 'sollw = ', sollw PRINT*, 'solsw = ', solsw PRINT*, 'lwdn = ', lwdn PRINT*, 'lwup = ', lwup PRINT*, 'swdn = ', swdn PRINT*, 'swup =', swup endif ENDIF END SUBROUTINE radlwsw END MODULE radlwsw_m