MODULE sulfate_aer_mod ! microphysical routines based on UPMC aerosol model by Slimane Bekki ! adapted for stratospheric sulfate aerosol in LMDZ by Christoph Kleinschmitt CONTAINS !******************************************************************* SUBROUTINE STRACOMP_KELVIN(sh,t_seri,pplay) ! Aerosol H2SO4 weight fraction as a function of PH2O and temperature ! INPUT: ! sh: MMR of H2O ! t_seri: temperature (K) ! pplay: middle layer pression (Pa) ! Modified in modules: ! R2SO4: aerosol H2SO4 weight fraction (percent) ! R2SO4B: aerosol H2SO4 weight fraction (percent) for each aerosol bin ! DENSO4: aerosol density (gr/cm3) ! DENSO4B: aerosol density (gr/cm3)for each aerosol bin ! f_r_wet: factor for converting dry to wet radius ! assuming 'flat surface' composition (does not depend on aerosol size) ! f_r_wetB: factor for converting dry to wet radius ! assuming 'curved surface' composition (depends on aerosol size) USE dimphy, ONLY: klon,klev ! nb of longitude and altitude bands USE infotrac_phy, ONLY: nbtr_bin USE aerophys USE phys_local_var_mod, ONLY: R2SO4, R2SO4B, DENSO4, DENSO4B, f_r_wet, f_r_wetB USE strataer_local_var_mod, ONLY: RRSI ! WARNING: in phys_local_var_mod R2SO4B, DENSO4B, f_r_wetB (klon,klev,nbtr_bin) ! and dens_aer_dry must be declared somewhere IMPLICIT NONE REAL,DIMENSION(klon,klev),INTENT(IN) :: t_seri ! Temperature REAL,DIMENSION(klon,klev),INTENT(IN) :: pplay ! pression in the middle of each layer (Pa) REAL,DIMENSION(klon,klev),INTENT(IN) :: sh ! specific humidity (kg h2o/kg air) ! local variables INTEGER :: ilon,ilev,ik REAL, parameter :: rath2oair = mAIRmol/mH2Omol REAL, parameter :: third = 1./3. real :: pph2ogas(klon,klev) real :: temp, wpp, xa, surtens, mvh2o, radwet, fkelvin, pph2okel, r2so4ik, denso4ik !---------------------------------------- ! gas-phase h2o partial pressure (Pa) ! vmr=sh*rath2oair pph2ogas(:,:) = pplay(:,:)*sh(:,:)*rath2oair DO ilon=1,klon DO ilev=1,klev temp = max(t_seri(ilon,ilev),190.) temp = min(temp,300.) ! *** H2SO4-H2O flat surface *** !! equilibrium H2O pressure over pure flat liquid water (Pa) !! pflath2o=psh2o(temp) ! h2so4 weight percent(%) = f(P_h2o(Pa),T) R2SO4(ilon,ilev)=wph2so4(pph2ogas(ilon,ilev),temp) ! h2so4 mass fraction (099.99) F(I,J)=99.99 ENDDO ENDDO ENDIF DO I=1,klon DO J=1,klev TP=t_seri(I,J) IF (TP<175.1) TP=175.1 ! Partial pressure of H2O (mb) PH2O =PMB(I,J)*H2O(I,J) IF (PH2OXC16) PH2O=XC16 ! SIMPLE LINEAR INTERPOLATIONS CALL FIND(PH2O,TP,XC,YC,F,VAL,N,M) IF (PMB(I,J)>=10.0.AND.VAL<60.0) VAL=60.0 R2SO4(I,J)=VAL ENDIF ENDDO ENDDO END SUBROUTINE !**************************************************************** SUBROUTINE STRAACT(ACTSO4) ! H2SO4 ACTIVITY (GIAUQUE) AS A FUNCTION OF H2SO4 WP ! ---------------------------------------- ! INPUT: ! H2SO4: VMR of H2SO4 ! klon: number of latitude bands in the model domain ! klev: number of altitude bands in the model domain ! for IFS: perhaps add another dimension for longitude ! OUTPUT: ! ACTSO4: H2SO4 activity (percent) USE dimphy, ONLY: klon,klev USE phys_local_var_mod, ONLY: R2SO4 IMPLICIT NONE REAL ACTSO4(klon,klev) ! Working variables INTEGER NN,I,J,JX,JX1 REAL TC,TB,TA,XT PARAMETER (NN=109) REAL XC(NN), X(NN) ! H2SO4 activity DATA X/ & 0.0,0.25,0.78,1.437,2.19,3.07,4.03,5.04,6.08 & ,7.13,8.18,14.33,18.59,28.59,39.17,49.49 & ,102.4,157.8,215.7,276.9,341.6,409.8,481.5,556.6 & ,635.5,719.,808.,902.,1000.,1103.,1211.,1322.,1437.,1555. & ,1677.,1800.,1926.,2054.,2183.,2312.,2442.,2572.,2701.,2829. & ,2955.,3080.,3203.,3325.,3446.,3564.,3681.,3796.,3910.,4022. & ,4134.,4351.,4564.,4771.,4974.,5171.,5364.,5551.,5732.,5908. & ,6079.,6244.,6404.,6559.,6709.,6854.,6994.,7131.,7264.,7393. & ,7520.,7821.,8105.,8373.,8627.,8867.,9093.,9308.,9511.,9703. & ,9885.,10060.,10225.,10535.,10819.,11079.,11318.,11537. & ,11740.,12097.,12407.,12676.,12915.,13126.,13564.,13910. & ,14191.,14423.,14617.,14786.,10568.,15299.,15491.,15654. & ,15811./ ! H2SO4 weight fraction (percent) DATA XC/ & 100.0,99.982,99.963,99.945,99.927,99.908,99.890,99.872 & ,99.853,99.835,99.817,99.725,99.634,99.452,99.270 & ,99.090,98.196,97.319,96.457,95.610,94.777,93.959,93.156 & ,92.365,91.588,90.824,90.073,89.334,88.607,87.892,87.188 & ,86.495,85.814,85.143,84.482,83.832,83.191,82.560,81.939 & ,81.327,80.724,80.130,79.545,78.968,78.399,77.839,77.286 & ,76.741,76.204,75.675,75.152,74.637,74.129,73.628,73.133 & ,72.164,71.220,70.300,69.404,68.530,67.678,66.847,66.037 & ,65.245,64.472,63.718,62.981,62.261,61.557,60.868,60.195 & ,59.537,58.893,58.263,57.646,56.159,54.747,53.405,52.126 & ,50.908,49.745,48.634,47.572,46.555,45.580,44.646,43.749 & ,42.059,40.495,39.043,37.691,36.430,35.251,33.107,31.209 & ,29.517,27.999,26.629,23.728,21.397,19.482,17.882,16.525 & ,15.360,13.461,11.980,10.792,9.819,8.932/ DO I=1,klon DO J=1,klev ! HERE LINEAR INTERPOLATIONS XT=R2SO4(I,J) CALL POSACT(XT,XC,NN,JX) JX1=JX+1 IF(JX==0) THEN ACTSO4(I,J)=0.0 ELSE IF(JX>=NN) THEN ACTSO4(I,J)=15811.0 ELSE TC=XT -XC(JX) TB=X(JX1) -X(JX) TA=XC(JX1) -XC(JX) TA=TB/TA ACTSO4(I,J)=X(JX) + TA*TC ENDIF ENDDO ENDDO END SUBROUTINE !**************************************************************** SUBROUTINE DENH2SA(t_seri) ! AERSOL DENSITY AS A FUNCTION OF H2SO4 WEIGHT PERCENT AND T ! --------------------------------------------- ! VERY ROUGH APPROXIMATION (SEE FOR WATER IN HANDBOOK ! LINEAR 2% FOR 30 DEGREES with RESPECT TO WATER) ! INPUT: ! R2SO4: aerosol H2SO4 weight fraction (percent) ! t_seri: temperature (K) ! klon: number of latitude bands in the model domain ! klev: number of altitude bands in the model domain ! for IFS: perhaps add another dimension for longitude ! OUTPUT: ! DENSO4: aerosol mass density (gr/cm3 = aerosol mass/aerosol volume) USE dimphy, ONLY: klon,klev USE phys_local_var_mod, ONLY: R2SO4, DENSO4 IMPLICIT NONE REAL,DIMENSION(klon,klev),INTENT(IN) :: t_seri ! Temperature INTEGER I,J ! Loop on model domain (2 dimension for UPMC model; 3 for IFS) DO I=1,klon DO J=1,klev ! RO AT 20C DENSO4(I,J)=0.78681252E-5*R2SO4(I,J)*R2SO4(I,J)+ 0.82185978E-2*R2SO4(I,J)+0.97968381 DENSO4(I,J)=DENSO4(I,J)* ( 1.0 - (t_seri(I,J)-293.0)*0.02/30.0 ) ENDDO ENDDO END SUBROUTINE !*********************************************************** SUBROUTINE FIND(X,Y,XC,YC,F,VAL,N,M) ! BI-LINEAR INTERPOLATION ! INPUT: ! X: Partial pressure of H2O (mb) ! Y: temperature (K) ! XC: Table partial pressure of H2O (mb) ! YC: Table temperature (K) ! F: Table aerosol H2SO4 weight fraction=f(XC,YC) (percent) ! OUTPUT: ! VAL: aerosol H2SO4 weight fraction (percent) IMPLICIT NONE INTEGER N,M REAL X,Y,XC(N),YC(M),F(N,M),VAL ! working variables INTEGER IERX,IERY,JX,JY,JXP1,JYP1 REAL SXY,SX1Y,SX1Y1,SXY1,TA,TB,T,UA,UB,U IERX=0 IERY=0 CALL POSITION(XC,X,N,JX,IERX) CALL POSITION(YC,Y,M,JY,IERY) IF(JX==0.OR.IERY==1) THEN VAL=99.99 RETURN ENDIF IF(JY==0.OR.IERX==1) THEN VAL=9.0 RETURN ENDIF JXP1=JX+1 JYP1=JY+1 SXY=F(JX, JY ) SX1Y=F(JXP1,JY ) SX1Y1=F(JXP1,JYP1) SXY1=F(JX, JYP1) ! x-slope. TA=X -XC(JX) TB=XC(JXP1)-XC(JX) T=TA/TB ! y-slope. UA=Y -YC(JY) UB=YC(JYP1)-YC(JY) U=UA/UB ! Use bilinear interpolation to determine function at point X,Y. VAL=(1.-T)*(1.-U)*SXY + T*(1.0-U)*SX1Y + T*U*SX1Y1 + (1.0-T)*U*SXY1 IF(VAL<9.0) VAL=9.0 IF(VAL>99.99) VAL=99.99 END SUBROUTINE !**************************************************************** SUBROUTINE POSITION(XC,X,N,JX,IER) IMPLICIT NONE INTEGER N,JX,IER,I REAL X,XC(N) IER=0 IF(XX(1)) THEN JX=0 ELSE DO I=1,N IF (XT>X(I)) GO TO 20 END DO 20 JX=I ENDIF END SUBROUTINE !******************************************************************** !----------------------------------------------------------------------- REAL function psh2so4(T) result(psh2so4_out) ! equilibrium H2SO4 pressure over pure H2SO4 solution (Pa) !---->Ayers et.al. (1980), GRL (7) pp 433-436 ! plus corrections for lower temperatures by Kulmala and Laaksonen (1990) ! and Noppel et al. (1990) IMPLICIT NONE REAL, INTENT(IN) :: T REAL, parameter :: & b1=1.01325e5, & b2=11.5, & b3=1.0156e4, & b4=0.38/545., & tref=360.15 ! saturation vapor pressure ( N/m2 = Pa = kg/(m.s2) ) psh2so4_out=b1*exp( -b2 +b3*( 1./tref-1./T & +b4*(1.+log(tref/T)-tref/T) ) ) END FUNCTION psh2so4 !----------------------------------------------------------------------- REAL function ndsh2so4(T) result(ndsh2so4_out) ! equilibrium H2SO4 number density over pure H2SO4 (molec/cm3) IMPLICIT NONE REAL, INTENT(IN) :: T REAL :: presat ! Boltzmann constant ( 1.38065e-23 J/K = m2⋅kg/(s2⋅K) ) ! akb idem in cm2⋅g/(s2⋅K) REAL, parameter :: akb=1.38065e-16 ! pure h2so4 saturation vapor pressure (Pa) presat=psh2so4(T) ! saturation number density (1/cm3) - (molec/cm3) ndsh2so4_out=presat*10./(akb*T) END FUNCTION ndsh2so4 !----------------------------------------------------------------------- REAL function psh2o(T) result(psh2o_out) ! equilibrium H2O pressure over pure liquid water (Pa) IMPLICIT NONE REAL, INTENT(IN) :: T IF(T>229.) THEN ! Preining et al., 1981 (from Kulmala et al., 1998) ! saturation vapor pressure (N/m2 = 1 Pa = 1 kg/(m·s2)) psh2o_out=exp( 77.34491296 -7235.424651/T & -8.2*log(T) + 5.7133e-3*T ) else ! Tabazadeh et al., 1997, parameterization for 185Vehkamaeki et al. (2002) IMPLICIT NONE REAL, INTENT(IN) :: T, so4mfrac REAL, parameter :: & a1= 0.7681724,& a2= 2.184714, & a3= 7.163002, & a4=-44.31447, & a5= 88.74606, & a6=-75.73729, & a7= 23.43228 REAL, parameter :: & b1= 1.808225e-3, & b2=-9.294656e-3, & b3=-3.742148e-2, & b4= 2.565321e-1, & b5=-5.362872e-1, & b6= 4.857736e-1, & b7=-1.629592e-1 REAL, parameter :: & c1=-3.478524e-6, & c2= 1.335867e-5, & c3= 5.195706e-5, & c4=-3.717636e-4, & c5= 7.990811e-4, & c6=-7.458060e-4, & c7= 2.581390e-4 REAL :: a,b,c,so4m2,so4m3,so4m4,so4m5,so4m6 so4m2=so4mfrac*so4mfrac so4m3=so4mfrac*so4m2 so4m4=so4mfrac*so4m3 so4m5=so4mfrac*so4m4 so4m6=so4mfrac*so4m5 a=+a1+a2*so4mfrac+a3*so4m2+a4*so4m3 & +a5*so4m4+a6*so4m5+a7*so4m6 b=+b1+b2*so4mfrac+b3*so4m2+b4*so4m3 & +b5*so4m4+b6*so4m5+b7*so4m6 c=+c1+c2*so4mfrac+c3*so4m2+c4*so4m3 & +c5*so4m4+c6*so4m5+c7*so4m6 density_out=(a+b*T+c*T*T) ! units are gm/cm**3 END FUNCTION density !----------------------------------------------------------------------- REAL function surftension(T,so4frac) result(surftension_out) ! calculation of surface tension (mN/meter) ! requires Temperature (T) and acid mole fraction (so4frac) !---->Vehkamaeki et al. (2002) IMPLICIT NONE REAL,INTENT(IN) :: T, so4frac REAL :: a,b,so4mfrac,so4m2,so4m3,so4m4,so4m5,so4sig REAL, parameter :: & a1= 0.11864, & a2=-0.11651, & a3= 0.76852, & a4=-2.40909, & a5= 2.95434, & a6=-1.25852 REAL, parameter :: & b1=-1.5709e-4, & b2= 4.0102e-4, & b3=-2.3995e-3, & b4= 7.611235e-3, & b5=-9.37386e-3, & b6= 3.89722e-3 REAL, parameter :: convfac=1.e3 ! convert from newton/m to dyne/cm REAL, parameter :: Mw=18.01528, Ma=98.079 ! so4 mass fraction so4mfrac=Ma*so4frac/( Ma*so4frac+Mw*(1.-so4frac) ) so4m2=so4mfrac*so4mfrac so4m3=so4mfrac*so4m2 so4m4=so4mfrac*so4m3 so4m5=so4mfrac*so4m4 a=+a1+a2*so4mfrac+a3*so4m2+a4*so4m3+a5*so4m4+a6*so4m5 b=+b1+b2*so4mfrac+b3*so4m2+b4*so4m3+b5*so4m4+b6*so4m5 so4sig=a+b*T surftension_out=so4sig*convfac END FUNCTION surftension !----------------------------------------------------------------------- REAL function wph2so4(pph2o,T) result(wph2so4_out) ! Calculates the equilibrium composition of h2so4 aerosols ! as a function of temperature and H2O pressure, using ! the parameterization of Tabazadeh et al., GRL, p1931, 1997. ! Parameters ! input: ! T.....temperature (K) ! pph2o..... amhbiant 2o pressure (Pa) ! output: ! wph2so4......sulfuric acid composition (weight percent wt % h2so4) ! = h2so4 mass fraction*100. IMPLICIT NONE REAL, INTENT(IN) :: pph2o, T REAL :: aw, rh, y1, y2, sulfmolal ! psh2o(T): equilibrium H2O pressure over pure liquid water (Pa) ! relative humidity rh=pph2o/psh2o(T) ! water activity ! aw=min( 0.999,max(1.e-3,rh) ) aw=min( 0.999999999,max(1.e-8,rh) ) ! composition ! calculation of h2so4 molality IF(aw <= 0.05 .AND. aw > 0.) THEN y1=12.372089320*aw**(-0.16125516114) & -30.490657554*aw -2.1133114241 y2=13.455394705*aw**(-0.19213122550) & -34.285174607*aw -1.7620073078 else IF(aw <= 0.85 .AND. aw > 0.05) THEN y1=11.820654354*aw**(-0.20786404244) & -4.8073063730*aw -5.1727540348 y2=12.891938068*aw**(-0.23233847708) & -6.4261237757*aw -4.9005471319 else y1=-180.06541028*aw**(-0.38601102592) & -93.317846778*aw +273.88132245 y2=-176.95814097*aw**(-0.36257048154) & -90.469744201*aw +267.45509988 end if ! h2so4 molality (m=moles of h2so4 (solute)/ kg of h2o(solvent)) sulfmolal = y1+((T-190.)*(y2-y1)/70.) ! for a solution containing mh2so4 and mh2o: ! sulfmolal = (mh2so4(gr)/h2so4_molar_mass(gr/mole)) / (mh2o(gr)*1.e-3) ! mh2o=1.e3*(mh2so4/Mh2so4)/sulfmolal=1.e3*mh2so4/(Mh2so4*sulfmolal) ! h2so4_mass_fraction = mfh2so4 = mh2so4/(mh2o + mh2so4) ! mh2o=mh2so4*(1-mfh2so4)/mfh2so4 ! combining the 2 equations ! 1.e3*mh2so4/(Mh2so4*sulfmolal) = mh2so4*(1-mfh2so4)/mfh2so4 ! 1.e3/(Mh2so4*sulfmolal) = (1-mfh2so4)/mfh2so4 ! 1000*mfh2so4 = (1-mfh2so4)*Mh2so4*sulfmolal ! mfh2so4*(1000.+Mh2so4*sulfmolal) = Mh2so4*sulfmolal ! mfh2so4 = Mh2so4*sulfmolal / (1000.+Mh2so4*sulfmolal) ! wph2so4 (% mass fraction)= 100.*Mh2so4*sulfmolal / (1000.+Mh2so4*sulfmolal) ! reCALL activity of i = a_i = P_i/P_pure_i and ! activity coefficient of i = gamma_i = a_i/X_i (X_i: mole fraction of i) ! so P_i = gamma_i*X_i*P_pure_i ! if ideal solution, gamma_i=1, P_i = X_i*P_pure_i ! h2so4 weight precent wph2so4_out = 9800.*sulfmolal/(98.*sulfmolal+1000.) ! PRINT*,rh,pph2o,psh2o(T),vpice(T) ! PRINT*,T,aw,sulfmolal,wph2so4_out wph2so4_out = max(wph2so4_out,15.) wph2so4_out = min(wph2so4_out,99.999) END FUNCTION wph2so4 !----------------------------------------------------------------------- REAL function solh2so4(T,xa) result(solh2so4_out) ! equilibrium h2so4 number density over H2SO4/H2O solution (molec/cm3) IMPLICIT NONE REAL, INTENT(IN) :: T, xa ! T(K) xa(H2SO4 mass fraction) REAL :: xw, a12,b12, cacta, presat xw=1.0-xa ! pure h2so4 saturation number density (molec/cm3) presat=ndsh2so4(T) ! compute activity of acid a12=5.672E3 -4.074E6/T +4.421E8/(T*T) b12=1./0.527 cacta=10.**(a12*xw*xw/(xw+b12*xa)**2/T) ! h2so4 saturation number density over H2SO4/H2O solution (molec/cm3) solh2so4_out=cacta*xa*presat END FUNCTION solh2so4 !----------------------------------------------------------------------- REAL function rpmvh2so4(T,ws) result(rpmvh2so4_out) ! partial molar volume of h2so4 in h2so4/h2o solution (cm3/mole) IMPLICIT NONE REAL, INTENT(IN) :: T, ws REAL, DIMENSION(22),parameter :: x=(/ & 2.393284E-02,-4.359335E-05,7.961181E-08,0.0,-0.198716351, & 1.39564574E-03,-2.020633E-06,0.51684706,-3.0539E-03,4.505475E-06, & -0.30119511,1.840408E-03,-2.7221253742E-06,-0.11331674116, & 8.47763E-04,-1.22336185E-06,0.3455282,-2.2111E-03,3.503768245E-06, & -0.2315332,1.60074E-03,-2.5827835E-06/) REAL :: w w=ws*0.01 rpmvh2so4_out=x(5)+x(6)*T+x(7)*T*T+(x(8)+x(9)*T+x(10)*T*T)*w & +(x(11)+x(12)*T+x(13)*T*T)*w*w ! h2so4 partial molar volume in h2so4/h2o solution (cm3/mole) rpmvh2so4_out=rpmvh2so4_out*1000. END FUNCTION rpmvh2so4 !----------------------------------------------------------------------- REAL function rmvh2o(T) result(rmvh2o_out) ! molar volume of pure h2o (cm3/mole) IMPLICIT NONE REAL, INTENT(IN) :: T REAL, parameter :: x1=2.393284E-02,x2=-4.359335E-05,x3=7.961181E-08 ! 1000: L/mole -> cm3/mole ! pure h2o molar volume (cm3/mole) rmvh2o_out=(x1+x2*T+x3*T*T)*1000. END FUNCTION rmvh2o END MODULE sulfate_aer_mod