module fyhyp_m IMPLICIT NONE contains SUBROUTINE fyhyp(rlatu, yyprimu, rlatv, rlatu2, yprimu2, rlatu1, yprimu1) ! From LMDZ4/libf/dyn3d/fyhyp.F, version 1.2, 2005/06/03 09:11:32 ! Author: P. Le Van, from analysis by R. Sadourny ! Calcule les latitudes et dérivées dans la grille du GCM pour une ! fonction f(y) à dérivée tangente hyperbolique. ! Il vaut mieux avoir : grossismy * dzoom < pi / 2 USE lmdz_coefpoly, ONLY: coefpoly USE lmdz_physical_constants, ONLY: k8 USE serre_mod, ONLY: clat, grossismy, dzoomy, tauy include "dimensions.h" ! for jjm REAL, INTENT(OUT):: rlatu(jjm + 1), yyprimu(jjm + 1) REAL, INTENT(OUT):: rlatv(jjm) REAL, INTENT(OUT):: rlatu2(jjm), yprimu2(jjm), rlatu1(jjm), yprimu1(jjm) ! Local: REAL(K8) champmin, champmax INTEGER, PARAMETER:: nmax=30000, nmax2=2*nmax REAL dzoom ! distance totale de la zone du zoom (en radians) REAL(K8) ylat(jjm + 1), yprim(jjm + 1) REAL(K8) yuv REAL(K8), save:: yt(0:nmax2) REAL(K8) fhyp(0:nmax2), beta REAL(K8), save:: ytprim(0:nmax2) REAL(K8) fxm(0:nmax2) REAL(K8), save:: yf(0:nmax2) REAL(K8) yypr(0:nmax2) REAL(K8) yvrai(jjm + 1), yprimm(jjm + 1), ylatt(jjm + 1) REAL(K8) pi, pis2, epsilon, y0, pisjm REAL(K8) yo1, yi, ylon2, ymoy, yprimin REAL(K8) yfi, yf1, ffdy REAL(K8) ypn, deply, y00 SAVE y00, deply INTEGER i, j, it, ik, iter, jlat INTEGER jpn, jjpn SAVE jpn REAL(K8) a0, a1, a2, a3, yi2, heavyy0, heavyy0m REAL(K8) fa(0:nmax2), fb(0:nmax2) REAL y0min, y0max REAL(K8) heavyside !------------------------------------------------------------------- print *, "Call sequence information: fyhyp" pi = 2.*asin(1.) pis2 = pi/2. pisjm = pi/real(jjm) epsilon = 1e-3 y0 = clat*pi/180. dzoom = dzoomy*pi print *, 'yzoom(rad), grossismy, tauy, dzoom (rad):' print *, y0, grossismy, tauy, dzoom DO i = 0, nmax2 yt(i) = -pis2 + real(i)*pi/nmax2 END DO heavyy0m = heavyside(-y0) heavyy0 = heavyside(y0) y0min = 2.*y0*heavyy0m - pis2 y0max = 2.*y0*heavyy0 + pis2 fa = 999.999 fb = 999.999 DO i = 0, nmax2 IF (yt(i)y0) THEN fa(i) = tauy*(y0-yt(i) + dzoom/2.) fb(i) = (2.*y0*heavyy0-yt(i) + pis2)*(yt(i)-y0) END IF IF (200.*fb(i)<-fa(i)) THEN fhyp(i) = -1. ELSE IF (200.*fb(i)y0) THEN fa(i) = tauy*(y0-ymoy + dzoom/2.) fb(i) = (2.*y0*heavyy0-ymoy + pis2)*(ymoy-y0) END IF IF (200.*fb(i)<-fa(i)) THEN fxm(i) = -1. ELSE IF (200.*fb(i)= 1 .AND. yfi < yf(it)) it = it - 1 END DO yi = yt(it) IF (it==nmax2) THEN it = nmax2 - 1 yf(it + 1) = pis2 END IF ! Interpolation entre yi(it) et yi(it + 1) pour avoir Y(yi) ! et Y'(yi) CALL coefpoly(yf(it), yf(it + 1), ytprim(it), ytprim(it + 1), & yt(it), yt(it + 1), a0, a1, a2, a3) yf1 = yf(it) yprimin = a1 + 2.*a2*yi + 3.*a3*yi*yi iter = 1 DO yi = yi - (yf1-yfi)/yprimin IF (abs(yi-yo1)<=epsilon .OR. iter == 300) exit yo1 = yi yi2 = yi*yi yf1 = a0 + a1*yi + a2*yi2 + a3*yi2*yi yprimin = a1 + 2.*a2*yi + 3.*a3*yi2 END DO IF (abs(yi-yo1) > epsilon) THEN print *, 'Pas de solution.', j, ylon2 STOP 1 end if yprimin = a1 + 2.*a2*yi + 3.*a3*yi*yi yprim(j) = pi/(jjm*yprimin) yvrai(j) = yi END DO DO j = 1, jlat - 1 IF (yvrai(j + 1)= rlatu1(j)) THEN print *, ' Attention ! rlatv > rlatu1 ', rlatv(j), rlatu1(j), j STOP 17 ENDIF IF (rlatv(j) >= rlatu(j)) THEN print *, ' Attention ! rlatv > rlatu ', rlatv(j), rlatu(j), j STOP 18 ENDIF ENDDO print *, 'Latitudes' print 3, champmin, champmax 3 Format(1x, ' Au centre du zoom, la longueur de la maille est', & ' d environ ', f0.2, ' degres ', /, & ' alors que la maille en dehors de la zone du zoom est ', & "d'environ ", f0.2, ' degres ') END SUBROUTINE fyhyp end module fyhyp_m