MODULE lmdz_regr_lint USE lmdz_assert_eq, ONLY: assert_eq USE lmdz_assert, ONLY: assert USE lmdz_interpolation, ONLY: hunt IMPLICIT NONE ! Purpose: Each procedure regrids by linear interpolation along dimension "ix" ! the input field "vs" to the output field "vt". ! Remark: ! * "vs" and "vt" have the same dimensions except Nr. ix (ns for vs, nt for vt) ! Argument Type Description !------------------------------------------------------------------------------- ! INTEGER, INTENT(IN) :: ix Scalar dimension regridded <=rank(vs) ! REAL, INTENT(IN) :: vs(*) Rank>=1 source grid field values ! REAL, INTENT(IN) :: xs(:) Vector(ns) centers of source grid, asc. order ! REAL, INTENT(IN) :: xt(:) Vector(nt) centers of target grid, asc. order ! REAL, INTENT(OUT) :: vt(*) Rank>=1 regridded field INTERFACE regr_lint ! The procedures differ only from the rank of the input/output fields. MODULE PROCEDURE regr1_lint, regr2_lint, regr3_lint, & regr4_lint, regr5_lint END INTERFACE PRIVATE PUBLIC :: regr_lint CONTAINS !------------------------------------------------------------------------------- SUBROUTINE regr1_lint(ix, vs, xs, xt, vt) !------------------------------------------------------------------------------- ! Arguments: INTEGER, INTENT(IN) :: ix REAL, INTENT(IN) :: vs(:) REAL, INTENT(IN) :: xs(:) REAL, INTENT(IN) :: xt(:) REAL, INTENT(OUT) :: vt(:) !------------------------------------------------------------------------------- ! Local variables: INTEGER :: is, it, ns, nt, isb ! "is" bound between 1 and "ns - 1" REAL :: r !------------------------------------------------------------------------------- CALL check_size(ix, SHAPE(vs), SHAPE(vt), SIZE(xs), SIZE(xt), ns, nt) is = -1 ! go immediately to bisection on first CALL to "hunt" DO it = 1, SIZE(xt) CALL hunt(xs, xt(it), is); isb = MIN(MAX(is, 1), ns - 1) r = (xs(isb + 1) - xt(it)) / (xs(isb + 1) - xs(isb)) vt(it) = r * vs(isb) + (1. - r) * vs(isb + 1) END DO END SUBROUTINE regr1_lint !------------------------------------------------------------------------------- !------------------------------------------------------------------------------- SUBROUTINE regr2_lint(ix, vs, xs, xt, vt) !------------------------------------------------------------------------------- ! Arguments: INTEGER, INTENT(IN) :: ix REAL, INTENT(IN) :: vs(:, :) REAL, INTENT(IN) :: xs(:) REAL, INTENT(IN) :: xt(:) REAL, INTENT(OUT) :: vt(:, :) !------------------------------------------------------------------------------- ! Local variables: INTEGER :: is, it, ns, nt, isb ! "is" bound between 1 and "ns - 1" REAL :: r !------------------------------------------------------------------------------- CALL check_size(ix, SHAPE(vs), SHAPE(vt), SIZE(xs), SIZE(xt), ns, nt) is = -1 ! go immediately to bisection on first CALL to "hunt" DO it = 1, SIZE(xt) CALL hunt(xs, xt(it), is); isb = MIN(MAX(is, 1), ns - 1) r = (xs(isb + 1) - xt(it)) / (xs(isb + 1) - xs(isb)) IF(ix==1) vt(it, :) = r * vs(isb, :) + (1. - r) * vs(isb + 1, :) IF(ix==2) vt(:, it) = r * vs(:, isb) + (1. - r) * vs(:, isb + 1) END DO END SUBROUTINE regr2_lint !------------------------------------------------------------------------------- !------------------------------------------------------------------------------- SUBROUTINE regr3_lint(ix, vs, xs, xt, vt) !------------------------------------------------------------------------------- ! Arguments: INTEGER, INTENT(IN) :: ix REAL, INTENT(IN) :: vs(:, :, :) REAL, INTENT(IN) :: xs(:) REAL, INTENT(IN) :: xt(:) REAL, INTENT(OUT) :: vt(:, :, :) !------------------------------------------------------------------------------- ! Local variables: INTEGER :: is, it, ns, nt, isb ! "is" bound between 1 and "ns - 1" REAL :: r !------------------------------------------------------------------------------- CALL check_size(ix, SHAPE(vs), SHAPE(vt), SIZE(xs), SIZE(xt), ns, nt) is = -1 ! go immediately to bisection on first CALL to "hunt" DO it = 1, SIZE(xt) CALL hunt(xs, xt(it), is); isb = MIN(MAX(is, 1), ns - 1) r = (xs(isb + 1) - xt(it)) / (xs(isb + 1) - xs(isb)) IF(ix==1) vt(it, :, :) = r * vs(isb, :, :) + (1. - r) * vs(isb + 1, :, :) IF(ix==2) vt(:, it, :) = r * vs(:, isb, :) + (1. - r) * vs(:, isb + 1, :) IF(ix==3) vt(:, :, it) = r * vs(:, :, isb) + (1. - r) * vs(:, :, isb + 1) END DO END SUBROUTINE regr3_lint !------------------------------------------------------------------------------- !------------------------------------------------------------------------------- SUBROUTINE regr4_lint(ix, vs, xs, xt, vt) !------------------------------------------------------------------------------- ! Arguments: INTEGER, INTENT(IN) :: ix REAL, INTENT(IN) :: vs(:, :, :, :) REAL, INTENT(IN) :: xs(:) REAL, INTENT(IN) :: xt(:) REAL, INTENT(OUT) :: vt(:, :, :, :) !------------------------------------------------------------------------------- ! Local variables: INTEGER :: is, it, ns, nt, isb ! "is" bound between 1 and "ns - 1" REAL :: r !------------------------------------------------------------------------------- CALL check_size(ix, SHAPE(vs), SHAPE(vt), SIZE(xs), SIZE(xt), ns, nt) is = -1 ! go immediately to bisection on first CALL to "hunt" DO it = 1, SIZE(xt) CALL hunt(xs, xt(it), is); isb = MIN(MAX(is, 1), ns - 1) r = (xs(isb + 1) - xt(it)) / (xs(isb + 1) - xs(isb)) IF(ix==1) vt(it, :, :, :) = r * vs(isb, :, :, :) + (1. - r) * vs(isb + 1, :, :, :) IF(ix==2) vt(:, it, :, :) = r * vs(:, isb, :, :) + (1. - r) * vs(:, isb + 1, :, :) IF(ix==3) vt(:, :, it, :) = r * vs(:, :, isb, :) + (1. - r) * vs(:, :, isb + 1, :) IF(ix==4) vt(:, :, :, it) = r * vs(:, :, :, isb) + (1. - r) * vs(:, :, :, isb + 1) END DO END SUBROUTINE regr4_lint !------------------------------------------------------------------------------- !------------------------------------------------------------------------------- SUBROUTINE regr5_lint(ix, vs, xs, xt, vt) !------------------------------------------------------------------------------- ! Arguments: INTEGER, INTENT(IN) :: ix REAL, INTENT(IN) :: vs(:, :, :, :, :) REAL, INTENT(IN) :: xs(:) REAL, INTENT(IN) :: xt(:) REAL, INTENT(OUT) :: vt(:, :, :, :, :) !------------------------------------------------------------------------------- ! Local variables: INTEGER :: is, it, ns, nt, isb ! "is" bound between 1 and "ns - 1" REAL :: r !------------------------------------------------------------------------------- CALL check_size(ix, SHAPE(vs), SHAPE(vt), SIZE(xs), SIZE(xt), ns, nt) is = -1 ! go immediately to bisection on first CALL to "hunt" DO it = 1, SIZE(xt) CALL hunt(xs, xt(it), is); isb = MIN(MAX(is, 1), ns - 1) r = (xs(isb + 1) - xt(it)) / (xs(isb + 1) - xs(isb)) IF(ix==1) vt(it, :, :, :, :) = r * vs(isb, :, :, :, :) + (1. - r) * vs(isb + 1, :, :, :, :) IF(ix==2) vt(:, it, :, :, :) = r * vs(:, isb, :, :, :) + (1. - r) * vs(:, isb + 1, :, :, :) IF(ix==3) vt(:, :, it, :, :) = r * vs(:, :, isb, :, :) + (1. - r) * vs(:, :, isb + 1, :, :) IF(ix==4) vt(:, :, :, it, :) = r * vs(:, :, :, isb, :) + (1. - r) * vs(:, :, :, isb + 1, :) IF(ix==5) vt(:, :, :, :, it) = r * vs(:, :, :, :, isb) + (1. - r) * vs(:, :, :, :, isb + 1) END DO END SUBROUTINE regr5_lint !------------------------------------------------------------------------------- !------------------------------------------------------------------------------- SUBROUTINE check_size(ix, svs, svt, nxs, nxt, ns, nt) !------------------------------------------------------------------------------- ! Arguments: INTEGER, INTENT(IN) :: ix, svs(:), svt(:), nxs, nxt INTEGER, INTENT(OUT) :: ns, nt !------------------------------------------------------------------------------- ! Local variables: INTEGER :: rk, is CHARACTER(LEN = 80) :: sub, msg !------------------------------------------------------------------------------- rk = SIZE(svs) WRITE(sub, '(a,2i0,a)')"regr", rk, ix, "_lint" CALL assert(ix>=1.AND.ix<=rk, TRIM(sub) // ": ix exceeds fields rank") DO is = 1, rk; IF(is==ix) CYCLE WRITE(msg, '(a,i1)')TRIM(sub) // " n", is CALL assert(svs(is)==svt(is), msg) END DO ns = assert_eq(svs(ix), nxs, TRIM(sub) // " ns") nt = assert_eq(svt(ix), nxt, TRIM(sub) // " nt") END SUBROUTINE check_size !------------------------------------------------------------------------------- END MODULE lmdz_regr_lint !-------------------------------------------------------------------------------