!SFX_LIC Copyright 1994-2014 CNRS, Meteo-France and Universite Paul Sabatier !SFX_LIC This is part of the SURFEX software governed by the CeCILL-C licence !SFX_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt !SFX_LIC for details. version 1. ! ######### module coare30_flux_cnrm_mod IMPLICIT NONE PRIVATE public COARE30_FLUX_CNRM contains SUBROUTINE COARE30_FLUX_CNRM(PZ0SEA,PTA,PSST,PQA, & PVMOD,PZREF,PUREF,PPS,PQSATA,PQSAT,PSFTH,PSFTQ,PUSTAR,PCD,PCDN,PCH,PCE,PRI,& PRESA,PRAIN,PPA,PZ0HSEA,LPRECIP, LPWG,coeffs ) ! ####################################################################### !!**** *COARE25_FLUX* !! !! PURPOSE !! ------- ! Calculate the surface fluxes of heat, moisture, and momentum over ! sea surface with bulk algorithm COARE3.0. !!** METHOD !! ------ ! transfer coefficients were obtained using a dataset which combined COARE ! data with those from three other ETL field experiments, and reanalysis of ! the HEXMAX data (DeCosmos et al. 1996). ! ITERMAX=3 ! Take account of the surface gravity waves on the velocity roughness and ! hence the momentum transfer coefficient ! NGRVWAVES=0 no gravity waves action (Charnock) !default value ! NGRVWAVES=1 wave age parameterization of Oost et al. 2002 ! NGRVWAVES=2 model of Taylor and Yelland 2001 !! EXTERNAL !! -------- !! !! IMPLICIT ARGUMENTS !! ------------------ !! !! REFERENCE !! --------- !! Fairall et al (2003), J. of Climate, vol. 16, 571-591 !! Fairall et al (1996), JGR, 3747-3764 !! Gosnell et al (1995), JGR, 437-442 !! Fairall et al (1996), JGR, 1295-1308 !! !! AUTHOR !! ------ !! C. Lebeaupin *Météo-France* (adapted from C. Fairall's code) !! !! MODIFICATIONS !! ------------- !! Original 1/06/2006 !! B. Decharme 06/2009 limitation of Ri !! B. Decharme 09/2012 Bug in Ri calculation and limitation of Ri in surface_ri.F90 !! B. Decharme 06/2013 bug in z0 (output) computation !! J.Escobar 06/2013 for REAL4/8 add EPSILON management !! C. Lebeaupin 03/2014 bug if PTA=PSST and PEXNA=PEXNS: set a minimum value !! add abort if no convergence !------------------------------------------------------------------------------- !* 0. DECLARATIONS ! ------------ !USE MODD_SEAFLUX_n, ONLY: SEAFLUX_t !----------Rajout Olive --------- USE dimphy USE indice_sol_mod USE coare_cp_mod, ONLY: PSIFCTT=>psit_30, PSIFCTU=>psiuo !-------------------------------- USE MODD_CSTS, ONLY: XKARMAN, XG, XSTEFAN, XRD, XRV, XPI, & XLVTT, XCL, XCPD, XCPV, XRHOLW, XTT, & XP00 USE lmdz_abort_physic, ONLY: abort_physic !USE MODD_SURF_ATM, ONLY: XVZ0CM !USE MODD_SURF_PAR, ONLY: XUNDEF, XSURF_EPSILON !USE MODD_WATER_PAR !USE MODI_SURFACE_RI !USE MODI_WIND_THRESHOLD !USE MODE_COARE30_PSI !USE MODE_THERMOS !USE MODI_ABOR1_SFX !USE YOMHOOK ,ONLY: LHOOK, DR_HOOK !USE PARKIND1 ,ONLY: JPRB IMPLICIT NONE !* 0.1 declarations of arguments !TYPE(SEAFLUX_t), INTENT(INOUT) :: S REAL, DIMENSION(klon), INTENT(IN) :: PTA ! air temperature at atm. level (K) REAL, DIMENSION(klon), INTENT(IN) :: PQA ! air humidity at atm. level (kg/kg) !REAL, DIMENSION(:), INTENT(IN) :: PEXNA ! Exner function at atm. level !REAL, DIMENSION(:), INTENT(IN) :: PRHOA ! air density at atm. level REAL, DIMENSION(klon), INTENT(IN) :: PVMOD ! module of wind at atm. wind level (m/s) REAL, DIMENSION(klon), INTENT(IN) :: PZREF ! atm. level for temp. and humidity (m) REAL, DIMENSION(klon), INTENT(IN) :: PUREF ! atm. level for wind (m) REAL, DIMENSION(klon), INTENT(IN) :: PSST ! Sea Surface Temperature (K) !REAL, DIMENSION(:), INTENT(IN) :: PEXNS ! Exner function at sea surface REAL, DIMENSION(klon), INTENT(IN) :: PPS ! air pressure at sea surface (Pa) REAL, DIMENSION(klon), INTENT(IN) :: PRAIN !precipitation rate (kg/s/m2) REAL, DIMENSION(klon), INTENT(IN) :: PPA ! air pressure at atm level (Pa) REAL, DIMENSION(klon), INTENT(IN) :: PQSATA ! air pressure at atm level (Pa) REAL, DIMENSION(klon), INTENT(INOUT) :: PZ0SEA! roughness length over the ocean ! surface fluxes : latent heat, sensible heat, friction fluxes REAL, DIMENSION(klon), INTENT(OUT) :: PSFTH ! heat flux (W/m2) REAL, DIMENSION(klon), INTENT(OUT) :: PSFTQ ! water flux (kg/m2/s) REAL, DIMENSION(klon), INTENT(OUT) :: PUSTAR! friction velocity (m/s) ! diagnostics REAL, DIMENSION(klon), INTENT(OUT) :: PQSAT ! humidity at saturation REAL, DIMENSION(klon), INTENT(OUT) :: PCD ! heat drag coefficient REAL, DIMENSION(klon), INTENT(OUT) :: PCDN ! momentum drag coefficient REAL, DIMENSION(klon), INTENT(OUT) :: PCH ! neutral momentum drag coefficient REAL, DIMENSION(klon), INTENT(OUT) :: PCE !transfer coef. for latent heat flux REAL, DIMENSION(klon), INTENT(OUT) :: PRI ! Richardson number REAL, DIMENSION(klon), INTENT(OUT) :: PRESA ! aerodynamical resistance REAL, DIMENSION(klon), INTENT(OUT) :: PZ0HSEA ! heat roughness length LOGICAL, INTENT(IN) :: LPRECIP ! LOGICAL, INTENT(IN) :: LPWG ! real, dimension(3), intent(inout) :: coeffs !* 0.2 declarations of local variables REAL, DIMENSION(SIZE(PTA)) :: ZVMOD ! wind intensity REAL, DIMENSION(SIZE(PTA)) :: ZPA ! Pressure at atm. level REAL, DIMENSION(SIZE(PTA)) :: ZTA ! Temperature at atm. level REAL, DIMENSION(SIZE(PTA)) :: ZQASAT ! specific humidity at saturation at atm. level (kg/kg) !rajout REAL, DIMENSION(SIZE(PTA)) :: PEXNA ! Exner function at atm level REAL, DIMENSION(SIZE(PTA)) :: PEXNS ! Exner function at atm level REAL, DIMENSION(SIZE(PTA)) :: ZO ! rougness length ref REAL, DIMENSION(SIZE(PTA)) :: ZWG ! gustiness factor (m/s) REAL, DIMENSION(SIZE(PTA)) :: ZDU,ZDT,ZDQ,ZDUWG !differences REAL, DIMENSION(SIZE(PTA)) :: ZUSR !velocity scaling parameter "ustar" (m/s) = friction velocity REAL, DIMENSION(SIZE(PTA)) :: ZTSR !temperature sacling parameter "tstar" (degC) REAL, DIMENSION(SIZE(PTA)) :: ZQSR !humidity scaling parameter "qstar" (kg/kg) REAL, DIMENSION(SIZE(PTA)) :: ZU10,ZT10 !vertical profils (10-m height) REAL, DIMENSION(SIZE(PTA)) :: ZVISA !kinematic viscosity of dry air REAL, DIMENSION(SIZE(PTA)) :: ZO10,ZOT10 !roughness length at 10m REAL, DIMENSION(SIZE(PTA)) :: ZCD,ZCT,ZCC REAL, DIMENSION(SIZE(PTA)) :: ZCD10,ZCT10 !transfer coef. at 10m REAL, DIMENSION(SIZE(PTA)) :: ZRIBU,ZRIBCU REAL, DIMENSION(SIZE(PTA)) :: ZETU,ZL10 REAL, DIMENSION(SIZE(PTA)) :: ZCHARN !Charnock number depends on wind module REAL, DIMENSION(SIZE(PTA)) :: ZTWAVE,ZHWAVE,ZCWAVE,ZLWAVE !to compute gravity waves' impact REAL, DIMENSION(SIZE(PTA)) :: ZZL,ZZTL!,ZZQL !Obukhovs stability !param. z/l for u,T,q REAL, DIMENSION(SIZE(PTA)) :: ZRR REAL, DIMENSION(SIZE(PTA)) :: ZOT,ZOQ !rougness length ref REAL, DIMENSION(SIZE(PTA)) :: ZPUZ,ZPTZ,ZPQZ !PHI funct. for u,T,q REAL, DIMENSION(SIZE(PTA)) :: ZBF !constants to compute gustiness factor REAL, DIMENSION(SIZE(PTA)) :: ZTAU !momentum flux (W/m2) REAL, DIMENSION(SIZE(PTA)) :: ZHF !sensible heat flux (W/m2) REAL, DIMENSION(SIZE(PTA)) :: ZEF !latent heat flux (W/m2) REAL, DIMENSION(SIZE(PTA)) :: ZWBAR !diag for webb correction but not used here after REAL, DIMENSION(SIZE(PTA)) :: ZTAUR !momentum flux due to rain (W/m2) REAL, DIMENSION(SIZE(PTA)) :: ZRF !sensible heat flux due to rain (W/m2) REAL, DIMENSION(SIZE(PTA)) :: ZCHN,ZCEN !neutral coef. for heat and vapor REAL, DIMENSION(SIZE(PTA)) :: ZLV !latent heat constant REAL, DIMENSION(SIZE(PTA)) :: ZTAC,ZDQSDT,ZDTMP,ZDWAT,ZALFAC ! for precipitation impact REAL, DIMENSION(SIZE(PTA)) :: ZXLR ! vaporisation heat at a given temperature REAL, DIMENSION(SIZE(PTA)) :: ZCPLW ! specific heat for water at a given temperature REAL, DIMENSION(SIZE(PTA)) :: ZUSTAR2 ! square of friction velocity REAL, DIMENSION(SIZE(PTA)) :: ZDIRCOSZW! orography slope cosine (=1 on water!) REAL, DIMENSION(SIZE(PTA)) :: ZAC ! Aerodynamical conductance INTEGER, DIMENSION(SIZE(PTA)) :: ITERMAX ! maximum number of iterations REAL :: ZRVSRDM1,ZRDSRV,ZR2 ! thermodynamic constants REAL :: ZBETAGUST !gustiness factor REAL :: ZZBL !atm. boundary layer depth (m) REAL :: ZVISW !m2/s kinematic viscosity of water REAL :: ZS !height of rougness length ref REAL :: ZCH10 !transfer coef. at 10m REAL :: QSAT_SEAWATER REAL :: QSATSEAW_1D INTEGER :: J, JLOOP !loop indice !REAL(KIND=JPRB) :: ZHOOK_HANDLE !--------- Modif Olive ----------------- REAL, DIMENSION(SIZE(PTA)) :: PRHOA REAL, PARAMETER :: XUNDEF = 1.E+20 REAL :: XVCHRNK = 0.021 REAL :: XVZ0CM = 1.0E-5 !REAL :: XRIMAX INTEGER :: PREF ! reference pressure for exner function INTEGER :: NGRVWAVES ! Pour le choix du z0 INCLUDE "YOMCST.h" INCLUDE "clesphys.h" !-------------------------------------- PRHOA(:) = PPS(:) / (287.1 * PTA(:) * (1.+.61*PQA(:))) PREF = 100000. ! = 1000 hPa NGRVWAVES = 1 PEXNA = (PPA/PREF)**(RD/RCPD) PEXNS = (PPS/PREF)**(RD/RCPD) !------------------------------------------------------------------------------- ! 1. Initializations ! --------------- ! 1.1 Constants and parameters !IF (LHOOK) CALL DR_HOOK('COARE30_FLUX',0,ZHOOK_HANDLE) ZRVSRDM1 = XRV/XRD-1. ! 0.607766 ZRDSRV = XRD/XRV ! 0.62198 ZR2 = 1.-ZRDSRV ! pas utilisé dans cette routine ZBETAGUST = 1.2 ! value based on TOGA-COARE experiment ZZBL = 600. ! Set a default value for boundary layer depth ZS = 10. ! Standard heigth =10m ZCH10 = 0.00115 ZVISW = 1.E-6 ! 1.2 Array initialization by undefined values PSFTH (:)=XUNDEF PSFTQ (:)=XUNDEF PUSTAR(:)=XUNDEF PCD(:) = XUNDEF PCDN(:) = XUNDEF PCH(:) = XUNDEF PCE(:) =XUNDEF PRI(:) = XUNDEF PRESA(:)=XUNDEF !------------------------------------------------------------------------------- ! 2. INITIAL GUESS FOR THE ITERATIVE METHOD ! ------------------------------------- ! 2.0 Temperature ! Set a non-zero value for the temperature gradient WHERE((PTA(:)*PEXNS(:)/PEXNA(:)-PSST(:))==0.) ZTA(:)=PTA(:)-1E-3 ELSEWHERE ZTA(:)=PTA(:) ENDWHERE ! 2.1 Wind and humidity ! Sea surface specific humidity !PQSAT(:)=QSAT_SEAWATER(PSST(:),PPS(:)) PQSAT(:)=QSATSEAW_1D(PSST(:),PPS(:)) ! Set a minimum value to wind !ZVMOD(:) = WIND_THRESHOLD(PVMOD(:),PUREF(:)) ZVMOD = MAX(PVMOD , 0.1 * MIN(10.,PUREF) ) !set a minimum value to wind !ZVMOD = PVMOD !set a minimum value to wind ! Specific humidity at saturation at the atm. level ZPA(:) = XP00* (PEXNA(:)**(XCPD/XRD)) !ZQASAT(:) = QSAT_SEAWATER(ZTA(:),ZPA(:)) ZQASAT = QSATSEAW_1D(ZTA(:),ZPA(:)) ZO(:) = 0.0001 ZWG(:) = 0. IF (LPWG) ZWG(:) = 0.5 ZCHARN(:) = 0.011 DO J=1,SIZE(PTA) ! 2.2 initial guess ZDU(J) = ZVMOD(J) !wind speed difference with surface current(=0) (m/s) !initial guess for gustiness factor ZDT(J) = -(ZTA(J)/PEXNA(J)) + (PSST(J)/PEXNS(J)) !potential temperature difference ZDQ(J) = PQSAT(J)-PQA(J) !specific humidity difference ZDUWG(J) = SQRT(ZDU(J)**2+ZWG(J)**2) !wind speed difference including gustiness ZWG ! 2.3 initialization of neutral coefficients ZU10(J) = ZDUWG(J)*LOG(ZS/ZO(J))/LOG(PUREF(J)/ZO(J)) ZUSR(J) = 0.035*ZU10(J) ZVISA(J) = 1.326E-5*(1.+6.542E-3*(ZTA(J)-XTT)+& 8.301E-6*(ZTA(J)-XTT)**2-4.84E-9*(ZTA(J)-XTT)**3) !Andrea (1989) CRREL Rep. 89-11 ZO10(J) = ZCHARN(J)*ZUSR(J)*ZUSR(J)/XG+0.11*ZVISA(J)/ZUSR(J) ZCD(J) = (XKARMAN/LOG(PUREF(J)/ZO10(J)))**2 !drag coefficient ZCD10(J)= (XKARMAN/LOG(ZS/ZO10(J)))**2 ZCT10(J)= ZCH10/SQRT(ZCD10(J)) ZOT10(J)= ZS/EXP(XKARMAN/ZCT10(J)) !------------------------------------------------------------------------------- ! Grachev and Fairall (JAM, 1997) ZCT(J) = XKARMAN/LOG(PZREF(J)/ZOT10(J)) !temperature transfer coefficient ZCC(J) = XKARMAN*ZCT(J)/ZCD(J) !z/L vs Rib linear coef. ZRIBCU(J) = -PUREF(J)/(ZZBL*0.004*ZBETAGUST**3) !saturation or plateau Rib !ZRIBU(J) =-XG*PUREF(J)*(ZDT(J)+ZRVSRDM1*(ZTA(J)-XTT)*ZDQ)/& ! &((ZTA(J)-XTT)*ZDUWG(J)**2) ZRIBU(J) = -XG*PUREF(J)*(ZDT(J)+ZRVSRDM1*ZTA(J)*ZDQ(J))/& (ZTA(J)*ZDUWG(J)**2) IF (ZRIBU(J)<0.) THEN ZETU(J) = ZCC(J)*ZRIBU(J)/(1.+ZRIBU(J)/ZRIBCU(J)) !Unstable G and F ELSE ZETU(J) = ZCC(J)*ZRIBU(J)/(1.+27./9.*ZRIBU(J)/ZCC(J))!Stable ENDIF ZL10(J) = PUREF(J)/ZETU(J) !MO length ENDDO ! First guess M-O stability dependent scaling params. (u*,T*,q*) to estimate ZO and z/L (ZZL) ZUSR(:) = ZDUWG(:)*XKARMAN/(LOG(PUREF(:)/ZO10(:))-PSIFCTU(PUREF(1)/ZL10(1))) ZTSR(:) = -ZDT(:)*XKARMAN/(LOG(PZREF(:)/ZOT10(:))-PSIFCTT(PZREF(1)/ZL10(1))) ZQSR(:) = -ZDQ(:)*XKARMAN/(LOG(PZREF(:)/ZOT10(:))-PSIFCTT(PZREF(1)/ZL10(1))) ZZL(:) = 0.0 DO J=1,SIZE(PTA) IF (ZETU(J)>50.) THEN ITERMAX(J) = 1 ELSE ITERMAX(J) = 3 !number of iterations ENDIF !then modify Charnork for high wind speeds Chris Fairall's data IF (ZDUWG(J)>10.) ZCHARN(J) = 0.011 + (0.018-0.011)*(ZDUWG(J)-10.)/(18.-10.) IF (ZDUWG(J)>18.) ZCHARN(J) = 0.018 ! 3. ITERATIVE LOOP TO COMPUTE USR, TSR, QSR ! ------------------------------------------- ZHWAVE(J) = 0.018*ZVMOD(J)*ZVMOD(J)*(1.+0.015*ZVMOD(J)) ZTWAVE(J) = 0.729*ZVMOD(J) ZCWAVE(J) = XG*ZTWAVE(J)/(2.*XPI) ZLWAVE(J) = ZTWAVE(J)*ZCWAVE(J) ENDDO DO JLOOP=1,MAXVAL(ITERMAX) ! begin of iterative loop DO J=1,SIZE(PTA) IF (JLOOP>ITERMAX(J)) CYCLE IF (NGRVWAVES==0) THEN ZO(J) = ZCHARN(J)*ZUSR(J)*ZUSR(J)/XG + 0.11*ZVISA(J)/ZUSR(J) !Smith 1988 ELSE IF (NGRVWAVES==1) THEN ZO(J) = (50./(2.*XPI))*ZLWAVE(J)*(ZUSR(J)/ZCWAVE(J))**4.5 & + 0.11*ZVISA(J)/ZUSR(J) !Oost et al. 2002 ELSE IF (NGRVWAVES==2) THEN ZO(J) = 1200.*ZHWAVE(J)*(ZHWAVE(J)/ZLWAVE(J))**4.5 & + 0.11*ZVISA(J)/ZUSR(J) !Taulor and Yelland 2001 ENDIF ZRR(J) = ZO(J)*ZUSR(J)/ZVISA(J) ZOQ(J) = MIN(1.15E-4 , 5.5E-5/ZRR(J)**0.6) ZOT(J) = ZOQ(J) ZZL(J) = XKARMAN * XG * PUREF(J) * & ( ZTSR(J)*(1.+ZRVSRDM1*PQA(J)) + ZRVSRDM1*ZTA(J)*ZQSR(J) ) / & ( ZTA(J)*ZUSR(J)*ZUSR(J)*(1.+ZRVSRDM1*PQA(J)) ) ZZTL(J)= ZZL(J)*PZREF(J)/PUREF(J) ! for T ! ZZQL(J)=ZZL(J)*PZREF(J)/PUREF(J) ! for Q ENDDO ZPUZ(:) = PSIFCTU(ZZL(1)) ZPTZ(:) = PSIFCTT(ZZTL(1)) DO J=1,SIZE(PTA) ! ZPQZ(J)=PSIFCTT(ZZQL(J)) ZPQZ(J) = ZPTZ(J) ! 3.1 scale parameters ZUSR(J) = ZDUWG(J)*XKARMAN/(LOG(PUREF(J)/ZO(J)) -ZPUZ(J)) ZTSR(J) = -ZDT(J) *XKARMAN/(LOG(PZREF(J)/ZOT(J))-ZPTZ(J)) ZQSR(J) = -ZDQ(J) *XKARMAN/(LOG(PZREF(J)/ZOQ(J))-ZPQZ(J)) ! 3.2 Gustiness factor (ZWG) IF(LPWG) THEN ZBF(J) = -XG/ZTA(J)*ZUSR(J)*(ZTSR(J)+ZRVSRDM1*ZTA(J)*ZQSR(J)) IF (ZBF(J)>0.) THEN ZWG(J) = ZBETAGUST*(ZBF(J)*ZZBL)**(1./3.) ELSE ZWG(J) = 0.2 ENDIF ENDIF ZDUWG(J) = SQRT(ZVMOD(J)**2 + ZWG(J)**2) ENDDO ENDDO !------------------------------------------------------------------------------- ! 4. COMPUTE transfer coefficients PCD, PCH, ZCE and SURFACE FLUXES ! -------------------------------------------------------------- ZTAU(:) = XUNDEF ZHF(:) = XUNDEF ZEF(:) = XUNDEF ZWBAR(:) = 0. ZTAUR(:) = 0. ZRF(:) = 0. DO J=1,SIZE(PTA) ! 4. transfert coefficients PCD, PCH and PCE ! and neutral PCDN, ZCHN, ZCEN PCD(J) = (ZUSR(J)/ZDUWG(J))**2. PCH(J) = ZUSR(J)*ZTSR(J)/(ZDUWG(J)*(ZTA(J)*PEXNS(J)/PEXNA(J)-PSST(J))) PCE(J) = ZUSR(J)*ZQSR(J)/(ZDUWG(J)*(PQA(J)-PQSAT(J))) PCDN(J) = (XKARMAN/LOG(ZS/ZO(J)))**2. ZCHN(J) = (XKARMAN/LOG(ZS/ZO(J)))*(XKARMAN/LOG(ZS/ZOT(J))) ZCEN(J) = (XKARMAN/LOG(ZS/ZO(J)))*(XKARMAN/LOG(ZS/ZOQ(J))) ZLV(J) = XLVTT + (XCPV-XCL)*(PSST(J)-XTT) ! 4. 2 surface fluxes IF (ABS(PCDN(J))>1.E-2) THEN !!!! secure COARE3.0 CODE WRITE(*,*) 'pb PCDN in COARE30: ',PCDN(J) WRITE(*,*) 'point: ',J,"/",SIZE(PTA) WRITE(*,*) 'roughness: ', ZO(J) WRITE(*,*) 'ustar: ',ZUSR(J) WRITE(*,*) 'wind: ',ZDUWG(J) CALL abort_physic('COARE30',': PCDN too large -> no convergence',1) ELSE ZTSR(J) = -ZTSR(J) ZQSR(J) = -ZQSR(J) ZTAU(J) = -PRHOA(J)*ZUSR(J)*ZUSR(J)*ZVMOD(J)/ZDUWG(J) ZHF(J) = PRHOA(J)*XCPD*ZUSR(J)*ZTSR(J) ZEF(J) = PRHOA(J)*ZLV(J)*ZUSR(J)*ZQSR(J) ! 4.3 Contributions to surface fluxes due to rainfall ! SB: a priori, le facteur ZRDSRV=XRD/XRV est introduit pour ! adapter la formule de Clausius-Clapeyron (pour l'air ! sec) au cas humide. IF (LPRECIP) THEN ! heat surface fluxes ZTAC(J) = ZTA(J)-XTT ZXLR(J) = XLVTT + (XCPV-XCL)* ZTAC(J) ! latent heat of rain vaporization ZDQSDT(J)= ZQASAT(J) * ZXLR(J) / (XRD*ZTA(J)**2) ! Clausius-Clapeyron relation ZDTMP(J) = (1.0 + 3.309e-3*ZTAC(J) -1.44e-6*ZTAC(J)*ZTAC(J)) * & !heat diffusivity 0.02411 / (PRHOA(J)*XCPD) ZDWAT(J) = 2.11e-5 * (XP00/ZPA(J)) * (ZTA(J)/XTT)**1.94 ! water vapour diffusivity from eq (13.3) ! ! of Pruppacher and Klett (1978) ZALFAC(J)= 1.0 / (1.0 + & ! Eq.11 in GoF95 ZRDSRV*ZDQSDT(J)*ZXLR(J)*ZDWAT(J)/(ZDTMP(J)*XCPD)) ! ZALFAC=wet-bulb factor (sans dim) ZCPLW(J) = 4224.8482 + ZTAC(J) * & ( -4.707 + ZTAC(J) * & (0.08499 + ZTAC(J) * & (1.2826e-3 + ZTAC(J) * & (4.7884e-5 - 2.0027e-6* ZTAC(J))))) ! specific heat ZRF(J) = PRAIN(J) * ZCPLW(J) * ZALFAC(J) * & !Eq.12 in GoF95 !SIGNE? (PSST(J) - ZTA(J) + (PQSAT(J)-PQA(J))*ZXLR(J)/XCPD ) ! Momentum flux due to rainfall ZTAUR(J)=-0.85*(PRAIN(J) *ZVMOD(J)) !pp3752 in FBR96 ENDIF ! 4.4 Webb correction to latent heat flux ZWBAR(J)=- (1./ZRDSRV)*ZUSR(J)*ZQSR(J) / (1.0+(1./ZRDSRV)*PQA(J)) & - ZUSR(J)*ZTSR(J)/ZTA(J) ! Eq.21*rhoa in FBR96 ! 4.5 friction velocity which contains correction du to rain ZUSTAR2(J)= - (ZTAU(J) + ZTAUR(J)) / PRHOA(J) PUSTAR(J) = SQRT(ZUSTAR2(J)) ! 4.6 Total surface fluxes PSFTH (J) = ZHF(J) + ZRF(J) PSFTQ (J) = ZEF(J) / ZLV(J) ENDIF ENDDO coeffs = [PCD,& PCE,& PCH] !------------------------------------------------------------------------------- ! 5. FINAL STEP : TOTAL SURFACE FLUXES AND DERIVED DIAGNOSTICS ! ----------- ! 5.1 Richardson number !------------STOP LA -------------------- !ZDIRCOSZW(:) = 1. ! CALL SURFACE_RI(PSST,PQSAT,PEXNS,PEXNA,ZTA,ZQASAT,& ! PZREF,PUREF,ZDIRCOSZW,PVMOD,PRI ) !! !! 5.2 Aerodynamical conductance and resistance !! !ZAC(:) = PCH(:)*ZVMOD(:) !PRESA(:) = 1. / MAX(ZAC(:),XSURF_EPSILON) !! 5.3 Z0 and Z0H over sea !! !PZ0SEA(:) = ZCHARN(:) * ZUSTAR2(:) / XG + XVZ0CM * PCD(:) / PCDN(:) !! !!PZ0HSEA(:) = PZ0SEA(:) !! !IF (LHOOK) CALL DR_HOOK('COARE30_FLUX',1,ZHOOK_HANDLE) !------------------------------------------------------------------------------- END SUBROUTINE COARE30_FLUX_CNRM end module coare30_flux_cnrm_mod