! $Id: friction.F90 5113 2024-07-24 11:17:08Z abarral $ !======================================================================= SUBROUTINE friction(ucov, vcov, pdt) USE control_mod USE IOIPSL USE comconst_mod, ONLY: pi IMPLICIT NONE !======================================================================= ! Friction for the Newtonian case: ! -------------------------------- ! 2 possibilities (depending on flag 'friction_type' ! friction_type=0 : A friction that is only applied to the lowermost ! atmospheric layer ! friction_type=1 : Friction applied on all atmospheric layer (but ! (default) with stronger magnitude near the surface; see ! iniacademic.F) !======================================================================= include "dimensions.h" include "paramet.h" include "comgeom2.h" include "iniprint.h" include "academic.h" ! arguments: REAL, INTENT(out) :: ucov(iip1, jjp1, llm) REAL, INTENT(out) :: vcov(iip1, jjm, llm) REAL, INTENT(in) :: pdt ! time step ! local variables: REAL :: modv(iip1, jjp1), zco, zsi REAL :: vpn, vps, upoln, upols, vpols, vpoln REAL :: u2(iip1, jjp1), v2(iip1, jjm) INTEGER :: i, j, l REAL, PARAMETER :: cfric = 1.e-5 LOGICAL, SAVE :: firstcall = .TRUE. INTEGER, SAVE :: friction_type = 1 CHARACTER(len = 20) :: modname = "friction" CHARACTER(len = 80) :: abort_message IF (firstcall) THEN ! set friction type CALL getin("friction_type", friction_type) if ((friction_type<0).or.(friction_type>1)) then abort_message = "wrong friction type" write(lunout, *)'Friction: wrong friction type', friction_type CALL abort_gcm(modname, abort_message, 42) endif firstcall = .FALSE. ENDIF if (friction_type==0) then ! calcul des composantes au carre du vent naturel do j = 1, jjp1 do i = 1, iip1 u2(i, j) = ucov(i, j, 1) * ucov(i, j, 1) * unscu2(i, j) enddo enddo do j = 1, jjm do i = 1, iip1 v2(i, j) = vcov(i, j, 1) * vcov(i, j, 1) * unscv2(i, j) enddo enddo ! calcul du module de V en dehors des poles do j = 2, jjm do i = 2, iip1 modv(i, j) = sqrt(0.5 * (u2(i - 1, j) + u2(i, j) + v2(i, j - 1) + v2(i, j))) enddo modv(1, j) = modv(iip1, j) enddo ! les deux composantes du vent au pole sont obtenues comme ! premiers modes de fourier de v pres du pole upoln = 0. vpoln = 0. upols = 0. vpols = 0. do i = 2, iip1 zco = cos(rlonv(i)) * (rlonu(i) - rlonu(i - 1)) zsi = sin(rlonv(i)) * (rlonu(i) - rlonu(i - 1)) vpn = vcov(i, 1, 1) / cv(i, 1) vps = vcov(i, jjm, 1) / cv(i, jjm) upoln = upoln + zco * vpn vpoln = vpoln + zsi * vpn upols = upols + zco * vps vpols = vpols + zsi * vps enddo vpn = sqrt(upoln * upoln + vpoln * vpoln) / pi vps = sqrt(upols * upols + vpols * vpols) / pi do i = 1, iip1 ! modv(i,1)=vpn ! modv(i,jjp1)=vps modv(i, 1) = modv(i, 2) modv(i, jjp1) = modv(i, jjm) enddo ! calcul du frottement au sol. do j = 2, jjm do i = 1, iim ucov(i, j, 1) = ucov(i, j, 1) & - cfric * pdt * 0.5 * (modv(i + 1, j) + modv(i, j)) * ucov(i, j, 1) enddo ucov(iip1, j, 1) = ucov(1, j, 1) enddo do j = 1, jjm do i = 1, iip1 vcov(i, j, 1) = vcov(i, j, 1) & - cfric * pdt * 0.5 * (modv(i, j + 1) + modv(i, j)) * vcov(i, j, 1) enddo vcov(iip1, j, 1) = vcov(1, j, 1) enddo endif ! of if (friction_type.eq.0) if (friction_type==1) then do l = 1, llm ucov(:, :, l) = ucov(:, :, l) * (1. - pdt * kfrict(l)) vcov(:, :, l) = vcov(:, :, l) * (1. - pdt * kfrict(l)) enddo endif END SUBROUTINE friction