! $Id$ MODULE grid_noro_m !******************************************************************************* USE lmdz_print_control, ONLY: lunout USE assert_eq_m, ONLY: assert_eq PRIVATE PUBLIC :: grid_noro, grid_noro0, read_noro CONTAINS !------------------------------------------------------------------------------- SUBROUTINE grid_noro(xd,yd,zd,x,y,zphi,zmea,zstd,zsig,zgam,zthe,zpic,zval,mask) !------------------------------------------------------------------------------- ! Author: F. Lott (see also Z.X. Li, A. Harzallah et L. Fairhead) !------------------------------------------------------------------------------- ! Purpose: Compute the Parameters of the SSO scheme as described in LOTT &MILLER ! (1997) and LOTT(1999). !------------------------------------------------------------------------------- ! Comments: ! * Target points are on a rectangular grid: ! iim+1 latitudes including North and South Poles; ! jjm+1 longitudes, with periodicity jjm+1=1. ! * At the poles, the fields value is repeated jjm+1 time. ! * The parameters a,b,c,d represent the limits of the target gridpoint region. ! The means over this region are calculated from USN data, ponderated by a ! weight proportional to the surface occupated by the data inside the model ! gridpoint area. In most circumstances, this weight is the ratio between the ! surfaces of the USN gridpoint area and the model gridpoint area. ! (c) ! ----d----- ! | . . . .| ! | | ! (b)a . * . .b(a) ! | | ! | . . . .| ! ----c----- ! (d) ! * Hard-coded US Navy dataset dimensions (imdp=2160 ; jmdp=1080) have been ! removed (ALLOCATABLE used). ! * iext (currently 10% of imdp) represents the margin to ensure output cells ! on the edge are contained in input cells. !=============================================================================== IMPLICIT NONE !------------------------------------------------------------------------------- ! Arguments: REAL, INTENT(IN) :: xd(:), yd(:) !--- INPUT COORDINATES (imdp) (jmdp) REAL, INTENT(IN) :: zd(:,:) !--- INPUT FIELD (imdp,jmdp) REAL, INTENT(IN) :: x(:), y(:) !--- OUTPUT COORDINATES (imar+1) (jmar) REAL, INTENT(OUT) :: zphi(:,:) !--- GEOPOTENTIAL (imar+1,jmar) REAL, INTENT(OUT) :: zmea(:,:) !--- MEAN OROGRAPHY (imar+1,jmar) REAL, INTENT(OUT) :: zstd(:,:) !--- STANDARD DEVIATION (imar+1,jmar) REAL, INTENT(OUT) :: zsig(:,:) !--- SLOPE (imar+1,jmar) REAL, INTENT(OUT) :: zgam(:,:) !--- ANISOTROPY (imar+1,jmar) REAL, INTENT(OUT) :: zthe(:,:) !--- SMALL AXIS ORIENTATION (imar+1,jmar) REAL, INTENT(OUT) :: zpic(:,:) !--- MAXIMUM ALTITITUDE (imar+1,jmar) REAL, INTENT(OUT) :: zval(:,:) !--- MINIMUM ALTITITUDE (imar+1,jmar) REAL, INTENT(OUT) :: mask(:,:) !--- MASK (imar+1,jmar) !------------------------------------------------------------------------------- ! Local variables: CHARACTER(LEN=256) :: modname="grid_noro" REAL, ALLOCATABLE :: xusn(:), yusn(:) ! dim (imdp+2*iext) (jmdp+2) REAL, ALLOCATABLE :: zusn(:,:) ! dim (imdp+2*iext,jmdp+2) ! CORRELATIONS OF OROGRAPHY GRADIENT ! dim (imar+1,jmar) REAL, ALLOCATABLE :: ztz(:,:), zxtzx(:,:), zytzy(:,:), zxtzy(:,:), weight(:,:) ! CORRELATIONS OF USN OROGRAPHY GRADIENTS ! dim (imar+2*iext,jmdp+2) REAL, ALLOCATABLE :: zxtzxusn(:,:), zytzyusn(:,:), zxtzyusn(:,:) REAL, ALLOCATABLE :: num_tot(:,:), num_lan(:,:) ! dim (imar+1,jmar) REAL, ALLOCATABLE :: a(:), b(:) ! dim (imar+1) REAL, ALLOCATABLE :: c(:), d(:) ! dim (jmar) LOGICAL :: masque_lu INTEGER :: i, ii, imdp, imar, iext INTEGER :: j, jj, jmdp, jmar, nn REAL :: xpi, zdeltax, zlenx, weighx, xincr, zweinor, xk, xl, xm REAL :: rad, zdeltay, zleny, weighy, masque, zweisud, xp, xq, xw !------------------------------------------------------------------------------- imdp=assert_eq(SIZE(xd),SIZE(zd,1),TRIM(modname)//" imdp") jmdp=assert_eq(SIZE(yd),SIZE(zd,2),TRIM(modname)//" jmdp") imar=assert_eq([SIZE(x),SIZE(zphi,1),SIZE(zmea,1),SIZE(zstd,1),SIZE(zsig,1), & SIZE(zgam,1),SIZE(zthe,1),SIZE(zpic,1),SIZE(zval,1), & SIZE(mask,1)],TRIM(modname)//" imar")-1 jmar=assert_eq([SIZE(y),SIZE(zphi,2),SIZE(zmea,2),SIZE(zstd,2),SIZE(zsig,2), & SIZE(zgam,2),SIZE(zthe,2),SIZE(zpic,2),SIZE(zval,2), & SIZE(mask,2)],TRIM(modname)//" jmar") ! IF(imar/=iim) CALL abort_physic(TRIM(modname),'imar/=iim' ,1) ! IF(jmar/=jjm+1) CALL abort_physic(TRIM(modname),'jmar/=jjm+1',1) iext=imdp/10 !--- OK up to 36 degrees cell xpi = ACOS(-1.) rad = 6371229. zdeltay=2.*xpi/REAL(jmdp)*rad WRITE(lunout,*)"*** Orography parameters at sub-cell scale ***" !--- ARE WE USING A READ MASK ? masque_lu=ANY(mask/=-99999.); IF(.NOT.masque_lu) mask=0.0 WRITE(lunout,*)'Masque lu: ',masque_lu !--- EXTENSION OF THE INPUT DATABASE TO PROCEED COMPUTATIONS AT BOUNDARIES: ALLOCATE(xusn(imdp+2*iext)) xusn(1 +iext:imdp +iext)=xd(:) xusn(1 : iext)=xd(1+imdp-iext:imdp)-2.*xpi xusn(1+imdp+iext:imdp+2*iext)=xd(1 :iext)+2.*xpi ALLOCATE(yusn(jmdp+2)) yusn(1 )=yd(1) +(yd(1) -yd(2)) yusn(2:jmdp+1)=yd(:) yusn( jmdp+2)=yd(jmdp)+(yd(jmdp)-yd(jmdp-1)) ALLOCATE(zusn(imdp+2*iext,jmdp+2)) zusn(1 +iext:imdp +iext,2:jmdp+1)=zd (: , :) zusn(1 : iext,2:jmdp+1)=zd (imdp-iext+1:imdp , :) zusn(1+imdp +iext:imdp+2*iext,2:jmdp+1)=zd (1:iext , :) zusn(1 :imdp/2+iext, 1)=zusn(1+imdp/2:imdp +iext, 2) zusn(1+imdp/2+iext:imdp+2*iext, 1)=zusn(1 :imdp/2+iext, 2) zusn(1 :imdp/2+iext, jmdp+2)=zusn(1+imdp/2:imdp +iext,jmdp+1) zusn(1+imdp/2+iext:imdp+2*iext, jmdp+2)=zusn(1 :imdp/2+iext,jmdp+1) !--- COMPUTE LIMITS OF MODEL GRIDPOINT AREA (REGULAR GRID) ALLOCATE(a(imar+1),b(imar+1)) b(1:imar)=(x(1:imar )+ x(2:imar+1))/2.0 b(imar+1)= x( imar+1)+(x( imar+1)-x(imar))/2.0 a(1)=x(1)-(x(2)-x(1))/2.0 a(2:imar+1)= b(1:imar) ALLOCATE(c(jmar),d(jmar)) d(1:jmar-1)=(y(1:jmar-1)+ y(2:jmar))/2.0 d( jmar )= y( jmar )+(y( jmar)-y(jmar-1))/2.0 c(1)=y(1)-(y(2)-y(1))/2.0 c(2:jmar)=d(1:jmar-1) !--- INITIALIZATIONS: ALLOCATE(weight(imar+1,jmar)); weight(:,:)= 0.0 ALLOCATE(zxtzx (imar+1,jmar)); zxtzx (:,:)= 0.0 ALLOCATE(zytzy (imar+1,jmar)); zytzy (:,:)= 0.0 ALLOCATE(zxtzy (imar+1,jmar)); zxtzy (:,:)= 0.0 ALLOCATE(ztz (imar+1,jmar)); ztz (:,:)= 0.0 zmea(:,:)= 0.0 zpic(:,:)=-1.E+10 zval(:,:)= 1.E+10 !--- COMPUTE SLOPES CORRELATIONS ON USN GRID ! CORRELATIONS OF USN OROGRAPHY GRADIENTS ! dim (imdp+2*iext,jmdp+2) ALLOCATE(zytzyusn(imdp+2*iext,jmdp+2)); zytzyusn(:,:)=0.0 ALLOCATE(zxtzxusn(imdp+2*iext,jmdp+2)); zxtzxusn(:,:)=0.0 ALLOCATE(zxtzyusn(imdp+2*iext,jmdp+2)); zxtzyusn(:,:)=0.0 DO j = 2, jmdp+1 zdeltax=zdeltay*cos(yusn(j)) DO i = 2, imdp+2*iext-1 zytzyusn(i,j)=(zusn(i,j+1)-zusn(i,j-1))**2/zdeltay**2 zxtzxusn(i,j)=(zusn(i+1,j)-zusn(i-1,j))**2/zdeltax**2 zxtzyusn(i,j)=(zusn(i,j+1)-zusn(i,j-1)) /zdeltay & *(zusn(i+1,j)-zusn(i-1,j)) /zdeltax END DO END DO !--- SUMMATION OVER GRIDPOINT AREA zleny=xpi/REAL(jmdp)*rad xincr=xpi/REAL(jmdp)/2. ALLOCATE(num_tot(imar+1,jmar)); num_tot(:,:)=0. ALLOCATE(num_lan(imar+1,jmar)); num_lan(:,:)=0. DO ii = 1, imar+1 DO jj = 1, jmar DO j = 2,jmdp+1 zlenx=zleny*COS(yusn(j)) zdeltax=zdeltay*COS(yusn(j)) weighy=(xincr+AMIN1(c(jj)-yusn(j),yusn(j)-d(jj)))*rad weighy=AMAX1(0.,AMIN1(weighy,zleny)) IF(weighy==0.) CYCLE DO i = 2, imdp+2*iext-1 weighx=(xincr+AMIN1(xusn(i)-a(ii),b(ii)-xusn(i)))*rad*COS(yusn(j)) weighx=AMAX1(0.,AMIN1(weighx,zlenx)) IF(weighx==0.) CYCLE num_tot(ii,jj)=num_tot(ii,jj)+1.0 IF(zusn(i,j)>=1.)num_lan(ii,jj)=num_lan(ii,jj)+1.0 weight(ii,jj)=weight(ii,jj)+weighx*weighy zxtzx(ii,jj)=zxtzx(ii,jj)+zxtzxusn(i,j)*weighx*weighy zytzy(ii,jj)=zytzy(ii,jj)+zytzyusn(i,j)*weighx*weighy zxtzy(ii,jj)=zxtzy(ii,jj)+zxtzyusn(i,j)*weighx*weighy ztz (ii,jj)= ztz(ii,jj)+zusn(i,j)*zusn(i,j)*weighx*weighy zmea (ii,jj)= zmea(ii,jj)+zusn(i,j)*weighx*weighy !--- MEAN zpic (ii,jj)=AMAX1(zpic(ii,jj),zusn(i,j)) !--- PEAKS zval (ii,jj)=AMIN1(zval(ii,jj),zusn(i,j)) !--- VALLEYS END DO END DO END DO END DO !--- COMPUTE PARAMETERS NEEDED BY LOTT & MILLER (1997) AND LOTT (1999) SSO SCHEME IF(.NOT.masque_lu) THEN WHERE(weight(:,:)/=0.0) mask=num_lan(:,:)/num_tot(:,:) END IF nn=COUNT(weight(:,:)==0.0) IF(nn/=0) WRITE(lunout,*)'Problem with weight ; vanishing occurrences: ',nn WHERE(weight(:,:)/=0.0) zmea (:,:)=zmea (:,:)/weight(:,:) zxtzx(:,:)=zxtzx(:,:)/weight(:,:) zytzy(:,:)=zytzy(:,:)/weight(:,:) zxtzy(:,:)=zxtzy(:,:)/weight(:,:) ztz (:,:)=ztz (:,:)/weight(:,:) zstd (:,:)=ztz (:,:)-zmea(:,:)**2 END WHERE WHERE(zstd(:,:)<0) zstd(:,:)=0. zstd (:,:)=SQRT(zstd(:,:)) !--- CORRECT VALUES OF HORIZONTAL SLOPE NEAR THE POLES: zxtzx(:, 1)=zxtzx(:, 2) zxtzx(:,jmar)=zxtzx(:,jmar-1) zxtzy(:, 1)=zxtzy(:, 2) zxtzy(:,jmar)=zxtzy(:,jmar-1) zytzy(:, 1)=zytzy(:, 2) zytzy(:,jmar)=zytzy(:,jmar-1) !=== FILTERS TO SMOOTH OUT FIELDS FOR INPUT INTO SSO SCHEME. !--- FIRST FILTER, MOVING AVERAGE OVER 9 POINTS. !------------------------------------------------------------------------------- zphi(:,:)=zmea(:,:) ! GK211005 (CG) UNSMOOTHED TOPO CALL MVA9(zmea); CALL MVA9(zstd); CALL MVA9(zpic); CALL MVA9(zval) CALL MVA9(zxtzx); CALL MVA9(zxtzy); CALL MVA9(zytzy) !--- MASK BASED ON GROUND MAXIMUM, 10% THRESHOLD. (SURFACE PARAMS MEANINGLESS) WHERE(weight(:,:)==0.0.OR.mask<0.1) zphi(:,:)=0.0; zmea(:,:)=0.0; zpic(:,:)=0.0; zval(:,:)=0.0; zstd(:,:)=0.0 END WHERE DO ii = 1, imar DO jj = 1, jmar IF(weight(ii,jj)==0.0) CYCLE !--- Coefficients K, L et M: xk=(zxtzx(ii,jj)+zytzy(ii,jj))/2. xl=(zxtzx(ii,jj)-zytzy(ii,jj))/2. xm=zxtzy(ii,jj) xp=xk-SQRT(xl**2+xm**2) xq=xk+SQRT(xl**2+xm**2) xw=1.e-8 IF(xp<=xw) xp=0. IF(xq<=xw) xq=xw IF(ABS(xm)<=xw) xm=xw*SIGN(1.,xm) !--- SLOPE, ANISOTROPY AND THETA ANGLE zsig(ii,jj)=SQRT(xq) zgam(ii,jj)=xp/xq zthe(ii,jj)=90.*ATAN2(xm,xl)/xpi END DO END DO WHERE(weight(:,:)==0.0.OR.mask<0.1) zsig(:,:)=0.0; zgam(:,:)=0.0; zthe(:,:)=0.0 END WHERE WRITE(lunout,*)' MEAN ORO:' ,MAXVAL(zmea) WRITE(lunout,*)' ST. DEV.:' ,MAXVAL(zstd) WRITE(lunout,*)' PENTE:' ,MAXVAL(zsig) WRITE(lunout,*)' ANISOTROP:',MAXVAL(zgam) WRITE(lunout,*)' ANGLE:' ,MINVAL(zthe),MAXVAL(zthe) WRITE(lunout,*)' pic:' ,MAXVAL(zpic) WRITE(lunout,*)' val:' ,MAXVAL(zval) !--- Values at redundant longitude zmea(imar+1,:)=zmea(1,:) zphi(imar+1,:)=zphi(1,:) zpic(imar+1,:)=zpic(1,:) zval(imar+1,:)=zval(1,:) zstd(imar+1,:)=zstd(1,:) zsig(imar+1,:)=zsig(1,:) zgam(imar+1,:)=zgam(1,:) zthe(imar+1,:)=zthe(1,:) !--- Values at north pole zweinor =SUM(weight(1:imar,1)) zmea(:,1)=SUM(weight(1:imar,1)*zmea(1:imar,1))/zweinor zphi(:,1)=SUM(weight(1:imar,1)*zphi(1:imar,1))/zweinor zpic(:,1)=SUM(weight(1:imar,1)*zpic(1:imar,1))/zweinor zval(:,1)=SUM(weight(1:imar,1)*zval(1:imar,1))/zweinor zstd(:,1)=SUM(weight(1:imar,1)*zstd(1:imar,1))/zweinor zsig(:,1)=SUM(weight(1:imar,1)*zsig(1:imar,1))/zweinor zgam(:,1)=1.; zthe(:,1)=0. !--- Values at south pole zweisud =SUM(weight(1:imar,jmar),DIM=1) zmea(:,jmar)=SUM(weight(1:imar,jmar)*zmea(1:imar,jmar))/zweisud zphi(:,jmar)=SUM(weight(1:imar,jmar)*zphi(1:imar,jmar))/zweisud zpic(:,jmar)=SUM(weight(1:imar,jmar)*zpic(1:imar,jmar))/zweisud zval(:,jmar)=SUM(weight(1:imar,jmar)*zval(1:imar,jmar))/zweisud zstd(:,jmar)=SUM(weight(1:imar,jmar)*zstd(1:imar,jmar))/zweisud zsig(:,jmar)=SUM(weight(1:imar,jmar)*zsig(1:imar,jmar))/zweisud zgam(:,jmar)=1.; zthe(:,jmar)=0. END SUBROUTINE grid_noro !------------------------------------------------------------------------------- !------------------------------------------------------------------------------- SUBROUTINE grid_noro0(xd,yd,zd,x,y,zphi,mask) !=============================================================================== ! Purpose: Extracted from grid_noro to provide geopotential height for dynamics ! without any CALL to physics subroutines. !=============================================================================== IMPLICIT NONE !------------------------------------------------------------------------------- ! Arguments: REAL, INTENT(IN) :: xd(:), yd(:) !--- INPUT COORDINATES (imdp) (jmdp) REAL, INTENT(IN) :: zd(:,:) !--- INPUT FIELD (imdp, jmdp) REAL, INTENT(IN) :: x(:), y(:) !--- OUTPUT COORDINATES (imar+1) (jmar) REAL, INTENT(OUT) :: zphi(:,:) !--- GEOPOTENTIAL (imar+1,jmar) REAL, INTENT(OUT) :: mask(:,:) !--- MASK (imar+1,jmar) !------------------------------------------------------------------------------- ! Local variables: CHARACTER(LEN=256) :: modname="grid_noro0" REAL, ALLOCATABLE :: xusn(:), yusn(:) ! dim (imdp+2*iext) (jmdp+2) REAL, ALLOCATABLE :: zusn(:,:) ! dim (imdp+2*iext, jmdp+2) REAL, ALLOCATABLE :: weight(:,:) ! dim (imar+1,jmar) REAL, ALLOCATABLE :: num_tot(:,:), num_lan(:,:) ! dim (imar+1,jmar) REAL, ALLOCATABLE :: a(:), b(:) ! dim (imar+1) REAL, ALLOCATABLE :: c(:), d(:) ! dim (jmar) LOGICAL :: masque_lu INTEGER :: i, ii, imdp, imar, iext INTEGER :: j, jj, jmdp, jmar, nn REAL :: xpi, zlenx, zleny, weighx, weighy, xincr, masque, rad !------------------------------------------------------------------------------- imdp=assert_eq(SIZE(xd),SIZE(zd,1),TRIM(modname)//" imdp") jmdp=assert_eq(SIZE(yd),SIZE(zd,2),TRIM(modname)//" jmdp") imar=assert_eq(SIZE(x),SIZE(zphi,1),SIZE(mask,1),TRIM(modname)//" imar")-1 jmar=assert_eq(SIZE(y),SIZE(zphi,2),SIZE(mask,2),TRIM(modname)//" jmar") iext=imdp/10 xpi = ACOS(-1.) rad = 6371229. !--- ARE WE USING A READ MASK ? masque_lu=ANY(mask/=-99999.); IF(.NOT.masque_lu) mask=0.0 WRITE(lunout,*)'Masque lu: ',masque_lu !--- EXTENSION OF THE INPUT DATABASE TO PROCEED COMPUTATIONS AT BOUNDARIES: ALLOCATE(xusn(imdp+2*iext)) xusn(1 +iext:imdp +iext)=xd(:) xusn(1 : iext)=xd(1+imdp-iext:imdp)-2.*xpi xusn(1+imdp+iext:imdp+2*iext)=xd(1 :iext)+2.*xpi ALLOCATE(yusn(jmdp+2)) yusn(1 )=yd(1) +(yd(1) -yd(2)) yusn(2:jmdp+1)=yd(:) yusn( jmdp+2)=yd(jmdp)+(yd(jmdp)-yd(jmdp-1)) ALLOCATE(zusn(imdp+2*iext,jmdp+2)) zusn(1 +iext:imdp +iext,2:jmdp+1)=zd (: , :) zusn(1 : iext,2:jmdp+1)=zd (imdp-iext+1:imdp , :) zusn(1+imdp +iext:imdp+2*iext,2:jmdp+1)=zd (1:iext , :) zusn(1 :imdp/2+iext, 1)=zusn(1+imdp/2:imdp +iext, 2) zusn(1+imdp/2+iext:imdp+2*iext, 1)=zusn(1 :imdp/2+iext, 2) zusn(1 :imdp/2+iext, jmdp+2)=zusn(1+imdp/2:imdp +iext,jmdp+1) zusn(1+imdp/2+iext:imdp+2*iext, jmdp+2)=zusn(1 :imdp/2+iext,jmdp+1) !--- COMPUTE LIMITS OF MODEL GRIDPOINT AREA (REGULAR GRID) ALLOCATE(a(imar+1),b(imar+1)) b(1:imar)=(x(1:imar )+ x(2:imar+1))/2.0 b(imar+1)= x( imar+1)+(x( imar+1)-x(imar))/2.0 a(1)=x(1)-(x(2)-x(1))/2.0 a(2:imar+1)= b(1:imar) ALLOCATE(c(jmar),d(jmar)) d(1:jmar-1)=(y(1:jmar-1)+ y(2:jmar))/2.0 d( jmar )= y( jmar )+(y( jmar)-y(jmar-1))/2.0 c(1)=y(1)-(y(2)-y(1))/2.0 c(2:jmar)=d(1:jmar-1) !--- INITIALIZATIONS: ALLOCATE(weight(imar+1,jmar)); weight(:,:)=0.0; zphi(:,:)=0.0 !--- SUMMATION OVER GRIDPOINT AREA zleny=xpi/REAL(jmdp)*rad xincr=xpi/REAL(jmdp)/2. ALLOCATE(num_tot(imar+1,jmar)); num_tot(:,:)=0. ALLOCATE(num_lan(imar+1,jmar)); num_lan(:,:)=0. DO ii = 1, imar+1 DO jj = 1, jmar DO j = 2,jmdp+1 zlenx=zleny*COS(yusn(j)) weighy=(xincr+AMIN1(c(jj)-yusn(j),yusn(j)-d(jj)))*rad weighy=AMAX1(0.,AMIN1(weighy,zleny)) IF(weighy/=0) CYCLE DO i = 2, imdp+2*iext-1 weighx=(xincr+AMIN1(xusn(i)-a(ii),b(ii)-xusn(i)))*rad*COS(yusn(j)) weighx=AMAX1(0.,AMIN1(weighx,zlenx)) IF(weighx/=0) CYCLE num_tot(ii,jj)=num_tot(ii,jj)+1.0 IF(zusn(i,j)>=1.)num_lan(ii,jj)=num_lan(ii,jj)+1.0 weight(ii,jj)=weight(ii,jj)+weighx*weighy zphi (ii,jj)=zphi (ii,jj)+zusn(i,j)*weighx*weighy !--- MEAN END DO END DO END DO END DO !--- COMPUTE PARAMETERS NEEDED BY LOTT & MILLER (1997) AND LOTT (1999) SSO SCHEME IF(.NOT.masque_lu) THEN WHERE(weight(:,:)/=0.0) mask=num_lan(:,:)/num_tot(:,:) END IF nn=COUNT(weight(:,:)==0.0) IF(nn/=0) WRITE(lunout,*)'Problem with weight ; vanishing occurrences: ',nn WHERE(weight/=0.0) zphi(:,:)=zphi(:,:)/weight(:,:) !--- MASK BASED ON GROUND MAXIMUM, 10% THRESHOLD (<10%: SURF PARAMS MEANINGLESS) WHERE(weight(:,:)==0.0.OR.mask<0.1) zphi(:,:)=0.0 WRITE(lunout,*)' MEAN ORO:' ,MAXVAL(zphi) !--- Values at redundant longitude and at poles zphi(imar+1,:)=zphi(1,:) zphi(:, 1)=SUM(weight(1:imar, 1)*zphi(1:imar, 1))/SUM(weight(1:imar, 1)) zphi(:,jmar)=SUM(weight(1:imar,jmar)*zphi(1:imar,jmar))/SUM(weight(1:imar,jmar)) END SUBROUTINE grid_noro0 !------------------------------------------------------------------------------- !------------------------------------------------------------------------------- SUBROUTINE read_noro(x,y,fname,zphi,zmea,zstd,zsig,zgam,zthe,zpic,zval,mask) !------------------------------------------------------------------------------- ! Purpose: Read parameters usually determined with grid_noro from a file. !=============================================================================== USE netcdf, ONLY: nf90_open, nf90_inq_dimid, nf90_inquire_dimension, & nf90_noerr, nf90_close, nf90_inq_varid, nf90_get_var, nf90_strerror, & nf90_nowrite IMPLICIT NONE !------------------------------------------------------------------------------- ! Arguments: REAL, INTENT(IN) :: x(:), y(:) !--- OUTPUT COORDINATES (imar+1) (jmar) CHARACTER(LEN=*), INTENT(IN) :: fname ! PARAMETERS FILE NAME REAL, INTENT(OUT) :: zphi(:,:) !--- GEOPOTENTIAL (imar+1,jmar) REAL, INTENT(OUT) :: zmea(:,:) !--- MEAN OROGRAPHY (imar+1,jmar) REAL, INTENT(OUT) :: zstd(:,:) !--- STANDARD DEVIATION (imar+1,jmar) REAL, INTENT(OUT) :: zsig(:,:) !--- SLOPE (imar+1,jmar) REAL, INTENT(OUT) :: zgam(:,:) !--- ANISOTROPY (imar+1,jmar) REAL, INTENT(OUT) :: zthe(:,:) !--- SMALL AXIS ORIENTATION (imar+1,jmar) REAL, INTENT(OUT) :: zpic(:,:) !--- MAXIMUM ALTITUDE (imar+1,jmar) REAL, INTENT(OUT) :: zval(:,:) !--- MINIMUM ALTITUDE (imar+1,jmar) REAL, INTENT(OUT) :: mask(:,:) !--- MASK (imar+1,jmar) !------------------------------------------------------------------------------- ! Local variables: CHARACTER(LEN=256) :: modname="read_noro" INTEGER :: imar, jmar, fid, did, vid LOGICAL :: masque_lu REAL :: xpi, d2r !------------------------------------------------------------------------------- imar=assert_eq([SIZE(x),SIZE(zphi,1),SIZE(zmea,1),SIZE(zstd,1),SIZE(zsig,1), & SIZE(zgam,1),SIZE(zthe,1),SIZE(zpic,1),SIZE(zval,1), & SIZE(mask,1)],TRIM(modname)//" imar")-1 jmar=assert_eq([SIZE(y),SIZE(zphi,2),SIZE(zmea,2),SIZE(zstd,2),SIZE(zsig,2), & SIZE(zgam,2),SIZE(zthe,2),SIZE(zpic,2),SIZE(zval,2), & SIZE(mask,2)],TRIM(modname)//" jmar") xpi=ACOS(-1.0); d2r=xpi/180. WRITE(lunout,*)"*** Orography parameters at sub-cell scale from file ***" !--- ARE WE USING A READ MASK ? masque_lu=ANY(mask/=-99999.); IF(.NOT.masque_lu) mask=0.0 WRITE(lunout,*)'Masque lu: ',masque_lu CALL ncerr(nf90_open(fname,nf90_nowrite,fid)) CALL check_dim('x','longitude',x(1:imar)) CALL check_dim('y','latitude' ,y(1:jmar)) IF(.NOT.masque_lu) CALL get_fld('mask',mask) CALL get_fld('Zphi',zphi) CALL get_fld('Zmea',zmea) CALL get_fld('mu' ,zstd) CALL get_fld('Zsig',zsig) CALL get_fld('Zgam',zgam) CALL get_fld('Zthe',zthe) zpic=zmea+2*zstd zval=MAX(0.,zmea-2.*zstd) CALL ncerr(nf90_close(fid)) WRITE(lunout,*)' MEAN ORO:' ,MAXVAL(zmea) WRITE(lunout,*)' ST. DEV.:' ,MAXVAL(zstd) WRITE(lunout,*)' PENTE:' ,MAXVAL(zsig) WRITE(lunout,*)' ANISOTROP:',MAXVAL(zgam) WRITE(lunout,*)' ANGLE:' ,MINVAL(zthe),MAXVAL(zthe) WRITE(lunout,*)' pic:' ,MAXVAL(zpic) WRITE(lunout,*)' val:' ,MAXVAL(zval) CONTAINS SUBROUTINE get_fld(var,fld) CHARACTER(LEN=*), INTENT(IN) :: var REAL, INTENT(INOUT) :: fld(:,:) CALL ncerr(nf90_inq_varid(fid,var,vid),var) CALL ncerr(nf90_get_var(fid,vid,fld(1:imar,:)),var) fld(imar+1,:)=fld(1,:) END SUBROUTINE get_fld SUBROUTINE check_dim(dimd,nam,dimv) USE lmdz_abort_physic, ONLY: abort_physic CHARACTER(LEN=*), INTENT(IN) :: dimd CHARACTER(LEN=*), INTENT(IN) :: nam REAL, INTENT(IN) :: dimv(:) REAL, ALLOCATABLE :: tmp(:) INTEGER :: n CALL ncerr(nf90_inq_dimid(fid,dimd,did)) CALL ncerr(nf90_inquire_dimension(fid,did,len=n)); ALLOCATE(tmp(n)) CALL ncerr(nf90_inq_varid(fid,dimd,did)) CALL ncerr(nf90_get_var(fid,did,tmp)) IF(MAXVAL(tmp)>xpi) tmp=tmp*d2r IF(n/=SIZE(dimv).OR.ANY(ABS(tmp-dimv)>1E-6)) THEN WRITE(lunout,*)'Problem with file "'//TRIM(fname)//'".' CALL abort_physic(modname,'Grid differs from LMDZ for '//TRIM(nam)//'.',1) END IF END SUBROUTINE check_dim SUBROUTINE ncerr(ncres,var) USE lmdz_abort_physic, ONLY: abort_physic IMPLICIT NONE INTEGER, INTENT(IN) :: ncres CHARACTER(LEN=*), INTENT(IN), OPTIONAL :: var CHARACTER(LEN=256) :: mess IF(ncres/=nf90_noerr) THEN mess='Problem with file "'//TRIM(fname)//'"' IF(PRESENT(var)) mess=TRIM(mess)//' and variable "'//TRIM(var)//'"' WRITE(lunout,*)TRIM(mess)//'.' CALL abort_physic(modname,nf90_strerror(ncres),1) END IF END SUBROUTINE ncerr END SUBROUTINE read_noro !------------------------------------------------------------------------------- !------------------------------------------------------------------------------- SUBROUTINE MVA9(x) !------------------------------------------------------------------------------- IMPLICIT NONE ! MAKE A MOVING AVERAGE OVER 9 GRIDPOINTS OF THE X FIELDS !------------------------------------------------------------------------------- ! Arguments: REAL, INTENT(INOUT) :: x(:,:) !------------------------------------------------------------------------------- ! Local variables: REAL :: xf(SIZE(x,DIM=1),SIZE(x,DIM=2)), WEIGHTpb(-1:1,-1:1) INTEGER :: i, j, imar, jmar !------------------------------------------------------------------------------- WEIGHTpb=RESHAPE([((1./REAL((1+i**2)*(1+j**2)),i=-1,1),j=-1,1)],SHAPE=[3,3]) WEIGHTpb=WEIGHTpb/SUM(WEIGHTpb) imar=SIZE(X,DIM=1); jmar=SIZE(X,DIM=2) DO j=2,jmar-1 DO i=2,imar-1 xf(i,j)=SUM(x(i-1:i+1,j-1:j+1)*WEIGHTpb(:,:)) END DO END DO DO j=2,jmar-1 xf(1,j)=SUM(x(imar-1,j-1:j+1)*WEIGHTpb(-1,:)) xf(1,j)=xf(1,j)+SUM(x(1:2,j-1:j+1)*WEIGHTpb(0:1,-1:1)) xf(imar,j)=xf(1,j) END DO xf(:, 1)=xf(:, 2) xf(:,jmar)=xf(:,jmar-1) x(:,:)=xf(:,:) END SUBROUTINE MVA9 !------------------------------------------------------------------------------- END MODULE grid_noro_m