! $Id: lmdz1d.F90 3540 2019-06-25 14:50:13Z fairhead $ SUBROUTINE old_lmdz1d USE ioipsl, only: ju2ymds, ymds2ju, ioconf_calendar, getin USE phys_state_var_mod, ONLY: phys_state_var_init, phys_state_var_end, & clwcon, detr_therm, & qsol, fevap, z0m, z0h, agesno, & du_gwd_rando, du_gwd_front, entr_therm, f0, fm_therm, & falb_dir, falb_dif, & ftsol, beta_aridity, pbl_tke, pctsrf, radsol, rain_fall, snow_fall, ratqs, & rnebcon, rugoro, sig1, w01, solaire_etat0, sollw, sollwdown, & solsw, solswfdiff, t_ancien, q_ancien, u_ancien, v_ancien, rneb_ancien, & wake_delta_pbl_TKE, delta_tsurf, wake_fip, wake_pe, & wake_deltaq, wake_deltat, wake_s, awake_s, wake_dens, & awake_dens, cv_gen, wake_cstar, & zgam, zmax0, zmea, zpic, zsig, & zstd, zthe, zval, ale_bl, ale_bl_trig, alp_bl, ql_ancien, qs_ancien, & prlw_ancien, prsw_ancien, prw_ancien, & u10m, v10m, ale_wake, ale_bl_stat USE dimphy USE surface_data, ONLY: type_ocean, ok_veget USE pbl_surface_mod, ONLY: ftsoil, pbl_surface_init, & pbl_surface_final USE fonte_neige_mod, ONLY: fonte_neige_init, fonte_neige_final USE infotrac ! new USE control_mod USE indice_sol_mod USE phyaqua_mod ! USE mod_1D_cases_read USE mod_1D_cases_read2 USE mod_1D_amma_read USE print_control_mod, ONLY: lunout, prt_level USE iniphysiq_mod, ONLY: iniphysiq USE mod_const_mpi, ONLY: comm_lmdz USE physiq_mod, ONLY: physiq USE comvert_mod, ONLY: presnivs, ap, bp, dpres, nivsig, nivsigs, pa, & preff, aps, bps, pseudoalt, scaleheight USE temps_mod, ONLY: annee_ref, calend, day_end, day_ini, day_ref, & itau_dyn, itau_phy, start_time, year_len USE phys_cal_mod, ONLY: year_len_phys_cal_mod => year_len USE mod_1D_cases_read, ONLY: interp_case_time ! used in included old_1D_read_forc_cases.h USE lmdz_cppkeys_wrapper, ONLY: CPPKEY_OUTPUTPHYSSCM implicit none INCLUDE "dimensions.h" INCLUDE "YOMCST.h" !! INCLUDE "control.h" INCLUDE "clesphys.h" INCLUDE "dimsoil.h" ! INCLUDE "indicesol.h" INCLUDE "compar1d.h" INCLUDE "flux_arp.h" INCLUDE "date_cas.h" INCLUDE "tsoilnudge.h" INCLUDE "fcg_gcssold.h" !!! INCLUDE "fbforcing.h" INCLUDE "compbl.h" !===================================================================== ! DECLARATIONS !===================================================================== !--------------------------------------------------------------------- ! Externals !--------------------------------------------------------------------- external fq_sat real fq_sat !--------------------------------------------------------------------- ! Arguments d' initialisations de la physique (USER DEFINE) !--------------------------------------------------------------------- integer, parameter :: ngrid = 1 real :: zcufi = 1. real :: zcvfi = 1. !- real :: nat_surf !- logical :: ok_flux_surf !- real :: fsens !- real :: flat !- real :: tsurf !- real :: rugos !- real :: qsol(1:2) !- real :: qsurf !- real :: psurf !- real :: zsurf !- real :: albedo !- !- real :: time = 0. !- real :: time_ini !- real :: xlat !- real :: xlon !- real :: wtsurf !- real :: wqsurf !- real :: restart_runoff !- real :: xagesno !- real :: qsolinp !- real :: zpicinp !- real :: fnday real :: day, daytime real :: day1 real :: heure integer :: jour integer :: mois integer :: an !--------------------------------------------------------------------- ! Declarations related to forcing and initial profiles !--------------------------------------------------------------------- integer :: kmax = llm integer llm700, nq1, nq2 INTEGER, PARAMETER :: nlev_max = 1000, nqmx = 1000 real timestep, frac real height(nlev_max), tttprof(nlev_max), qtprof(nlev_max) real uprof(nlev_max), vprof(nlev_max), e12prof(nlev_max) real ugprof(nlev_max), vgprof(nlev_max), wfls(nlev_max) real dqtdxls(nlev_max), dqtdyls(nlev_max) real dqtdtls(nlev_max), thlpcar(nlev_max) real qprof(nlev_max, nqmx) ! integer :: forcing_type logical :: forcing_les = .FALSE. logical :: forcing_armcu = .FALSE. logical :: forcing_rico = .FALSE. logical :: forcing_radconv = .FALSE. logical :: forcing_toga = .FALSE. logical :: forcing_twpice = .FALSE. logical :: forcing_amma = .FALSE. logical :: forcing_dice = .FALSE. logical :: forcing_gabls4 = .FALSE. logical :: forcing_GCM2SCM = .FALSE. logical :: forcing_GCSSold = .FALSE. logical :: forcing_sandu = .FALSE. logical :: forcing_astex = .FALSE. logical :: forcing_fire = .FALSE. logical :: forcing_case = .FALSE. logical :: forcing_case2 = .FALSE. logical :: forcing_SCM = .FALSE. integer :: type_ts_forcing ! 0 = SST constant; 1 = SST read from a file ! (cf read_tsurf1d.F) real wwww !vertical advection computation ! real d_t_z(llm), d_q_z(llm) ! real d_t_dyn_z(llm), dq_dyn_z(llm) ! real zz(llm) ! real zfact !flag forcings logical :: nudge_wind = .TRUE. logical :: nudge_thermo = .FALSE. logical :: cptadvw = .TRUE. !===================================================================== ! DECLARATIONS FOR EACH CASE !===================================================================== INCLUDE "old_1D_decl_cases.h" !--------------------------------------------------------------------- ! Declarations related to nudging !--------------------------------------------------------------------- integer :: nudge_max parameter (nudge_max = 9) integer :: inudge_RHT = 1 integer :: inudge_UV = 2 logical :: nudge(nudge_max) real :: t_targ(llm) real :: rh_targ(llm) real :: u_targ(llm) real :: v_targ(llm) !--------------------------------------------------------------------- ! Declarations related to vertical discretization: !--------------------------------------------------------------------- real :: pzero = 1.e5 real :: play (llm), zlay (llm), sig_s(llm), plev(llm + 1) real :: playd(llm), zlayd(llm), ap_amma(llm + 1), bp_amma(llm + 1) !--------------------------------------------------------------------- ! Declarations related to variables !--------------------------------------------------------------------- real :: phi(llm) real :: teta(llm), tetal(llm), temp(llm), u(llm), v(llm), w(llm) REAL rot(1, llm) ! relative vorticity, in s-1 real :: rlat_rad(1), rlon_rad(1) real :: omega(llm + 1), omega2(llm), rho(llm + 1) real :: ug(llm), vg(llm), fcoriolis real :: sfdt, cfdt real :: du_phys(llm), dv_phys(llm), dt_phys(llm) real :: dt_dyn(llm) real :: dt_cooling(llm), d_t_adv(llm), d_t_nudge(llm) real :: d_u_nudge(llm), d_v_nudge(llm) real :: du_adv(llm), dv_adv(llm) real :: du_age(llm), dv_age(llm) real :: alpha real :: ttt REAL, ALLOCATABLE, DIMENSION(:, :) :: q REAL, ALLOCATABLE, DIMENSION(:, :) :: dq REAL, ALLOCATABLE, DIMENSION(:, :) :: dq_dyn REAL, ALLOCATABLE, DIMENSION(:, :) :: d_q_adv REAL, ALLOCATABLE, DIMENSION(:, :) :: d_q_nudge ! REAL, ALLOCATABLE, DIMENSION(:):: d_th_adv !--------------------------------------------------------------------- ! Initialization of surface variables !--------------------------------------------------------------------- real :: run_off_lic_0(1) real :: fder(1), snsrf(1, nbsrf), qsurfsrf(1, nbsrf) real :: tsoil(1, nsoilmx, nbsrf) ! real :: agesno(1,nbsrf) !--------------------------------------------------------------------- ! Call to phyredem !--------------------------------------------------------------------- logical :: ok_writedem = .TRUE. real :: sollw_in = 0. real :: solsw_in = 0. !--------------------------------------------------------------------- ! Call to physiq !--------------------------------------------------------------------- logical :: firstcall = .TRUE. logical :: lastcall = .FALSE. real :: phis(1) = 0.0 real :: dpsrf(1) !--------------------------------------------------------------------- ! Initializations of boundary conditions !--------------------------------------------------------------------- real, allocatable :: phy_nat (:) ! 0=ocean libre,1=land,2=glacier,3=banquise real, allocatable :: phy_alb (:) ! Albedo land only (old value condsurf_jyg=0.3) real, allocatable :: phy_sst (:) ! SST (will not be used; cf read_tsurf1d.F) real, allocatable :: phy_bil (:) ! Ne sert que pour les slab_ocean real, allocatable :: phy_rug (:) ! Longueur rugosite utilisee sur land only real, allocatable :: phy_ice (:) ! Fraction de glace real, allocatable :: phy_fter(:) ! Fraction de terre real, allocatable :: phy_foce(:) ! Fraction de ocean real, allocatable :: phy_fsic(:) ! Fraction de glace real, allocatable :: phy_flic(:) ! Fraction de glace !--------------------------------------------------------------------- ! Fichiers et d'autres variables !--------------------------------------------------------------------- integer :: k, l, i, it = 1, mxcalc integer :: nsrf integer jcode INTEGER read_climoz integer :: it_end ! iteration number of the last call !Al1 integer ecrit_slab_oc !1=ecrit,-1=lit,0=no file data ecrit_slab_oc/-1/ ! if flag_inhib_forcing = 0, tendencies of forcing are added ! <> 0, tendencies of forcing are not added INTEGER :: flag_inhib_forcing = 0 !===================================================================== ! INITIALIZATIONS !===================================================================== du_phys(:) = 0. dv_phys(:) = 0. dt_phys(:) = 0. dt_dyn(:) = 0. dt_cooling(:) = 0. d_t_adv(:) = 0. d_t_nudge(:) = 0. d_u_nudge(:) = 0. d_v_nudge(:) = 0. du_adv(:) = 0. dv_adv(:) = 0. du_age(:) = 0. dv_age(:) = 0. ! Initialization of Common turb_forcing dtime_frcg = 0. Turb_fcg_gcssold = .FALSE. hthturb_gcssold = 0. hqturb_gcssold = 0. !--------------------------------------------------------------------- ! OPTIONS OF THE 1D SIMULATION (lmdz1d.def => unicol.def) !--------------------------------------------------------------------- !Al1 CALL conf_unicol !Al1 moves this gcssold var from common fcg_gcssold to Turb_fcg_gcssold = xTurb_fcg_gcssold ! -------------------------------------------------------------------- close(1) !Al1 write(*, *) 'lmdz1d.def lu => unicol.def' ! forcing_type defines the way the SCM is forced: !forcing_type = 0 ==> forcing_les = .TRUE. ! initial profiles from file prof.inp.001 ! no forcing by LS convergence ; ! surface temperature imposed ; ! radiative cooling may be imposed (iflag_radia=0 in physiq.def) !forcing_type = 1 ==> forcing_radconv = .TRUE. ! idem forcing_type = 0, but the imposed radiative cooling ! is set to 0 (hence, if iflag_radia=0 in physiq.def, ! then there is no radiative cooling at all) !forcing_type = 2 ==> forcing_toga = .TRUE. ! initial profiles from TOGA-COARE IFA files ! LS convergence and SST imposed from TOGA-COARE IFA files !forcing_type = 3 ==> forcing_GCM2SCM = .TRUE. ! initial profiles from the GCM output ! LS convergence imposed from the GCM output !forcing_type = 4 ==> forcing_twpice = .TRUE. ! initial profiles from TWP-ICE cdf file ! LS convergence, omega and SST imposed from TWP-ICE files !forcing_type = 5 ==> forcing_rico = .TRUE. ! initial profiles from RICO files ! LS convergence imposed from RICO files !forcing_type = 6 ==> forcing_amma = .TRUE. ! initial profiles from AMMA nc file ! LS convergence, omega and surface fluxes imposed from AMMA file !forcing_type = 7 ==> forcing_dice = .TRUE. ! initial profiles and large scale forcings in dice_driver.nc ! Different stages: soil model alone, atm. model alone ! then both models coupled !forcing_type = 8 ==> forcing_gabls4 = .TRUE. ! initial profiles and large scale forcings in gabls4_driver.nc !forcing_type >= 100 ==> forcing_case = .TRUE. ! initial profiles and large scale forcings in cas.nc ! LS convergence, omega and SST imposed from CINDY-DYNAMO files ! 101=cindynamo ! 102=bomex !forcing_type >= 100 ==> forcing_case2 = .TRUE. ! temporary flag while all the 1D cases are not whith the same cas.nc forcing file ! 103=arm_cu2 ie arm_cu with new forcing format ! 104=rico2 ie rico with new forcing format !forcing_type = 40 ==> forcing_GCSSold = .TRUE. ! initial profile from GCSS file ! LS convergence imposed from GCSS file !forcing_type = 50 ==> forcing_fire = .TRUE. ! forcing from fire.nc !forcing_type = 59 ==> forcing_sandu = .TRUE. ! initial profiles from sanduref file: see prof.inp.001 ! SST varying with time and divergence constante: see ifa_sanduref.txt file ! Radiation has to be computed interactively !forcing_type = 60 ==> forcing_astex = .TRUE. ! initial profiles from file: see prof.inp.001 ! SST,divergence,ug,vg,ufa,vfa varying with time : see ifa_astex.txt file ! Radiation has to be computed interactively !forcing_type = 61 ==> forcing_armcu = .TRUE. ! initial profiles from file: see prof.inp.001 ! sensible and latent heat flux imposed: see ifa_arm_cu_1.txt ! large scale advective forcing & radiative tendencies applied below 1000m: see ifa_arm_cu_2.txt ! use geostrophic wind ug=10m/s vg=0m/s. Duration of the case 53100s ! Radiation to be switched off if (forcing_type <=0) THEN forcing_les = .TRUE. elseif (forcing_type ==1) THEN forcing_radconv = .TRUE. elseif (forcing_type ==2) THEN forcing_toga = .TRUE. elseif (forcing_type ==3) THEN forcing_GCM2SCM = .TRUE. elseif (forcing_type ==4) THEN forcing_twpice = .TRUE. elseif (forcing_type ==5) THEN forcing_rico = .TRUE. elseif (forcing_type ==6) THEN forcing_amma = .TRUE. elseif (forcing_type ==7) THEN forcing_dice = .TRUE. elseif (forcing_type ==8) THEN forcing_gabls4 = .TRUE. elseif (forcing_type ==101) THEN ! Cindynamo starts 1-10-2011 0h forcing_case = .TRUE. year_ini_cas = 2011 mth_ini_cas = 10 day_deb = 1 heure_ini_cas = 0. pdt_cas = 3 * 3600. ! forcing frequency elseif (forcing_type ==102) THEN ! Bomex starts 24-6-1969 0h forcing_case = .TRUE. year_ini_cas = 1969 mth_ini_cas = 6 day_deb = 24 heure_ini_cas = 0. pdt_cas = 1800. ! forcing frequency elseif (forcing_type ==103) THEN ! Arm_cu starts 21-6-1997 11h30 forcing_case2 = .TRUE. year_ini_cas = 1997 mth_ini_cas = 6 day_deb = 21 heure_ini_cas = 11.5 pdt_cas = 1800. ! forcing frequency elseif (forcing_type ==104) THEN ! rico starts 16-12-2004 0h forcing_case2 = .TRUE. year_ini_cas = 2004 mth_ini_cas = 12 day_deb = 16 heure_ini_cas = 0. pdt_cas = 1800. ! forcing frequency elseif (forcing_type ==105) THEN ! bomex starts 16-12-2004 0h forcing_case2 = .TRUE. year_ini_cas = 1969 mth_ini_cas = 6 day_deb = 24 heure_ini_cas = 0. pdt_cas = 1800. ! forcing frequency elseif (forcing_type ==106) THEN ! ayotte_24SC starts 6-11-1992 0h forcing_case2 = .TRUE. year_ini_cas = 1992 mth_ini_cas = 11 day_deb = 6 heure_ini_cas = 10. pdt_cas = 86400. ! forcing frequency elseif (forcing_type ==113) THEN ! Arm_cu starts 21-6-1997 11h30 forcing_SCM = .TRUE. year_ini_cas = 1997 ! It is possible that those parameters are run twice. CALL getin('anneeref', year_ini_cas) CALL getin('dayref', day_deb) mth_ini_cas = 1 ! pour le moment on compte depuis le debut de l'annee CALL getin('time_ini', heure_ini_cas) elseif (forcing_type ==40) THEN forcing_GCSSold = .TRUE. elseif (forcing_type ==50) THEN forcing_fire = .TRUE. elseif (forcing_type ==59) THEN forcing_sandu = .TRUE. elseif (forcing_type ==60) THEN forcing_astex = .TRUE. elseif (forcing_type ==61) THEN forcing_armcu = .TRUE. IF(llm/=19.AND.llm/=40) stop 'Erreur nombre de niveaux !!' else write (*, *) 'ERROR : unknown forcing_type ', forcing_type stop 'Forcing_type should be 0,1,2,3,4,5,6 or 40,59,60,61' ENDIF PRINT*, "forcing type=", forcing_type ! if type_ts_forcing=0, the surface temp of 1D simulation is constant in time ! (specified by tsurf in lmdz1d.def); if type_ts_forcing=1, the surface temperature ! varies in time according to a forcing (e.g. forcing_toga) and is passed to read_tsurf1d.F ! through the common sst_forcing. type_ts_forcing = 0 if (forcing_toga.or.forcing_sandu.or.forcing_astex .or. forcing_dice) & type_ts_forcing = 1 ! Initialization of the logical switch for nudging jcode = iflag_nudge do i = 1, nudge_max nudge(i) = mod(jcode, 10) >= 1 jcode = jcode / 10 enddo !--------------------------------------------------------------------- ! Definition of the run !--------------------------------------------------------------------- CALL conf_gcm(99, .TRUE.) !----------------------------------------------------------------------- allocate(phy_nat (year_len)) ! 0=ocean libre,1=land,2=glacier,3=banquise phy_nat(:) = 0.0 allocate(phy_alb (year_len)) ! Albedo land only (old value condsurf_jyg=0.3) allocate(phy_sst (year_len)) ! SST (will not be used; cf read_tsurf1d.F) allocate(phy_bil (year_len)) ! Ne sert que pour les slab_ocean phy_bil(:) = 1.0 allocate(phy_rug (year_len)) ! Longueur rugosite utilisee sur land only allocate(phy_ice (year_len)) ! Fraction de glace phy_ice(:) = 0.0 allocate(phy_fter(year_len)) ! Fraction de terre phy_fter(:) = 0.0 allocate(phy_foce(year_len)) ! Fraction de ocean phy_foce(:) = 0.0 allocate(phy_fsic(year_len)) ! Fraction de glace phy_fsic(:) = 0.0 allocate(phy_flic(year_len)) ! Fraction de glace phy_flic(:) = 0.0 !----------------------------------------------------------------------- ! Choix du calendrier ! ------------------- ! calend = 'earth_365d' if (calend == 'earth_360d') then CALL ioconf_calendar('360_day') write(*, *)'CALENDRIER CHOISI: Terrestre a 360 jours/an' else if (calend == 'earth_365d') then CALL ioconf_calendar('noleap') write(*, *)'CALENDRIER CHOISI: Terrestre a 365 jours/an' else if (calend == 'earth_366d') then CALL ioconf_calendar('all_leap') write(*, *)'CALENDRIER CHOISI: Terrestre bissextile' else if (calend == 'gregorian') then stop 'gregorian calend should not be used by normal user' CALL ioconf_calendar('gregorian') ! not to be used by normal users write(*, *)'CALENDRIER CHOISI: Gregorien' else write (*, *) 'ERROR : unknown calendar ', calend stop 'calend should be 360d,earth_365d,earth_366d,gregorian' endif !----------------------------------------------------------------------- !c Date : ! La date est supposee donnee sous la forme [annee, numero du jour dans ! l annee] ; l heure est donnee dans time_ini, lu dans lmdz1d.def. ! On appelle ymds2ju pour convertir [annee, jour] en [jour Julien]. ! Le numero du jour est dans "day". L heure est traitee separement. ! La date complete est dans "daytime" (l'unite est le jour). if (nday>0) then fnday = nday else fnday = -nday / float(day_step) endif print *, 'fnday=', fnday ! start_time doit etre en FRACTION DE JOUR start_time = time_ini / 24. ! Special case for arm_cu which lasts less than one day : 53100s !! (MPL 20111026) IF(forcing_type == 61) fnday = 53100. / 86400. IF(forcing_type == 103) fnday = 53100. / 86400. ! Special case for amma which lasts less than one day : 64800s !! (MPL 20120216) IF(forcing_type == 6) fnday = 64800. / 86400. ! IF(forcing_type .EQ. 6) fnday=50400./86400. IF(forcing_type == 8) fnday = 129600. / 86400. annee_ref = anneeref mois = 1 day_ref = dayref heure = 0. itau_dyn = 0 itau_phy = 0 CALL ymds2ju(annee_ref, mois, day_ref, heure, day) day_ini = int(day) day_end = day_ini + int(fnday) IF (forcing_type ==2) THEN ! Convert the initial date of Toga-Coare to Julian day CALL ymds2ju & (year_ini_toga, mth_ini_toga, day_ini_toga, heure, day_ju_ini_toga) ELSEIF (forcing_type ==4) THEN ! Convert the initial date of TWPICE to Julian day CALL ymds2ju & (year_ini_twpi, mth_ini_twpi, day_ini_twpi, heure_ini_twpi & , day_ju_ini_twpi) ELSEIF (forcing_type ==6) THEN ! Convert the initial date of AMMA to Julian day CALL ymds2ju & (year_ini_amma, mth_ini_amma, day_ini_amma, heure_ini_amma & , day_ju_ini_amma) ELSEIF (forcing_type ==7) THEN ! Convert the initial date of DICE to Julian day CALL ymds2ju & (year_ini_dice, mth_ini_dice, day_ini_dice, heure_ini_dice & , day_ju_ini_dice) ELSEIF (forcing_type ==8) THEN ! Convert the initial date of GABLS4 to Julian day CALL ymds2ju & (year_ini_gabls4, mth_ini_gabls4, day_ini_gabls4, heure_ini_gabls4 & , day_ju_ini_gabls4) ELSEIF (forcing_type >100) THEN ! Convert the initial date to Julian day day_ini_cas = day_deb PRINT*, 'time case', year_ini_cas, mth_ini_cas, day_ini_cas CALL ymds2ju & (year_ini_cas, mth_ini_cas, day_ini_cas, heure_ini_cas * 3600 & , day_ju_ini_cas) PRINT*, 'time case 2', day_ini_cas, day_ju_ini_cas ELSEIF (forcing_type ==59) THEN ! Convert the initial date of Sandu case to Julian day CALL ymds2ju & (year_ini_sandu, mth_ini_sandu, day_ini_sandu, & time_ini * 3600., day_ju_ini_sandu) ELSEIF (forcing_type ==60) THEN ! Convert the initial date of Astex case to Julian day CALL ymds2ju & (year_ini_astex, mth_ini_astex, day_ini_astex, & time_ini * 3600., day_ju_ini_astex) ELSEIF (forcing_type ==61) THEN ! Convert the initial date of Arm_cu case to Julian day CALL ymds2ju & (year_ini_armcu, mth_ini_armcu, day_ini_armcu, heure_ini_armcu & , day_ju_ini_armcu) ENDIF IF (forcing_type >100) THEN daytime = day + heure_ini_cas / 24. ! 1st day and initial time of the simulation ELSE daytime = day + time_ini / 24. ! 1st day and initial time of the simulation ENDIF ! Print out the actual date of the beginning of the simulation : CALL ju2ymds(daytime, year_print, month_print, day_print, sec_print) print *, ' Time of beginning : ', & year_print, month_print, day_print, sec_print !--------------------------------------------------------------------- ! Initialization of dimensions, geometry and initial state !--------------------------------------------------------------------- ! CALL init_phys_lmdz(1,1,llm,1,(/1/)) ! job now done via iniphysiq ! but we still need to initialize dimphy module (klon,klev,etc.) here. CALL init_dimphy1D(1, llm) CALL suphel CALL init_infotrac if (nqtot>nqmx) STOP 'Augmenter nqmx dans lmdz1d.F' allocate(q(llm, nqtot)) ; q(:, :) = 0. allocate(dq(llm, nqtot)) allocate(dq_dyn(llm, nqtot)) allocate(d_q_adv(llm, nqtot)) allocate(d_q_nudge(llm, nqtot)) ! allocate(d_th_adv(llm)) q(:, :) = 0. dq(:, :) = 0. dq_dyn(:, :) = 0. d_q_adv(:, :) = 0. d_q_nudge(:, :) = 0. ! No ozone climatology need be read in this pre-initialization ! (phys_state_var_init is called again in physiq) read_climoz = 0 nsw = 6 ! EV et LF: sinon, falb_dir et falb_dif ne peuvent etre alloues CALL phys_state_var_init(read_climoz) if (ngrid/=klon) then PRINT*, 'stop in inifis' PRINT*, 'Probleme de dimensions :' PRINT*, 'ngrid = ', ngrid PRINT*, 'klon = ', klon stop endif !!!===================================================================== !!! Feedback forcing values for Gateaux differentiation (al1) !!!===================================================================== !!! Surface Planck forcing bracketing CALL radiation !! surf_Planck = 0. !! surf_Conv = 0. !! write(*,*) 'Gateaux-dif Planck,Conv:',surf_Planck,surf_Conv !!! a mettre dans le lmdz1d.def ou autre !! !! qsol = qsolinp qsurf = fq_sat(tsurf, psurf / 100.) beta_surf = 1. beta_aridity(:, :) = beta_surf day1 = day_ini time = daytime - day ts_toga(1) = tsurf ! needed by read_tsurf1d.F rho(1) = psurf / (rd * tsurf * (1. + (rv / rd - 1.) * qsurf)) !! mpl et jyg le 22/08/2012 : !! pour que les cas a flux de surface imposes marchent IF(.NOT.ok_flux_surf.or.max(abs(wtsurf), abs(wqsurf))>0.) THEN fsens = -wtsurf * rcpd * rho(1) flat = -wqsurf * rlvtt * rho(1) print *, 'Flux: ok_flux wtsurf wqsurf', ok_flux_surf, wtsurf, wqsurf ENDIF PRINT*, 'Flux sol ', fsens, flat !! ok_flux_surf=.FALSE. !! fsens=-wtsurf*rcpd*rho(1) !! flat=-wqsurf*rlvtt*rho(1) !!!! ! Vertical discretization and pressure levels at half and mid levels: pa = 5e4 !! preff= 1.01325e5 preff = psurf IF (ok_old_disvert) THEN CALL disvert0(pa, preff, ap, bp, dpres, presnivs, nivsigs, nivsig) print *, 'On utilise disvert0' aps(1:llm) = 0.5 * (ap(1:llm) + ap(2:llm + 1)) bps(1:llm) = 0.5 * (bp(1:llm) + bp(2:llm + 1)) scaleheight = 8. pseudoalt(1:llm) = -scaleheight * log(presnivs(1:llm) / preff) ELSE CALL disvert() print *, 'On utilise disvert' ! Nouvelle version disvert permettant d imposer ap,bp (modif L.Guez) MPL 18092012 ! Dans ce cas, on lit ap,bp dans le fichier hybrid.txt ENDIF sig_s = presnivs / preff plev = ap + bp * psurf play = 0.5 * (plev(1:llm) + plev(2:llm + 1)) zlay = -rd * 300. * log(play / psurf) / rg ! moved after reading profiles IF (forcing_type == 59) THEN ! pour forcing_sandu, on cherche l'indice le plus proche de 700hpa#3000m write(*, *) '***********************' do l = 1, llm write(*, *) 'l,play(l),presnivs(l): ', l, play(l), presnivs(l) if (trouve_700 .and. play(l)<=70000) then llm700 = l print *, 'llm700,play=', llm700, play(l) / 100. trouve_700 = .FALSE. endif enddo write(*, *) '***********************' ENDIF !===================================================================== ! EVENTUALLY, READ FORCING DATA : !===================================================================== INCLUDE "old_1D_read_forc_cases.h" IF (forcing_GCM2SCM) then write (*, *) 'forcing_GCM2SCM not yet implemented' stop 'in initialization' END IF ! forcing_GCM2SCM PRINT*, 'mxcalc=', mxcalc ! PRINT*,'zlay=',zlay(mxcalc) PRINT*, 'play=', play(mxcalc) !Al1 pour SST forced, appell?? depuis ocean_forced_noice ! EV tg instead of ts_cur tg = tsurf ! SST used in read_tsurf1d !===================================================================== ! Initialisation de la physique : !===================================================================== ! Rq: conf_phys.F90 lit tous les flags de physiq.def; conf_phys appele depuis physiq.F ! day_step, iphysiq lus dans gcm.def ci-dessus ! timestep: calcule ci-dessous from rday et day_step ! ngrid=1 ! llm: defini dans .../modipsl/modeles/LMDZ4/libf/grid/dimension ! rday: defini dans suphel.F (86400.) ! day_ini: lu dans run.def (dayref) ! rlat_rad,rlon-rad: transformes en radian de rlat,rlon lus dans lmdz1d.def (en degres) ! airefi,zcufi,zcvfi initialises au debut de ce programme ! rday,ra,rg,rd,rcpd declares dans YOMCST.h et calcules dans suphel.F day_step = float(nsplit_phys) * day_step / float(iphysiq) write (*, *) 'Time step divided by nsplit_phys (=', nsplit_phys, ')' timestep = rday / day_step dtime_frcg = timestep zcufi = airefi zcvfi = airefi rlat_rad(1) = xlat * rpi / 180. rlon_rad(1) = xlon * rpi / 180. ! iniphysiq will CALL iniaqua who needs year_len from phys_cal_mod year_len_phys_cal_mod = year_len ! Ehouarn: iniphysiq requires arrays related to (3D) dynamics grid, ! e.g. for cell boundaries, which are meaningless in 1D; so pad these ! with '0.' when necessary CALL iniphysiq(iim, jjm, llm, & 1, comm_lmdz, & rday, day_ini, timestep, & (/rlat_rad(1), 0./), (/0./), & (/0., 0./), (/rlon_rad(1), 0./), & (/ (/airefi, 0./), (/0., 0./) /), & (/zcufi, 0., 0., 0./), & (/zcvfi, 0./), & ra, rg, rd, rcpd, 1) PRINT*, 'apres iniphysiq' ! 2 PARAMETRES QUI DEVRAIENT ETRE LUS DANS run.def MAIS NE LE SONT PAS ICI: co2_ppm = 330.0 solaire = 1370.0 ! Ecriture du startphy avant le premier appel a la physique. ! On le met juste avant pour avoir acces a tous les champs IF (ok_writedem) then !-------------------------------------------------------------------------- ! pbl_surface_init (called here) and pbl_surface_final (called by phyredem) ! need : qsol fder snow qsurf evap rugos agesno ftsoil !-------------------------------------------------------------------------- type_ocean = "force" run_off_lic_0(1) = restart_runoff CALL fonte_neige_init(run_off_lic_0) fder = 0. snsrf(1, :) = snowmass ! masse de neige des sous surface print *, 'snsrf', snsrf qsurfsrf(1, :) = qsurf ! humidite de l'air des sous surface fevap = 0. z0m(1, :) = rugos ! couverture de neige des sous surface z0h(1, :) = rugosh ! couverture de neige des sous surface agesno = xagesno tsoil(:, :, :) = tsurf !------ AMMA 2e run avec modele sol et rayonnement actif (MPL 23052012) ! tsoil(1,1,1)=299.18 ! tsoil(1,2,1)=300.08 ! tsoil(1,3,1)=301.88 ! tsoil(1,4,1)=305.48 ! tsoil(1,5,1)=308.00 ! tsoil(1,6,1)=308.00 ! tsoil(1,7,1)=308.00 ! tsoil(1,8,1)=308.00 ! tsoil(1,9,1)=308.00 ! tsoil(1,10,1)=308.00 ! tsoil(1,11,1)=308.00 !----------------------------------------------------------------------- CALL pbl_surface_init(fder, snsrf, qsurfsrf, tsoil) !------------------ prepare limit conditions for limit.nc ----------------- !-- Ocean force PRINT*, 'avant phyredem' pctsrf(1, :) = 0. if (nat_surf==0.) then pctsrf(1, is_oce) = 1. pctsrf(1, is_ter) = 0. pctsrf(1, is_lic) = 0. pctsrf(1, is_sic) = 0. else if (nat_surf == 1) then pctsrf(1, is_oce) = 0. pctsrf(1, is_ter) = 1. pctsrf(1, is_lic) = 0. pctsrf(1, is_sic) = 0. else if (nat_surf == 2) then pctsrf(1, is_oce) = 0. pctsrf(1, is_ter) = 0. pctsrf(1, is_lic) = 1. pctsrf(1, is_sic) = 0. else if (nat_surf == 3) then pctsrf(1, is_oce) = 0. pctsrf(1, is_ter) = 0. pctsrf(1, is_lic) = 0. pctsrf(1, is_sic) = 1. end if PRINT*, 'nat_surf,pctsrf(1,is_oce),pctsrf(1,is_ter)', nat_surf & , pctsrf(1, is_oce), pctsrf(1, is_ter) zmasq = pctsrf(1, is_ter) + pctsrf(1, is_lic) zpic = zpicinp ftsol = tsurf falb_dir = albedo falb_dif = albedo rugoro = rugos t_ancien(1, :) = temp(:) q_ancien(1, :) = q(:, 1) ql_ancien = 0. qs_ancien = 0. prlw_ancien = 0. prsw_ancien = 0. prw_ancien = 0. !jyg< !! pbl_tke(:,:,:)=1.e-8 pbl_tke(:, :, :) = 0. pbl_tke(:, 2, :) = 1.e-2 PRINT *, ' pbl_tke dans lmdz1d ' if (prt_level >= 5) then DO nsrf = 1, 4 PRINT *, 'pbl_tke(1,:,', nsrf, ') ', pbl_tke(1, :, nsrf) ENDDO end if !>jyg rain_fall = 0. snow_fall = 0. solsw = 0. solswfdiff = 0. sollw = 0. sollwdown = rsigma * tsurf**4 radsol = 0. rnebcon = 0. ratqs = 0. clwcon = 0. zmax0 = 0. zmea = zsurf zstd = 0. zsig = 0. zgam = 0. zval = 0. zthe = 0. sig1 = 0. w01 = 0. wake_deltaq = 0. wake_deltat = 0. wake_delta_pbl_TKE(:, :, :) = 0. delta_tsurf = 0. wake_fip = 0. wake_pe = 0. wake_s = 0. awake_s = 0. wake_dens = 0. awake_dens = 0. cv_gen = 0. wake_cstar = 0. ale_bl = 0. ale_bl_trig = 0. alp_bl = 0. IF (ALLOCATED(du_gwd_rando)) du_gwd_rando = 0. IF (ALLOCATED(du_gwd_front)) du_gwd_front = 0. entr_therm = 0. detr_therm = 0. f0 = 0. fm_therm = 0. u_ancien(1, :) = u(:) v_ancien(1, :) = v(:) rneb_ancien(1, :) = 0. u10m = 0. v10m = 0. ale_wake = 0. ale_bl_stat = 0. !------------------------------------------------------------------------ ! Make file containing restart for the physics (startphy.nc) ! NB: List of the variables to be written by phyredem (via put_field): ! rlon,rlat,zmasq,pctsrf(:,is_ter),pctsrf(:,is_lic),pctsrf(:,is_oce) ! pctsrf(:,is_sic),ftsol(:,nsrf),tsoil(:,isoil,nsrf),qsurf(:,nsrf) ! qsol,falb_dir(:,nsrf),falb_dif(:,nsrf),evap(:,nsrf),snow(:,nsrf) ! radsol,solsw,solswfdiff,sollw, sollwdown,fder,rain_fall,snow_fall,frugs(:,nsrf) ! agesno(:,nsrf),zmea,zstd,zsig,zgam,zthe,zpic,zval,rugoro ! t_ancien,q_ancien,,frugs(:,is_oce),clwcon(:,1),rnebcon(:,1),ratqs(:,1) ! run_off_lic_0,pbl_tke(:,1:klev,nsrf), zmax0,f0,sig1,w01 ! wake_deltat,wake_deltaq,wake_s,awake_s,wake_dens,awake_dens,cv_gen,wake_cstar, ! wake_fip,wake_delta_pbl_tke(:,1:klev,nsrf) ! NB2: The content of the startphy.nc file depends on some flags defined in ! the ".def" files. However, since conf_phys is not called in lmdz1d.F90, these flags have ! to be set at some arbitratry convenient values. !------------------------------------------------------------------------ !Al1 =============== restart option ========================== iflag_physiq = 0 CALL getin('iflag_physiq', iflag_physiq) if (.not.restart) then iflag_pbl = 5 CALL phyredem ("startphy.nc") else ! (desallocations) PRINT*, 'callin surf final' CALL pbl_surface_final(fder, snsrf, qsurfsrf, tsoil) PRINT*, 'after surf final' CALL fonte_neige_final(run_off_lic_0) endif ok_writedem = .FALSE. PRINT*, 'apres phyredem' END IF ! ok_writedem !------------------------------------------------------------------------ ! Make file containing boundary conditions (limit.nc) **Al1->restartdyn*** ! -------------------------------------------------- ! NB: List of the variables to be written in limit.nc ! (by writelim.F, SUBROUTINE of 1DUTILS.h): ! phy_nat,phy_alb,phy_sst,phy_bil,phy_rug,phy_ice, ! phy_fter,phy_foce,phy_flic,phy_fsic) !------------------------------------------------------------------------ DO i = 1, year_len phy_nat(i) = nat_surf phy_alb(i) = albedo phy_sst(i) = tsurf ! read_tsurf1d will be used instead phy_rug(i) = rugos phy_fter(i) = pctsrf(1, is_ter) phy_foce(i) = pctsrf(1, is_oce) phy_fsic(i) = pctsrf(1, is_sic) phy_flic(i) = pctsrf(1, is_lic) END DO ! fabrication de limit.nc CALL writelim (1, phy_nat, phy_alb, phy_sst, phy_bil, phy_rug, & phy_ice, phy_fter, phy_foce, phy_flic, phy_fsic) CALL phys_state_var_end !Al1 IF (restart) then PRINT*, 'CALL to restart dyn 1d' Call dyn1deta0("start1dyn.nc", plev, play, phi, phis, presnivs, & u, v, temp, q, omega2) PRINT*, 'fnday,annee_ref,day_ref,day_ini', & fnday, annee_ref, day_ref, day_ini !** CALL ymds2ju(annee_ref,mois,day_ini,heure,day) day = day_ini day_end = day_ini + nday daytime = day + time_ini / 24. ! 1st day and initial time of the simulation ! Print out the actual date of the beginning of the simulation : CALL ju2ymds(daytime, an, mois, jour, heure) print *, ' Time of beginning : y m d h', an, mois, jour, heure / 3600. day = int(daytime) time = daytime - day PRINT*, '****** intialised fields from restart1dyn *******' PRINT*, 'plev,play,phi,phis,presnivs,u,v,temp,q,omega2' PRINT*, 'temp(1),q(1,1),u(1),v(1),plev(1),phis :' PRINT*, temp(1), q(1, 1), u(1), v(1), plev(1), phis ! raz for safety do l = 1, llm dq_dyn(l, 1) = 0. enddo END IF !Al1 ================ end restart ================================= IF (ecrit_slab_oc==1) then open(97, file = 'div_slab.dat', STATUS = 'UNKNOWN') elseif (ecrit_slab_oc==0) then open(97, file = 'div_slab.dat', STATUS = 'OLD') END IF !--------------------------------------------------------------------- ! Initialize target profile for RHT nudging if needed !--------------------------------------------------------------------- IF (nudge(inudge_RHT)) then CALL nudge_RHT_init(plev, play, temp, q(:, 1), t_targ, rh_targ) END IF IF (nudge(inudge_UV)) then CALL nudge_UV_init(plev, play, u, v, u_targ, v_targ) END IF !===================================================================== IF (CPPKEY_OUTPUTPHYSSCM) CALL iophys_ini(timestep) END IF ! START OF THE TEMPORAL LOOP : !===================================================================== it_end = nint(fnday * day_step) !test JLD it_end = 10 DO while(it<=it_end) if (prt_level>=1) then PRINT*, 'XXXXXXXXXXXXXXXXXXX ITAP,day,time=', & it, day, time, it_end, day_step PRINT*, 'PAS DE TEMPS ', timestep endif !Al1 demande de restartphy.nc if (it==it_end) lastcall = .True. !--------------------------------------------------------------------- ! Geopotential : !--------------------------------------------------------------------- phi(1) = RD * temp(1) * (plev(1) - play(1)) / (.5 * (plev(1) + play(1))) do l = 1, llm - 1 phi(l + 1) = phi(l) + RD * (temp(l) + temp(l + 1)) * & (play(l) - play(l + 1)) / (play(l) + play(l + 1)) enddo !--------------------------------------------------------------------- ! Interpolation of forcings in time and onto model levels !--------------------------------------------------------------------- INCLUDE "old_1D_interp_cases.h" IF (forcing_GCM2SCM) then write (*, *) 'forcing_GCM2SCM not yet implemented' stop 'in time loop' END IF ! forcing_GCM2SCM !!!!--------------------------------------------------------------------- !!!! Geopotential : !!!!--------------------------------------------------------------------- !!! !!! phi(1)=RD*temp(1)*(plev(1)-play(1))/(.5*(plev(1)+play(1))) !!! do l = 1, llm-1 !!! phi(l+1)=phi(l)+RD*(temp(l)+temp(l+1))* & !!! & (play(l)-play(l+1))/(play(l)+play(l+1)) !!! enddo !--------------------------------------------------------------------- ! Listing output for debug prt_level>=1 !--------------------------------------------------------------------- IF (prt_level>=1) then print *, ' avant physiq : -------- day time ', day, time write(*, *) 'firstcall,lastcall,phis', & firstcall, lastcall, phis end if IF (prt_level>=5) then write(*, '(a10,2a4,4a13)') 'BEFOR1 IT=', 'it', 'l', & 'presniv', 'plev', 'play', 'phi' write(*, '(a10,2i4,4f13.2)') ('BEFOR1 IT= ', it, l, & presnivs(l), plev(l), play(l), phi(l), l = 1, llm) write(*, '(a11,2a4,a11,6a8)') 'BEFOR2', 'it', 'l', & 'presniv', 'u', 'v', 'temp', 'q1', 'q2', 'omega2' write(*, '(a11,2i4,f11.2,5f8.2,e10.2)') ('BEFOR2 IT= ', it, l, & presnivs(l), u(l), v(l), temp(l), q(l, 1), q(l, 2), omega2(l), l = 1, llm) END IF !--------------------------------------------------------------------- ! Call physiq : !--------------------------------------------------------------------- CALL physiq(ngrid, llm, & firstcall, lastcall, timestep, & plev, play, phi, phis, presnivs, & u, v, rot, temp, q, omega2, & du_phys, dv_phys, dt_phys, dq, dpsrf) firstcall = .FALSE. !--------------------------------------------------------------------- ! Listing output for debug !--------------------------------------------------------------------- IF (prt_level>=5) then write(*, '(a11,2a4,4a13)') 'AFTER1 IT=', 'it', 'l', & 'presniv', 'plev', 'play', 'phi' write(*, '(a11,2i4,4f13.2)') ('AFTER1 it= ', it, l, & presnivs(l), plev(l), play(l), phi(l), l = 1, llm) write(*, '(a11,2a4,a11,6a8)') 'AFTER2', 'it', 'l', & 'presniv', 'u', 'v', 'temp', 'q1', 'q2', 'omega2' write(*, '(a11,2i4,f11.2,5f8.2,e10.2)') ('AFTER2 it= ', it, l, & presnivs(l), u(l), v(l), temp(l), q(l, 1), q(l, 2), omega2(l), l = 1, llm) write(*, '(a11,2a4,a11,5a8)') 'AFTER3', 'it', 'l', & 'presniv', 'du_phys', 'dv_phys', 'dt_phys', 'dq1', 'dq2' write(*, '(a11,2i4,f11.2,5f8.2)') ('AFTER3 it= ', it, l, & presnivs(l), 86400 * du_phys(l), 86400 * dv_phys(l), & 86400 * dt_phys(l), 86400 * dq(l, 1), dq(l, 2), l = 1, llm) write(*, *) 'dpsrf', dpsrf END IF !--------------------------------------------------------------------- ! Add physical tendencies : !--------------------------------------------------------------------- fcoriolis = 2. * sin(rpi * xlat / 180.) * romega IF (forcing_radconv .or. forcing_fire) then fcoriolis = 0.0 dt_cooling = 0.0 d_t_adv = 0.0 d_q_adv = 0.0 END IF ! PRINT*, 'calcul de fcoriolis ', fcoriolis IF (forcing_toga .or. forcing_GCSSold .or. forcing_twpice & .or.forcing_amma .or. forcing_type==101) then fcoriolis = 0.0 ; ug = 0. ; vg = 0. END IF IF(forcing_rico) then dt_cooling = 0. END IF !CRio:Attention modif sp??cifique cas de Caroline IF (forcing_type==-1) then fcoriolis = 0. !Nudging !on calcule dt_cooling do l = 1, llm if (play(l)>=20000.) then dt_cooling(l) = -1.5 / 86400. elseif ((play(l)>=10000.).and.((play(l)<20000.))) then dt_cooling(l) = -1.5 / 86400. * (play(l) - 10000.) / (10000.) - 1. / 86400. * (20000. - play(l)) / 10000. * (temp(l) - 200.) else dt_cooling(l) = -1. * (temp(l) - 200.) / 86400. endif enddo END IF !RC IF (forcing_sandu) then ug(1:llm) = u_mod(1:llm) vg(1:llm) = v_mod(1:llm) END IF IF (prt_level >= 5) PRINT*, 'fcoriolis, xlat,mxcalc ', & fcoriolis, xlat, mxcalc ! print *,'u-ug=',u-ug !!!!!!!!!!!!!!!!!!!!!!!! ! Geostrophic wind ! Le calcul ci dessous est insuffisamment precis ! du_age(1:mxcalc)=fcoriolis*(v(1:mxcalc)-vg(1:mxcalc)) ! dv_age(1:mxcalc)=-fcoriolis*(u(1:mxcalc)-ug(1:mxcalc)) !!!!!!!!!!!!!!!!!!!!!!!! sfdt = sin(0.5 * fcoriolis * timestep) cfdt = cos(0.5 * fcoriolis * timestep) ! print *,'fcoriolis,sfdt,cfdt,timestep',fcoriolis,sfdt,cfdt,timestep du_age(1:mxcalc) = -2. * sfdt / timestep * & (sfdt * (u(1:mxcalc) - ug(1:mxcalc)) - & cfdt * (v(1:mxcalc) - vg(1:mxcalc))) !! : fcoriolis*(v(1:mxcalc)-vg(1:mxcalc)) dv_age(1:mxcalc) = -2. * sfdt / timestep * & (cfdt * (u(1:mxcalc) - ug(1:mxcalc)) + & sfdt * (v(1:mxcalc) - vg(1:mxcalc))) !! : -fcoriolis*(u(1:mxcalc)-ug(1:mxcalc)) !!!!!!!!!!!!!!!!!!!!!!!! ! Nudging !!!!!!!!!!!!!!!!!!!!!!!! d_t_nudge(:) = 0. d_q_nudge(:, :) = 0. d_u_nudge(:) = 0. d_v_nudge(:) = 0. IF (nudge(inudge_RHT)) then CALL nudge_RHT(timestep, plev, play, t_targ, rh_targ, temp, q(:, 1), & d_t_nudge, d_q_nudge(:, 1)) END IF IF (nudge(inudge_UV)) then CALL nudge_UV(timestep, plev, play, u_targ, v_targ, u, v, & d_u_nudge, d_v_nudge) END IF IF (forcing_fire) THEN !let ww=if ( alt le 1100 ) then alt*-0.00001 else 0 !let wt=if ( alt le 1100 ) then min( -3.75e-5 , -7.5e-8*alt) else 0 !let wq=if ( alt le 1100 ) then max( 1.5e-8 , 3e-11*alt) else 0 d_t_adv = 0. d_q_adv = 0. teta = temp * (pzero / play)**rkappa d_t_adv = 0. d_q_adv = 0. do l = 2, llm - 1 if (zlay(l)<=1100) then wwww = -0.00001 * zlay(l) d_t_adv(l) = -wwww * (teta(l) - teta(l + 1)) / (zlay(l) - zlay(l + 1)) / (pzero / play(l))**rkappa d_q_adv(l, 1:2) = -wwww * (q(l, 1:2) - q(l + 1, 1:2)) / (zlay(l) - zlay(l + 1)) d_t_adv(l) = d_t_adv(l) + min(-3.75e-5, -7.5e-8 * zlay(l)) d_q_adv(l, 1) = d_q_adv(l, 1) + max(1.5e-8, 3e-11 * zlay(l)) endif enddo END IF !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! call writefield_phy('dv_age' ,dv_age,llm) ! call writefield_phy('du_age' ,du_age,llm) ! call writefield_phy('du_phys' ,du_phys,llm) ! call writefield_phy('u_tend' ,u,llm) ! call writefield_phy('u_g' ,ug,llm) !!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! Increment state variables !!!!!!!!!!!!!!!!!!!!!!!!!!!!! IF (flag_inhib_forcing == 0) then ! if tendency of forcings should be added ! pour les cas sandu et astex, on reclacule u,v,q,temp et teta dans 1D_nudge_sandu_astex.h ! au dessus de 700hpa, on relaxe vers les profils initiaux if (forcing_sandu .OR. forcing_astex) then INCLUDE "1D_nudge_sandu_astex.h" else u(1:mxcalc) = u(1:mxcalc) + timestep * (& du_phys(1:mxcalc) & + du_age(1:mxcalc) + du_adv(1:mxcalc) & + d_u_nudge(1:mxcalc)) v(1:mxcalc) = v(1:mxcalc) + timestep * (& dv_phys(1:mxcalc) & + dv_age(1:mxcalc) + dv_adv(1:mxcalc) & + d_v_nudge(1:mxcalc)) q(1:mxcalc, :) = q(1:mxcalc, :) + timestep * (& dq(1:mxcalc, :) & + d_q_adv(1:mxcalc, :) & + d_q_nudge(1:mxcalc, :)) if (prt_level>=3) then print *, & 'physiq-> temp(1),dt_phys(1),d_t_adv(1),dt_cooling(1) ', & temp(1), dt_phys(1), d_t_adv(1), dt_cooling(1) PRINT*, 'dv_phys=', dv_phys PRINT*, 'dv_age=', dv_age PRINT*, 'dv_adv=', dv_adv PRINT*, 'd_v_nudge=', d_v_nudge PRINT*, v PRINT*, vg endif temp(1:mxcalc) = temp(1:mxcalc) + timestep * (& dt_phys(1:mxcalc) & + d_t_adv(1:mxcalc) & + d_t_nudge(1:mxcalc) & + dt_cooling(1:mxcalc)) ! Taux de chauffage ou refroid. IF (CPPKEY_OUTPUTPHYSSCM) CALL iophys_ecrit('d_t_adv', klev, 'd_t_adv', 'm/s', d_t_adv) CALL iophys_ecrit('d_t_nudge', klev, 'd_t_nudge', 'm/s', d_t_nudge) END IF endif ! forcing_sandu or forcing_astex teta = temp * (pzero / play)**rkappa !--------------------------------------------------------------------- ! Nudge soil temperature if requested !--------------------------------------------------------------------- IF (nudge_tsoil .AND. .NOT. lastcall) THEN ftsoil(1, isoil_nudge, :) = ftsoil(1, isoil_nudge, :) & - timestep / tau_soil_nudge * (ftsoil(1, isoil_nudge, :) - Tsoil_nudge) ENDIF !--------------------------------------------------------------------- ! Add large-scale tendencies (advection, etc) : !--------------------------------------------------------------------- !cc nrlmd !cc tmpvar=teta !cc CALL advect_vert(llm,omega,timestep,tmpvar,plev) !cc !cc teta(1:mxcalc)=tmpvar(1:mxcalc) !cc tmpvar(:)=q(:,1) !cc CALL advect_vert(llm,omega,timestep,tmpvar,plev) !cc q(1:mxcalc,1)=tmpvar(1:mxcalc) !cc tmpvar(:)=q(:,2) !cc CALL advect_vert(llm,omega,timestep,tmpvar,plev) !cc q(1:mxcalc,2)=tmpvar(1:mxcalc) END IF ! end if tendency of tendency should be added !--------------------------------------------------------------------- ! Air temperature : !--------------------------------------------------------------------- IF (lastcall) then PRINT*, 'Pas de temps final ', it CALL ju2ymds(daytime, an, mois, jour, heure) PRINT*, 'a la date : a m j h', an, mois, jour, heure / 3600. END IF ! incremente day time ! PRINT*,'daytime bef',daytime,1./day_step daytime = daytime + 1. / day_step !Al1dbg day = int(daytime + 0.1 / day_step) ! time = max(daytime-day,0.0) !Al1&jyg: correction de bug !cc time = real(mod(it,day_step))/day_step time = time_ini / 24. + real(mod(it, day_step)) / day_step ! PRINT*,'daytime nxt time',daytime,time it = it + 1 END DO !Al1 IF (ecrit_slab_oc/=-1) close(97) !Al1 Call to 1D equivalent of dynredem (an,mois,jour,heure ?) ! ------------------------------------- CALL dyn1dredem("restart1dyn.nc", & plev, play, phi, phis, presnivs, & u, v, temp, q, omega2) CALL abort_gcm ('lmdz1d ', 'The End ', 0) END SUBROUTINE old_lmdz1d INCLUDE "old_1DUTILS_read_interp.h"