! $Id $ SUBROUTINE sw_case_williamson91_6(vcov,ucov,teta,masse,ps) c======================================================================= c c Author: Thomas Dubos original: 26/01/2010 c ------- c c Subject: c ------ c Realise le cas-test 6 de Williamson et al. (1991) : onde de Rossby-Haurwitz c c Method: c -------- c c Interface: c ---------- c c Input: c ------ c c Output: c ------- c c======================================================================= USE comconst_mod, ONLY: cpp, omeg, rad USE comvert_mod, ONLY: ap, bp, preff IMPLICIT NONE c----------------------------------------------------------------------- c Declararations: c --------------- include "dimensions.h" include "paramet.h" include "comgeom.h" include "iniprint.h" c Arguments: c ---------- c variables dynamiques REAL vcov(ip1jm,llm),ucov(ip1jmp1,llm) ! vents covariants REAL teta(ip1jmp1,llm) ! temperature potentielle REAL ps(ip1jmp1) ! pression au sol REAL masse(ip1jmp1,llm) ! masse d'air REAL phis(ip1jmp1) ! geopotentiel au sol c Local: c ------ REAL p (ip1jmp1,llmp1 ) ! pression aux interfac.des couches REAL pks(ip1jmp1) ! exner au sol REAL pk(ip1jmp1,llm) ! exner au milieu des couches REAL pkf(ip1jmp1,llm) ! exner filt.au milieu des couches REAL alpha(ip1jmp1,llm),beta(ip1jmp1,llm) REAL :: sinth,costh,costh2, Ath,Bth,Cth, lon,dps INTEGER i,j,ij REAL, PARAMETER :: rho=1 ! masse volumique de l'air (arbitraire) REAL, PARAMETER :: K = 7.848e-6 ! K = \omega REAL, PARAMETER :: gh0 = 9.80616 * 8e3 INTEGER, PARAMETER :: R0=4, R1=R0+1, R2=R0+2 ! mode 4 c NB : rad = 6371220 dans W91 (6371229 dans LMDZ) c omeg = 7.292e-5 dans W91 (7.2722e-5 dans LMDZ) IF(0==0) THEN c Williamson et al. (1991) : onde de Rossby-Haurwitz teta = preff/rho/cpp c geopotentiel (pression de surface) do j=1,jjp1 costh2 = cos(rlatu(j))**2 Ath = (R0+1)*(costh2**2) + (2*R0*R0-R0-2)*costh2 - 2*R0*R0 Ath = .25*(K**2)*(costh2**(R0-1))*Ath Ath = .5*K*(2*omeg+K)*costh2 + Ath Bth = (R1*R1+1)-R1*R1*costh2 Bth = 2*(omeg+K)*K/(R1*R2) * (costh2**(R0/2))*Bth Cth = R1*costh2 - R2 Cth = .25*K*K*(costh2**R0)*Cth do i=1,iip1 ij=(j-1)*iip1+i lon = rlonv(i) dps = Ath + Bth*cos(R0*lon) + Cth*cos(2*R0*lon) ps(ij) = rho*(gh0 + (rad**2)*dps) enddo enddo write(lunout,*) 'W91 ps', MAXVAL(ps), MINVAL(ps) c vitesse zonale ucov do j=1,jjp1 costh = cos(rlatu(j)) costh2 = costh**2 Ath = rad*K*costh Bth = R0*(1-costh2)-costh2 Bth = rad*K*Bth*(costh**(R0-1)) do i=1,iip1 ij=(j-1)*iip1+i lon = rlonu(i) ucov(ij,1) = (Ath + Bth*cos(R0*lon)) enddo enddo write(lunout,*) 'W91 u', MAXVAL(ucov(:,1)), MINVAL(ucov(:,1)) ucov(:,1)=ucov(:,1)*cu c vitesse meridienne vcov do j=1,jjm sinth = sin(rlatv(j)) costh = cos(rlatv(j)) Ath = -rad*K*R0*sinth*(costh**(R0-1)) do i=1,iip1 ij=(j-1)*iip1+i lon = rlonv(i) vcov(ij,1) = Ath*sin(R0*lon) enddo enddo write(lunout,*) 'W91 v', MAXVAL(vcov(:,1)), MINVAL(vcov(:,1)) vcov(:,1)=vcov(:,1)*cv c ucov=0 c vcov=0 ELSE c test non-tournant, onde se propageant en latitude do j=1,jjp1 do i=1,iip1 ij=(j-1)*iip1+i ps(ij) = 1e5*(1 + .1*exp(-100*(1+sin(rlatu(j)))**2) ) enddo enddo c rho = preff/(cpp*teta) teta = .01*preff/cpp ! rho = 100 ; phi = ps/rho = 1e3 ; c=30 m/s = 2600 km/j = 23 degres / j ucov=0. vcov=0. END IF CALL pression ( ip1jmp1, ap, bp, ps, p ) CALL massdair(p,masse) END c-----------------------------------------------------------------------