! MODULE surf_landice_mod IMPLICIT NONE CONTAINS ! !**************************************************************************************** ! SUBROUTINE surf_landice(itime, dtime, knon, knindex, & rlon, rlat, debut, lafin, & rmu0, lwdownm, albedo, pphi1, & swnet, lwnet, tsurf, p1lay, & cdragh, cdragm, precip_rain, precip_snow, precip_bs, temp_air, spechum, & AcoefH, AcoefQ, BcoefH, BcoefQ, & AcoefU, AcoefV, BcoefU, BcoefV, & AcoefQBS, BcoefQBS, & ps, u1, v1, gustiness, rugoro, pctsrf, & snow, qsurf, qsol, qbs1, agesno, & tsoil, z0m, z0h, SFRWL, alb_dir, alb_dif, evap, fluxsens, fluxlat, fluxbs, & tsurf_new, dflux_s, dflux_l, & alt, slope, cloudf, & snowhgt, qsnow, to_ice, sissnow, & alb3, runoff, & flux_u1, flux_v1 & #ifdef ISO ,xtprecip_rain, xtprecip_snow,xtspechum,Rland_ice & ,xtsnow,xtsol,xtevap & #endif ) USE dimphy USE geometry_mod, ONLY : longitude,latitude USE surface_data, ONLY : type_ocean, calice, calsno, landice_opt, iflag_albcalc USE fonte_neige_mod, ONLY : fonte_neige,run_off_lic,fqcalving_global,ffonte_global,fqfonte_global,runofflic_global USE cpl_mod, ONLY : cpl_send_landice_fields USE calcul_fluxs_mod USE phys_local_var_mod, ONLY : zxrhoslic, zxustartlic, zxqsaltlic USE phys_output_var_mod, ONLY : snow_o,zfra_o #ifdef ISO USE fonte_neige_mod, ONLY : xtrun_off_lic USE infotrac_phy, ONLY : ntiso,niso USE isotopes_routines_mod, ONLY: calcul_iso_surf_lic_vectall #ifdef ISOVERIF USE isotopes_mod, ONLY: iso_eau,ridicule USE isotopes_verif_mod #endif #endif !FC USE ioipsl_getin_p_mod, ONLY : getin_p USE lmdz_blowing_snow_ini, ONLY : c_esalt_bs, zeta_bs, pbst_bs, prt_bs, rhoice_bs, rhohard_bs USE lmdz_blowing_snow_ini, ONLY : rhofresh_bs, tau_eqsalt_bs, tau_dens0_bs, tau_densmin_bs #ifdef CPP_INLANDSIS USE surf_inlandsis_mod, ONLY : surf_inlandsis #endif USE indice_sol_mod ! INCLUDE "indicesol.h" INCLUDE "dimsoil.h" INCLUDE "YOMCST.h" INCLUDE "clesphys.h" ! Input variables !**************************************************************************************** INTEGER, INTENT(IN) :: itime, knon INTEGER, DIMENSION(klon), INTENT(in) :: knindex REAL, INTENT(in) :: dtime REAL, DIMENSION(klon), INTENT(IN) :: swnet ! net shortwave radiance REAL, DIMENSION(klon), INTENT(IN) :: lwnet ! net longwave radiance REAL, DIMENSION(klon), INTENT(IN) :: tsurf REAL, DIMENSION(klon), INTENT(IN) :: p1lay REAL, DIMENSION(klon), INTENT(IN) :: cdragh, cdragm REAL, DIMENSION(klon), INTENT(IN) :: precip_rain, precip_snow, precip_bs REAL, DIMENSION(klon), INTENT(IN) :: temp_air, spechum REAL, DIMENSION(klon), INTENT(IN) :: AcoefH, AcoefQ REAL, DIMENSION(klon), INTENT(IN) :: BcoefH, BcoefQ REAL, DIMENSION(klon), INTENT(IN) :: AcoefU, AcoefV, BcoefU, BcoefV REAL, DIMENSION(klon), INTENT(IN) :: AcoefQBS, BcoefQBS REAL, DIMENSION(klon), INTENT(IN) :: ps REAL, DIMENSION(klon), INTENT(IN) :: u1, v1, gustiness, qbs1 REAL, DIMENSION(klon), INTENT(IN) :: rugoro REAL, DIMENSION(klon,nbsrf), INTENT(IN) :: pctsrf #ifdef ISO REAL, DIMENSION(ntiso,klon), INTENT(IN) :: xtprecip_rain, xtprecip_snow REAL, DIMENSION(ntiso,klon), INTENT(IN) :: xtspechum #endif LOGICAL, INTENT(IN) :: debut !true if first step LOGICAL, INTENT(IN) :: lafin !true if last step REAL, DIMENSION(klon), INTENT(IN) :: rlon, rlat REAL, DIMENSION(klon), INTENT(IN) :: rmu0 REAL, DIMENSION(klon), INTENT(IN) :: lwdownm !ylwdown REAL, DIMENSION(klon), INTENT(IN) :: albedo !mean albedo REAL, DIMENSION(klon), INTENT(IN) :: pphi1 REAL, DIMENSION(klon), INTENT(IN) :: alt !mean altitude of the grid box REAL, DIMENSION(klon), INTENT(IN) :: slope !mean slope in grid box REAL, DIMENSION(klon), INTENT(IN) :: cloudf !total cloud fraction ! In/Output variables !**************************************************************************************** REAL, DIMENSION(klon), INTENT(INOUT) :: snow, qsol REAL, DIMENSION(klon), INTENT(INOUT) :: agesno REAL, DIMENSION(klon, nsoilmx), INTENT(INOUT) :: tsoil #ifdef ISO REAL, DIMENSION(niso,klon), INTENT(INOUT) :: xtsnow, xtsol REAL, DIMENSION(niso,klon), INTENT(INOUT) :: Rland_ice #endif ! Output variables !**************************************************************************************** REAL, DIMENSION(klon), INTENT(OUT) :: qsurf REAL, DIMENSION(klon), INTENT(OUT) :: z0m, z0h !albedo SB >>> ! REAL, DIMENSION(klon), INTENT(OUT) :: alb1 ! new albedo in visible SW interval ! REAL, DIMENSION(klon), INTENT(OUT) :: alb2 ! new albedo in near IR interval REAL, DIMENSION(6), INTENT(IN) :: SFRWL REAL, DIMENSION(klon,nsw), INTENT(OUT) :: alb_dir,alb_dif !albedo SB <<< REAL, DIMENSION(klon), INTENT(OUT) :: evap, fluxsens, fluxlat REAL, DIMENSION(klon), INTENT(OUT) :: fluxbs REAL, DIMENSION(klon), INTENT(OUT) :: tsurf_new REAL, DIMENSION(klon), INTENT(OUT) :: dflux_s, dflux_l REAL, DIMENSION(klon), INTENT(OUT) :: flux_u1, flux_v1 REAL, DIMENSION(klon), INTENT(OUT) :: alb3 REAL, DIMENSION(klon), INTENT(OUT) :: qsnow !column water in snow [kg/m2] REAL, DIMENSION(klon), INTENT(OUT) :: snowhgt !Snow height (m) REAL, DIMENSION(klon), INTENT(OUT) :: to_ice REAL, DIMENSION(klon), INTENT(OUT) :: sissnow REAL, DIMENSION(klon), INTENT(OUT) :: runoff !Land ice runoff #ifdef ISO REAL, DIMENSION(ntiso,klon), INTENT(OUT) :: xtevap ! real, DIMENSION(niso,klon) :: xtrun_off_lic_0_diag ! est une variable globale de ! fonte_neige #endif ! Local variables !**************************************************************************************** REAL, DIMENSION(klon) :: soilcap, soilflux REAL, DIMENSION(klon) :: cal, beta, dif_grnd REAL, DIMENSION(klon) :: zfra, alb_neig REAL, DIMENSION(klon) :: radsol REAL, DIMENSION(klon) :: u0, v0, u1_lay, v1_lay, ustar INTEGER :: i,j,nt REAL, DIMENSION(klon) :: fqfonte,ffonte REAL, DIMENSION(klon) :: run_off_lic_frac #ifdef ISO REAL, PARAMETER :: t_coup = 273.15 REAL, DIMENSION(klon) :: fqfonte_diag REAL, DIMENSION(klon) :: fq_fonte_diag REAL, DIMENSION(klon) :: snow_evap_diag REAL, DIMENSION(klon) :: fqcalving_diag REAL max_eau_sol_diag REAL, DIMENSION(klon) :: runoff_diag REAL, DIMENSION(klon) :: run_off_lic_diag REAL :: coeff_rel_diag INTEGER :: ixt REAL, DIMENSION(niso,klon) :: xtsnow_prec,xtsol_prec REAL, DIMENSION(klon) :: snow_prec,qsol_prec ! real, DIMENSION(klon) :: run_off_lic_0_diag #endif REAL, DIMENSION(klon) :: emis_new !Emissivity REAL, DIMENSION(klon) :: swdown,lwdown REAL, DIMENSION(klon) :: precip_snow_adv, snow_adv !Snow Drift precip./advection (not used in inlandsis) REAL, DIMENSION(klon) :: erod !erosion of surface snow (flux, kg/m2/s like evap) REAL, DIMENSION(klon) :: zsl_height, wind_velo !surface layer height, wind spd REAL, DIMENSION(klon) :: dens_air, snow_cont_air !air density; snow content air REAL, DIMENSION(klon) :: alb_soil !albedo of underlying ice REAL, DIMENSION(klon) :: pexner !Exner potential REAL :: pref REAL, DIMENSION(klon,nsoilmx) :: tsoil0 !modif REAL :: dtis ! subtimestep LOGICAL :: debut_is, lafin_is ! debut and lafin for inlandsis CHARACTER (len = 20) :: modname = 'surf_landice' CHARACTER (len = 80) :: abort_message REAL,DIMENSION(klon) :: alb1,alb2 REAL,DIMENSION(klon) :: precip_totsnow, evap_totsnow REAL, DIMENSION (klon,6) :: alb6 REAL :: esalt REAL :: lambdasalt,fluxsalt, csalt, nunu, aa, bb, cc REAL :: tau_dens, maxerosion REAL, DIMENSION(klon) :: ws1, rhod, rhos, ustart0, ustart, qsalt, hsalt REAL, DIMENSION(klon) :: fluxbs_1, fluxbs_2, bsweight_fresh LOGICAL, DIMENSION(klon) :: ok_remaining_freshsnow REAL :: ta1, ta2, ta3, z01, z02, z03, coefa, coefb, coefc, coefd ! End definition !**************************************************************************************** !FC !FC REAL,SAVE :: alb_vis_sno_lic !$OMP THREADPRIVATE(alb_vis_sno_lic) REAL,SAVE :: alb_nir_sno_lic !$OMP THREADPRIVATE(alb_nir_sno_lic) LOGICAL, SAVE :: firstcall = .TRUE. !$OMP THREADPRIVATE(firstcall) !FC firtscall initializations !****************************************************************************************** #ifdef ISO #ifdef ISOVERIF ! write(*,*) 'surf_land_ice 1499' DO i=1,knon IF (iso_eau > 0) THEN CALL iso_verif_egalite_choix(xtsnow(iso_eau,i),snow(i), & 'surf_land_ice 126',errmax,errmaxrel) ENDIF !IF (iso_eau > 0) THEN ENDDO !DO i=1,knon #endif #endif IF (firstcall) THEN alb_vis_sno_lic=0.77 CALL getin_p('alb_vis_sno_lic',alb_vis_sno_lic) PRINT*, 'alb_vis_sno_lic',alb_vis_sno_lic alb_nir_sno_lic=0.77 CALL getin_p('alb_nir_sno_lic',alb_nir_sno_lic) PRINT*, 'alb_nir_sno_lic',alb_nir_sno_lic firstcall=.false. ENDIF !****************************************************************************************** ! Initialize output variables alb3(:) = 999999. alb2(:) = 999999. alb1(:) = 999999. fluxbs(:)=0. runoff(:) = 0. !**************************************************************************************** ! Calculate total absorbed radiance at surface ! !**************************************************************************************** radsol(:) = 0.0 radsol(1:knon) = swnet(1:knon) + lwnet(1:knon) !**************************************************************************************** !**************************************************************************************** ! landice_opt = 0 : soil_model, calcul_flux, fonte_neige, ... ! landice_opt = 1 : prepare and call INterace Lmdz SISvat (INLANDSIS) !**************************************************************************************** IF (landice_opt == 1) THEN !**************************************************************************************** ! CALL to INLANDSIS interface !**************************************************************************************** #ifdef CPP_INLANDSIS #ifdef ISO CALL abort_gcm('surf_landice 235','isotopes pas dans INLANDSIS',1) #endif debut_is=debut lafin_is=.false. ! Suppose zero surface speed u0(:) = 0.0 v0(:) = 0.0 CALL calcul_flux_wind(knon, dtime, & u0, v0, u1, v1, gustiness, cdragm, & AcoefU, AcoefV, BcoefU, BcoefV, & p1lay, temp_air, & flux_u1, flux_v1) ! Set constants and compute some input for SISVAT ! = 1000 hPa ! and calculate incoming flux for SW and LW interval: swdown, lwdown swdown(:) = 0.0 lwdown(:) = 0.0 snow_cont_air(:) = 0. ! the snow content in air is not a prognostic variable of the model alb_soil(:) = 0.4 ! before albedo(:) but here it is the ice albedo that we have to set ustar(:) = 0. pref = 100000. DO i = 1, knon swdown(i) = swnet(i)/(1-albedo(i)) lwdown(i) = lwdownm(i) wind_velo(i) = u1(i)**2 + v1(i)**2 wind_velo(i) = wind_velo(i)**0.5 pexner(i) = (p1lay(i)/pref)**(RD/RCPD) dens_air(i) = p1lay(i)/RD/temp_air(i) ! dry air density zsl_height(i) = pphi1(i)/RG tsoil0(i,:) = tsoil(i,:) ustar(i)= (cdragm(i)*(wind_velo(i)**2))**0.5 END DO dtis=dtime IF (lafin) THEN lafin_is=.true. END IF CALL surf_inlandsis(knon, rlon, rlat, knindex, itime, dtis, debut_is, lafin_is,& rmu0, swdown, lwdown, albedo, pexner, ps, p1lay, precip_rain, precip_snow, & zsl_height, wind_velo, ustar, temp_air, dens_air, spechum, tsurf,& rugoro, snow_cont_air, alb_soil, alt, slope, cloudf, & radsol, qsol, tsoil0, snow, zfra, snowhgt, qsnow, to_ice, sissnow,agesno, & AcoefH, AcoefQ, BcoefH, BcoefQ, cdragm, cdragh, & run_off_lic, fqfonte, ffonte, evap, erod, fluxsens, fluxlat,dflux_s, dflux_l, & tsurf_new, alb1, alb2, alb3, alb6, & emis_new, z0m, z0h, qsurf) debut_is=.false. ! Treatment of snow melting and calving ! for consistency with standard LMDZ, add calving to run_off_lic run_off_lic(:)=run_off_lic(:) + to_ice(:) DO i = 1, knon ffonte_global(knindex(i),is_lic) = ffonte(i) fqfonte_global(knindex(i),is_lic) = fqfonte(i)! net melting= melting - refreezing fqcalving_global(knindex(i),is_lic) = to_ice(i) ! flux runofflic_global(knindex(i)) = run_off_lic(i) ENDDO ! Here, we assume that the calving term is equal to the to_ice term ! (no ice accumulation) #else abort_message='Pb de coherence: landice_opt = 1 mais CPP_INLANDSIS = .false.' CALL abort_physic(modname,abort_message,1) #endif ELSE !**************************************************************************************** ! Soil calculations ! !**************************************************************************************** ! EV: use calbeta CALL calbeta(dtime, is_lic, knon, snow, qsol, beta, cal, dif_grnd) ! use soil model and recalculate properly cal IF (soil_model) THEN CALL soil(dtime, is_lic, knon, snow, tsurf, qsol, & longitude(knindex(1:knon)), latitude(knindex(1:knon)), tsoil, soilcap, soilflux) cal(1:knon) = RCPD / soilcap(1:knon) radsol(1:knon) = radsol(1:knon) + soilflux(1:knon) ELSE cal = RCPD * calice WHERE (snow > 0.0) cal = RCPD * calsno ENDIF !**************************************************************************************** ! Calulate fluxes ! !**************************************************************************************** ! beta(:) = 1.0 ! dif_grnd(:) = 0.0 ! Suppose zero surface speed u0(:)=0.0 v0(:)=0.0 u1_lay(:) = u1(:) - u0(:) v1_lay(:) = v1(:) - v0(:) CALL calcul_fluxs(knon, is_lic, dtime, & tsurf, p1lay, cal, beta, cdragh, cdragh, ps, & precip_rain, precip_snow, snow, qsurf, & radsol, dif_grnd, temp_air, spechum, u1_lay, v1_lay, gustiness, & 1.,AcoefH, AcoefQ, BcoefH, BcoefQ, & tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l) #ifdef ISO #ifdef ISOVERIF !write(*,*) 'surf_land_ice 1499' DO i=1,knon IF (iso_eau > 0) THEN IF (snow(i) > ridicule) THEN CALL iso_verif_egalite_choix(xtsnow(iso_eau,i),snow(i), & 'surf_land_ice 1151',errmax,errmaxrel) ENDIF !IF ((snow(i) > ridicule)) THEN ENDIF !IF (iso_eau > 0) THEN ENDDO !DO i=1,knon #endif DO i=1,knon snow_prec(i)=snow(i) DO ixt=1,niso xtsnow_prec(ixt,i)=xtsnow(ixt,i) ENDDO !DO ixt=1,niso ! initialisation: fq_fonte_diag(i)=0.0 fqfonte_diag(i)=0.0 snow_evap_diag(i)=0.0 ENDDO !DO i=1,knon #endif CALL calcul_flux_wind(knon, dtime, & u0, v0, u1, v1, gustiness, cdragm, & AcoefU, AcoefV, BcoefU, BcoefV, & p1lay, temp_air, & flux_u1, flux_v1) !**************************************************************************************** ! Calculate albedo ! !**************************************************************************************** ! !IM: plusieurs choix/tests sur l'albedo des "glaciers continentaux" ! alb1(1 : knon) = 0.6 !IM cf FH/GK ! alb1(1 : knon) = 0.82 ! alb1(1 : knon) = 0.77 !211003 Ksta0.77 ! alb1(1 : knon) = 0.8 !KstaTER0.8 & LMD_ARMIP5 !IM: KstaTER0.77 & LMD_ARMIP6 ! Attantion: alb1 and alb2 are not the same! alb1(1:knon) = alb_vis_sno_lic alb2(1:knon) = alb_nir_sno_lic !**************************************************************************************** ! Rugosity ! !**************************************************************************************** if (z0m_landice > 0.) then z0m(1:knon) = z0m_landice z0h(1:knon) = z0h_landice else ! parameterization of z0=f(T) following measurements in Adelie Land by Amory et al 2018 coefa = 0.1658 !0.1862 !Ant coefb = -50.3869 !-55.7718 !Ant ta1 = 253.15 !255. Ant ta2 = 273.15 ta3 = 273.15+3 z01 = exp(coefa*ta1 + coefb) !~0.2 ! ~0.25 mm z02 = exp(coefa*ta2 + coefb) !~6 !~7 mm z03 = z01 coefc = log(z03/z02)/(ta3-ta2) coefd = log(z03)-coefc*ta3 do j=1,knon if (temp_air(j) < ta1) then z0m(j) = z01 else if (temp_air(j)>=ta1 .and. temp_air(j)=ta2 .and. temp_air(j) 0, melting induce smooth surface z0m(j) = exp(coefc*temp_air(j) + coefd) else z0m(j) = z03 endif z0h(j)=z0m(j) enddo endif !**************************************************************************************** ! Simple blowing snow param !**************************************************************************************** ! we proceed in 2 steps: ! first we erode - if possible -the accumulated snow during the time step ! then we update the density of the underlying layer and see if we can also erode ! this layer if (ok_bs) then fluxbs(:)=0. do j=1,knon ws1(j)=(u1(j)**2+v1(j)**2)**0.5 ustar(j)=(cdragm(j)*(u1(j)**2+v1(j)**2))**0.5 rhod(j)=p1lay(j)/RD/temp_air(j) ustart0(j) =(log(2.868)-log(1.625))/0.085*sqrt(cdragm(j)) enddo ! 1st step: erosion of fresh snow accumulated during the time step do j=1, knon if (precip_snow(j) > 0.) then rhos(j)=rhofresh_bs ! blowing snow flux formula used in MAR ustart(j)=ustart0(j)*exp(max(rhoice_bs/rhofresh_bs-rhoice_bs/rhos(j),0.))*exp(max(0.,rhos(j)-rhohard_bs)) ! we have multiplied by exp to prevent erosion when rhos>rhohard_bs ! computation of qbs at the top of the saltation layer ! default formulation from MAR model (Amory et al. 2021, Gallee et al. 2001) esalt=1./(c_esalt_bs*max(1.e-6,ustar(j))) hsalt(j)=0.08436*(max(1.e-6,ustar(j))**1.27) qsalt(j)=(max(ustar(j)**2-ustart(j)**2,0.))/(RG*hsalt(j))*esalt ! calculation of erosion (flux positive towards the surface here) ! consistent with implicit resolution of turbulent mixing equation ! Nemoto and Nishimura 2004 show that steady-state saltation is achieved within a time tau_eqsalt_bs of about 10s ! we thus prevent snowerosion (snow particle transfer from the saltation layer to the first model level) ! integrated over tau_eqsalt_bs to exceed the total mass of snow particle in the saltation layer ! (rho*qsalt*hsalt) ! during this first step we also lower bound the erosion to the amount of fresh snow accumulated during the time step maxerosion=min(precip_snow(j),hsalt(j)*qsalt(j)*rhod(j)/tau_eqsalt_bs) fluxbs_1(j)=rhod(j)*ws1(j)*cdragh(j)*zeta_bs*(AcoefQBS(j)-qsalt(j)) & / (1.-rhod(j)*ws1(j)*cdragh(j)*zeta_bs*BcoefQBS(j)*dtime) fluxbs_1(j)=max(-maxerosion,fluxbs_1(j)) if (precip_snow(j) > abs(fluxbs_1(j))) then ok_remaining_freshsnow(j)=.true. bsweight_fresh(j)=1. else ok_remaining_freshsnow(j)=.false. bsweight_fresh(j)=exp(-(abs(fluxbs_1(j))-precip_snow(j))/precip_snow(j)) endif else ok_remaining_freshsnow(j)=.false. fluxbs_1(j)=0. bsweight_fresh(j)=0. endif enddo ! we now compute the snow age of the overlying layer (snow surface after erosion of the fresh snow accumulated during the time step) ! this is done through the routine albsno CALL albsno(klon,knon,dtime,agesno(:),alb_neig(:), precip_snow(:)+fluxbs_1(:)) ! 2nd step: ! computation of threshold friction velocity ! which depends on surface snow density do j = 1, knon if (ok_remaining_freshsnow(j)) then fluxbs_2(j)=0. else ! we start eroding the underlying layer ! estimation of snow density ! snow density increases with snow age and ! increases even faster in case of sedimentation of blowing snow or rain tau_dens=max(tau_densmin_bs, tau_dens0_bs*exp(-abs(precip_bs(j))/pbst_bs - & abs(precip_rain(j))/prt_bs)*exp(-max(tsurf(j)-RTT,0.))) rhos(j)=rhofresh_bs+(rhohard_bs-rhofresh_bs)*(1.-exp(-agesno(j)*86400.0/tau_dens)) ! blowing snow flux formula used in MAR ustart(j)=ustart0(j)*exp(max(rhoice_bs/rhofresh_bs-rhoice_bs/rhos(j),0.))*exp(max(0.,rhos(j)-rhohard_bs)) ! we have multiplied by exp to prevent erosion when rhos>rhohard_bs ! computation of qbs at the top of the saltation layer ! default formulation from MAR model (Amory et al. 2021, Gallee et al. 2001) esalt=1./(c_esalt_bs*max(1.e-6,ustar(j))) hsalt(j)=0.08436*(max(1.e-6,ustar(j))**1.27) qsalt(j)=(max(ustar(j)**2-ustart(j)**2,0.))/(RG*hsalt(j))*esalt ! calculation of erosion (flux positive towards the surface here) ! consistent with implicit resolution of turbulent mixing equation ! Nemoto and Nishimura 2004 show that steady-state saltation is achieved within a time tau_eqsalt_bs of about 10s ! we thus prevent snowerosion (snow particle transfer from the saltation layer to the first model level) ! integrated over tau_eqsalt_bs to exceed the total mass of snow particle in the saltation layer ! (rho*qsalt*hsalt) maxerosion=hsalt(j)*qsalt(j)*rhod(j)/tau_eqsalt_bs fluxbs_2(j)=rhod(j)*ws1(j)*cdragh(j)*zeta_bs*(AcoefQBS(j)-qsalt(j)) & / (1.-rhod(j)*ws1(j)*cdragh(j)*zeta_bs*BcoefQBS(j)*dtime) fluxbs_2(j)=max(-maxerosion,fluxbs_2(j)) endif enddo ! final flux and outputs do j=1, knon ! total flux is the erosion of fresh snow + ! a fraction of the underlying snow (if all the fresh snow has been eroded) ! the calculation of the fraction is quite delicate since we do not know ! how much time was needed to erode the fresh snow. We assume that this time ! is dt*exp(-(abs(fluxbs1)-precipsnow)/precipsnow)=dt*bsweight_fresh fluxbs(j)=fluxbs_1(j)+fluxbs_2(j)*(1.-bsweight_fresh(j)) i = knindex(j) zxustartlic(i) = ustart(j) zxrhoslic(i) = rhos(j) zxqsaltlic(i)=qsalt(j) enddo else ! not ok_bs ! those lines are useful to calculate the snow age CALL albsno(klon,knon,dtime,agesno(:),alb_neig(:), precip_snow(:)) endif ! if ok_bs !**************************************************************************************** ! Calculate snow amount ! !**************************************************************************************** IF (ok_bs) THEN precip_totsnow(:)=precip_snow(:)+precip_bs(:) evap_totsnow(:)=evap(:)-fluxbs(:) ! flux bs is positive towards the surface (snow erosion) ELSE precip_totsnow(:)=precip_snow(:) evap_totsnow(:)=evap(:) ENDIF CALL fonte_neige(knon, is_lic, knindex, dtime, & tsurf, precip_rain, precip_totsnow, & snow, qsol, tsurf_new, evap_totsnow & #ifdef ISO ,fq_fonte_diag,fqfonte_diag,snow_evap_diag,fqcalving_diag & ,max_eau_sol_diag,runoff_diag,run_off_lic_diag,coeff_rel_diag & #endif ) #ifdef ISO #ifdef ISOVERIF DO i=1,knon IF (iso_eau > 0) THEN CALL iso_verif_egalite_choix(Rland_ice(iso_eau,i),1.0, & 'surf_landice_mod 217',errmax,errmaxrel) ENDIF !IF (iso_eau > 0) THEN ENDDO !DO i=1,knon #endif CALL calcul_iso_surf_lic_vectall(klon,knon, & evap,snow_evap_diag,Tsurf_new,snow, & fq_fonte_diag,fqfonte_diag,dtime,t_coup, & precip_snow,xtprecip_snow,precip_rain,xtprecip_rain, snow_prec,xtsnow_prec, & xtspechum,spechum,ps,Rland_ice, & xtevap,xtsnow,fqcalving_diag, & knindex,is_lic,run_off_lic_diag,coeff_rel_diag & ) ! call fonte_neige_export_xtrun_off_lic_0(knon,xtrun_off_lic_0_diag) #endif WHERE (snow(1 : knon) < 0.0001) agesno(1 : knon) = 0. zfra(1:knon) = MAX(0.0,MIN(1.0,snow(1:knon)/(snow(1:knon)+10.0))) END IF ! landice_opt !**************************************************************************************** ! Send run-off on land-ice to coupler if coupled ocean. ! run_off_lic has been calculated in fonte_neige or surf_inlandsis ! If landice_opt>=2, corresponding call is done from surf_land_orchidee !**************************************************************************************** IF (type_ocean=='couple' .AND. landice_opt < 2) THEN ! Compress fraction where run_off_lic is active (here all pctsrf(is_lic)) run_off_lic_frac(:)=0.0 DO j = 1, knon i = knindex(j) run_off_lic_frac(j) = pctsrf(i,is_lic) ENDDO CALL cpl_send_landice_fields(itime, knon, knindex, run_off_lic, run_off_lic_frac) ENDIF ! transfer runoff rate [kg/m2/s](!) to physiq for output runoff(1:knon)=run_off_lic(1:knon)/dtime snow_o=0. zfra_o = 0. DO j = 1, knon i = knindex(j) snow_o(i) = snow(j) zfra_o(i) = zfra(j) ENDDO !albedo SB >>> select case(NSW) case(2) alb_dir(1:knon,1)=alb1(1:knon) alb_dir(1:knon,2)=alb2(1:knon) case(4) alb_dir(1:knon,1)=alb1(1:knon) alb_dir(1:knon,2)=alb2(1:knon) alb_dir(1:knon,3)=alb2(1:knon) alb_dir(1:knon,4)=alb2(1:knon) case(6) alb_dir(1:knon,1)=alb1(1:knon) alb_dir(1:knon,2)=alb1(1:knon) alb_dir(1:knon,3)=alb1(1:knon) alb_dir(1:knon,4)=alb2(1:knon) alb_dir(1:knon,5)=alb2(1:knon) alb_dir(1:knon,6)=alb2(1:knon) IF ((landice_opt == 1) .AND. (iflag_albcalc == 2)) THEN alb_dir(1:knon,1)=alb6(1:knon,1) alb_dir(1:knon,2)=alb6(1:knon,2) alb_dir(1:knon,3)=alb6(1:knon,3) alb_dir(1:knon,4)=alb6(1:knon,4) alb_dir(1:knon,5)=alb6(1:knon,5) alb_dir(1:knon,6)=alb6(1:knon,6) ENDIF end select alb_dif=alb_dir !albedo SB <<< END SUBROUTINE surf_landice ! !**************************************************************************************** ! END MODULE surf_landice_mod