MODULE lmdz_lscp_poprecip !---------------------------------------------------------------- ! Module for the process-oriented treament of precipitation ! that are called in LSCP ! Authors: Atelier Nuage (G. Riviere, L. Raillard, M. Wimmer, ! N. Dutrievoz, E. Vignon, A. Borella, et al.) ! Jan. 2024 IMPLICIT NONE CONTAINS !---------------------------------------------------------------- ! Computes the processes-oriented precipitation formulations for ! evaporation and sublimation ! SUBROUTINE poprecip_precld( & klon, dtime, iftop, paprsdn, paprsup, pplay, temp, tempupnew, qvap, & qprecip, precipfracclr, precipfraccld, qvapclrup, qtotupnew, & rain, rainclr, raincld, snow, snowclr, snowcld, dqreva, dqssub & ) USE lmdz_lscp_ini, ONLY : prt_level, lunout USE lmdz_lscp_ini, ONLY : coef_eva, coef_sub, expo_eva, expo_sub, thresh_precip_frac USE lmdz_lscp_ini, ONLY : RCPD, RLSTT, RLVTT, RLMLT, RVTMP2, RTT, RD, RG USE lmdz_lscp_ini, ONLY : ok_corr_vap_evasub USE lmdz_lscp_tools, ONLY : calc_qsat_ecmwf IMPLICIT NONE INTEGER, INTENT(IN) :: klon !--number of horizontal grid points [-] REAL, INTENT(IN) :: dtime !--time step [s] LOGICAL, INTENT(IN) :: iftop !--if top of the column REAL, INTENT(IN), DIMENSION(klon) :: paprsdn !--pressure at the bottom interface of the layer [Pa] REAL, INTENT(IN), DIMENSION(klon) :: paprsup !--pressure at the top interface of the layer [Pa] REAL, INTENT(IN), DIMENSION(klon) :: pplay !--pressure in the middle of the layer [Pa] REAL, INTENT(INOUT), DIMENSION(klon) :: temp !--current temperature [K] REAL, INTENT(INOUT), DIMENSION(klon) :: tempupnew !--updated temperature of the overlying layer [K] REAL, INTENT(INOUT), DIMENSION(klon) :: qvap !--current water vapor specific humidity (includes evaporated qi and ql) [kg/kg] REAL, INTENT(INOUT), DIMENSION(klon) :: qprecip !--specific humidity in the precipitation falling from the upper layer [kg/kg] REAL, INTENT(INOUT), DIMENSION(klon) :: precipfracclr !--fraction of precipitation in the clear sky IN THE LAYER ABOVE [-] REAL, INTENT(INOUT), DIMENSION(klon) :: precipfraccld !--fraction of precipitation in the cloudy air IN THE LAYER ABOVE [-] REAL, INTENT(IN), DIMENSION(klon) :: qvapclrup !--clear-sky specific humidity IN THE LAYER ABOVE [kg/kg] REAL, INTENT(IN), DIMENSION(klon) :: qtotupnew !--total specific humidity IN THE LAYER ABOVE [kg/kg] REAL, INTENT(INOUT), DIMENSION(klon) :: rain !--flux of rain gridbox-mean coming from the layer above [kg/s/m2] REAL, INTENT(INOUT), DIMENSION(klon) :: rainclr !--flux of rain gridbox-mean in clear sky coming from the layer above [kg/s/m2] REAL, INTENT(IN), DIMENSION(klon) :: raincld !--flux of rain gridbox-mean in cloudy air coming from the layer above [kg/s/m2] REAL, INTENT(INOUT), DIMENSION(klon) :: snow !--flux of snow gridbox-mean coming from the layer above [kg/s/m2] REAL, INTENT(INOUT), DIMENSION(klon) :: snowclr !--flux of snow gridbox-mean in clear sky coming from the layer above [kg/s/m2] REAL, INTENT(IN), DIMENSION(klon) :: snowcld !--flux of snow gridbox-mean in cloudy air coming from the layer above [kg/s/m2] REAL, INTENT(OUT), DIMENSION(klon) :: dqreva !--rain tendency due to evaporation [kg/kg/s] REAL, INTENT(OUT), DIMENSION(klon) :: dqssub !--snow tendency due to sublimation [kg/kg/s] !--Integer for interating over klon INTEGER :: i !--dhum_to_dflux: coef to convert a specific quantity variation to a flux variation REAL, DIMENSION(klon) :: dhum_to_dflux !-- REAL, DIMENSION(klon) :: rho, dz !--Saturation values REAL, DIMENSION(klon) :: qzero, qsat, dqsat, qsatl, dqsatl, qsati, dqsati !--Vapor in the clear sky REAL :: qvapclr !--Fluxes tendencies because of evaporation and sublimation REAL :: dprecip_evasub_max, draineva, dsnowsub, dprecip_evasub_tot !--Specific humidity tendencies because of evaporation and sublimation REAL :: dqrevap, dqssubl !--Specific heat constant REAL :: cpair, cpw !--Initialisation qzero(:) = 0. dqreva(:) = 0. dqssub(:) = 0. dqrevap = 0. dqssubl = 0. !-- dhum_to_dflux = rho * dz/dt = 1 / g * dP/dt dhum_to_dflux(:) = ( paprsdn(:) - paprsup(:) ) / RG / dtime rho(:) = pplay(:) / temp(:) / RD dz(:) = ( paprsdn(:) - paprsup(:) ) / RG / rho(:) !--Calculation of saturation specific humidity !--depending on temperature: CALL calc_qsat_ecmwf(klon,temp(:),qzero(:),pplay(:),RTT,0,.false.,qsat(:),dqsat(:)) !--wrt liquid water CALL calc_qsat_ecmwf(klon,temp(:),qzero(:),pplay(:),RTT,1,.false.,qsatl(:),dqsatl(:)) !--wrt ice CALL calc_qsat_ecmwf(klon,temp(:),qzero(:),pplay(:),RTT,2,.false.,qsati(:),dqsati(:)) !--First step consists in "thermalizing" the layer: !--as the flux of precip from layer above "advects" some heat (as the precip is at the temperature !--of the overlying layer) we recalculate a mean temperature that both the air and the precip in the !--layer have. IF (iftop) THEN DO i = 1, klon qprecip(i) = 0. ENDDO ELSE DO i = 1, klon !--No condensed water so cp=cp(vapor+dry air) !-- RVTMP2=rcpv/rcpd-1 cpair = RCPD * ( 1. + RVTMP2 * qvap(i) ) cpw = RCPD * RVTMP2 !--qprecip has to be thermalized with !--layer's air so that precipitation at the ground has the !--same temperature as the lowermost layer !--we convert the flux into a specific quantity qprecip qprecip(i) = ( rain(i) + snow(i) ) / dhum_to_dflux(i) !-- t(i,k+1) + d_t(i,k+1): new temperature of the overlying layer temp(i) = ( tempupnew(i) * qprecip(i) * cpw + cpair * temp(i) ) & / ( cpair + qprecip(i) * cpw ) ENDDO ENDIF ! TODO Probleme : on utilise qvap total dans la maille pour l'evap / sub ! alors qu'on n'evap / sub que dans le ciel clair ! deux options pour cette routine : ! - soit on diagnostique le nuage AVANT l'evap / sub et on estime donc ! la fraction precipitante ciel clair dans la maille, ce qui permet de travailler ! avec des fractions, des fluxs et surtout un qvap dans le ciel clair ! - soit on pousse la param de Ludo au bout, et on prend un qvap de k+1 ! dans le ciel clair, avec un truc comme : ! qvapclr(k) = qvapclr(k+1)/qtot(k+1) * qtot(k) ! UPDATE : on code la seconde version. A voir si on veut mettre la premiere version. DO i = 1, klon !--If there is precipitation from the layer above ! NOTE TODO here we could replace the condition on precipfracclr(i) by a condition ! such as eps or thresh_precip_frac, to remove the senseless barrier in the formulas ! of evap / sublim IF ( ( ( rain(i) + snow(i) ) > 0. ) .AND. ( precipfracclr(i) > 0. ) ) THEN IF ( ok_corr_vap_evasub ) THEN !--Corrected version - we use the same water ratio between !--the clear and the cloudy sky as in the layer above. This !--extends the assumption that the cloud fraction is the same !--as the layer above. This is assumed only for the evap / subl !--process !--Note that qvap(i) is the total water in the gridbox, and !--precipfraccld(i) is the cloud fraction in the layer above qvapclr = qvapclrup(i) / qtotupnew(i) * qvap(i) / ( 1. - precipfraccld(i) ) ELSE !--Legacy version from Ludo - we use the total specific humidity !--for the evap / subl process qvapclr = qvap(i) ENDIF !--Evaporation of liquid precipitation coming from above !--in the clear sky only !--dprecip/dz = -beta*(1-qvap/qsat)*(precip**expo_eva) !--formula from Sundqvist 1988, Klemp & Wilhemson 1978 !--Exact explicit formulation (rainclr is resolved exactly, qvap explicitly) !--which does not need a barrier on rainclr, because included in the formula draineva = precipfracclr(i) * ( MAX(0., & - coef_eva * ( 1. - expo_eva ) * (1. - qvapclr / qsatl(i)) * dz(i) & + ( rainclr(i) / MAX(thresh_precip_frac, precipfracclr(i)) )**( 1. - expo_eva ) & ) )**( 1. / ( 1. - expo_eva ) ) - rainclr(i) !--Evaporation is limited by 0 draineva = MIN(0., draineva) !--Sublimation of the solid precipitation coming from above !--(same formula as for liquid precip) !--Exact explicit formulation (snowclr is resolved exactly, qvap explicitly) !--which does not need a barrier on snowclr, because included in the formula dsnowsub = precipfracclr(i) * ( MAX(0., & - coef_sub * ( 1. - expo_sub ) * (1. - qvapclr / qsati(i)) * dz(i) & + ( snowclr(i) / MAX(thresh_precip_frac, precipfracclr(i)) )**( 1. - expo_sub ) & ) )**( 1. / ( 1. - expo_sub ) ) - snowclr(i) !--Sublimation is limited by 0 ! TODO: change max when we will allow for vapor deposition in supersaturated regions dsnowsub = MIN(0., dsnowsub) !--Evaporation limit: we ensure that the layer's fraction below !--the clear sky does not reach saturation. In this case, we !--redistribute the maximum flux dprecip_evasub_max conserving the ratio liquid/ice !--Max evaporation is computed not to saturate the clear sky precip fraction !--(i.e., the fraction where evaporation occurs) !--It is expressed as a max flux dprecip_evasub_max dprecip_evasub_max = MIN(0., ( qvapclr - qsat(i) ) * precipfracclr(i)) & * dhum_to_dflux(i) dprecip_evasub_tot = draineva + dsnowsub !--Barriers !--If activates if the total is LOWER than the max because !--everything is negative IF ( dprecip_evasub_tot < dprecip_evasub_max ) THEN draineva = dprecip_evasub_max * draineva / dprecip_evasub_tot dsnowsub = dprecip_evasub_max * dsnowsub / dprecip_evasub_tot ENDIF !--New solid and liquid precipitation fluxes after evap and sublimation dqrevap = draineva / dhum_to_dflux(i) dqssubl = dsnowsub / dhum_to_dflux(i) !--Vapor is updated after evaporation/sublimation (it is increased) qvap(i) = qvap(i) - dqrevap - dqssubl !--qprecip is the total condensed water in the precip flux (it is decreased) qprecip(i) = qprecip(i) + dqrevap + dqssubl !--Air and precip temperature (i.e., gridbox temperature) !--is updated due to latent heat cooling temp(i) = temp(i) & + dqrevap * RLVTT / RCPD & / ( 1. + RVTMP2 * ( qvap(i) + qprecip(i) ) ) & + dqssubl * RLSTT / RCPD & / ( 1. + RVTMP2 * ( qvap(i) + qprecip(i) ) ) !--Add tendencies !--The MAX is needed because in some cases, the flux can be slightly negative (numerical precision) rainclr(i) = MAX(0., rainclr(i) + draineva) snowclr(i) = MAX(0., snowclr(i) + dsnowsub) !--If there is no more precip fluxes, the precipitation fraction in clear !--sky is set to 0 IF ( ( rainclr(i) + snowclr(i) ) <= 0. ) precipfracclr(i) = 0. !--Calculation of the total fluxes rain(i) = rainclr(i) + raincld(i) snow(i) = snowclr(i) + snowcld(i) ELSEIF ( ( rain(i) + snow(i) ) <= 0. ) THEN !--If no precip, we reinitialize the cloud fraction used for the precip to 0 precipfraccld(i) = 0. precipfracclr(i) = 0. ENDIF ! ( ( rain(i) + snow(i) ) .GT. 0. ) !--Diagnostic tendencies dqssub(i) = dqssubl / dtime dqreva(i) = dqrevap / dtime ENDDO ! loop on klon END SUBROUTINE poprecip_precld !---------------------------------------------------------------- ! Computes the processes-oriented precipitation formulations for ! - autoconversion (auto) via a deposition process ! - aggregation (agg) ! - riming (rim) ! - collection (col) ! - melting (melt) ! - freezing (freez) ! SUBROUTINE poprecip_postcld( & klon, dtime, paprsdn, paprsup, pplay, ctot_vol, ptconv, & temp, qvap, qliq, qice, icefrac, cldfra, & precipfracclr, precipfraccld, & rain, rainclr, raincld, snow, snowclr, snowcld, & qraindiag, qsnowdiag, dqrauto, dqrcol, dqrmelt, dqrfreez, & dqsauto, dqsagg, dqsrim, dqsmelt, dqsfreez) USE lmdz_lscp_ini, ONLY : prt_level, lunout USE lmdz_lscp_ini, ONLY : RCPD, RLSTT, RLVTT, RLMLT, RVTMP2, RTT, RD, RG, RPI USE lmdz_lscp_tools, ONLY : calc_qsat_ecmwf USE lmdz_lscp_ini, ONLY : cld_lc_con, cld_tau_con, cld_expo_con, seuil_neb, & cld_lc_lsc, cld_tau_lsc, cld_expo_lsc, rain_int_min, & thresh_precip_frac, gamma_col, gamma_agg, gamma_rim, & rho_rain, r_rain, r_snow, rho_ice, & tau_auto_snow_min, tau_auto_snow_max, & thresh_precip_frac, eps, & gamma_melt, alpha_freez, beta_freez, temp_nowater, & iflag_cloudth_vert, iflag_rain_incloud_vol, & cld_lc_lsc_snow, cld_lc_con_snow, gamma_freez, & rain_fallspeed_clr, rain_fallspeed_cld, & snow_fallspeed_clr, snow_fallspeed_cld IMPLICIT NONE INTEGER, INTENT(IN) :: klon !--number of horizontal grid points [-] REAL, INTENT(IN) :: dtime !--time step [s] REAL, INTENT(IN), DIMENSION(klon) :: paprsdn !--pressure at the bottom interface of the layer [Pa] REAL, INTENT(IN), DIMENSION(klon) :: paprsup !--pressure at the top interface of the layer [Pa] REAL, INTENT(IN), DIMENSION(klon) :: pplay !--pressure in the middle of the layer [Pa] REAL, INTENT(IN), DIMENSION(klon) :: ctot_vol !--volumic cloud fraction [-] LOGICAL, INTENT(IN), DIMENSION(klon) :: ptconv !--true if we are in a convective point REAL, INTENT(INOUT), DIMENSION(klon) :: temp !--current temperature [K] REAL, INTENT(INOUT), DIMENSION(klon) :: qvap !--current water vapor specific humidity [kg/kg] REAL, INTENT(INOUT), DIMENSION(klon) :: qliq !--current liquid water specific humidity [kg/kg] REAL, INTENT(INOUT), DIMENSION(klon) :: qice !--current ice water specific humidity [kg/kg] REAL, INTENT(IN), DIMENSION(klon) :: icefrac !--ice fraction [-] REAL, INTENT(IN), DIMENSION(klon) :: cldfra !--cloud fraction [-] REAL, INTENT(INOUT), DIMENSION(klon) :: precipfracclr !--fraction of precipitation in the clear sky IN THE LAYER ABOVE [-] REAL, INTENT(INOUT), DIMENSION(klon) :: precipfraccld !--fraction of precipitation in the cloudy air IN THE LAYER ABOVE [-] !--NB. at the end of the routine, becomes the fraction of precip !--in the current layer REAL, INTENT(INOUT), DIMENSION(klon) :: rain !--flux of rain gridbox-mean coming from the layer above [kg/s/m2] REAL, INTENT(INOUT), DIMENSION(klon) :: rainclr !--flux of rain gridbox-mean in clear sky coming from the layer above [kg/s/m2] REAL, INTENT(INOUT), DIMENSION(klon) :: raincld !--flux of rain gridbox-mean in cloudy air coming from the layer above [kg/s/m2] REAL, INTENT(INOUT), DIMENSION(klon) :: snow !--flux of snow gridbox-mean coming from the layer above [kg/s/m2] REAL, INTENT(INOUT), DIMENSION(klon) :: snowclr !--flux of snow gridbox-mean in clear sky coming from the layer above [kg/s/m2] REAL, INTENT(INOUT), DIMENSION(klon) :: snowcld !--flux of snow gridbox-mean in cloudy air coming from the layer above [kg/s/m2] REAL, INTENT(OUT), DIMENSION(klon) :: qraindiag !--DIAGNOSTIC specific rain content [kg/kg] REAL, INTENT(OUT), DIMENSION(klon) :: qsnowdiag !--DIAGNOSTIC specific snow content [kg/kg] REAL, INTENT(OUT), DIMENSION(klon) :: dqrcol !--rain tendendy due to collection by rain of liquid cloud droplets [kg/kg/s] REAL, INTENT(OUT), DIMENSION(klon) :: dqsagg !--snow tendency due to collection of lcoud ice by aggregation [kg/kg/s] REAL, INTENT(OUT), DIMENSION(klon) :: dqrauto !--rain tendency due to autoconversion of cloud liquid [kg/kg/s] REAL, INTENT(OUT), DIMENSION(klon) :: dqsauto !--snow tendency due to autoconversion of cloud ice [kg/kg/s] REAL, INTENT(OUT), DIMENSION(klon) :: dqsrim !--snow tendency due to riming [kg/kg/s] REAL, INTENT(OUT), DIMENSION(klon) :: dqsmelt !--snow tendency due to melting [kg/kg/s] REAL, INTENT(OUT), DIMENSION(klon) :: dqrmelt !--rain tendency due to melting [kg/kg/s] REAL, INTENT(OUT), DIMENSION(klon) :: dqsfreez !--snow tendency due to freezing [kg/kg/s] REAL, INTENT(OUT), DIMENSION(klon) :: dqrfreez !--rain tendency due to freezing [kg/kg/s] !--Local variables INTEGER :: i !--dhum_to_dflux: coef to convert a specific quantity variation to a flux variation REAL, DIMENSION(klon) :: dhum_to_dflux REAL, DIMENSION(klon) :: qtot !--includes vap, liq, ice and precip !--Partition of the fluxes REAL :: dcldfra REAL :: precipfractot REAL :: dprecipfracclr, dprecipfraccld REAL :: drainclr, dsnowclr REAL :: draincld, dsnowcld !--Collection, aggregation and riming REAL :: eff_cldfra REAL :: coef_col, coef_agg, coef_rim, coef_tmp, qrain_tmp REAL :: Eff_rain_liq, Eff_snow_ice, Eff_snow_liq REAL :: rho_snow REAL :: dqlcol !--loss of liquid cloud content due to collection by rain [kg/kg/s] REAL :: dqiagg !--loss of ice cloud content due to collection by aggregation [kg/kg/s] REAL :: dqlrim !--loss of liquid cloud content due to riming on snow [kg/kg/s] !--Autoconversion REAL :: qthresh_auto_rain, tau_auto_rain, expo_auto_rain REAL :: qthresh_auto_snow, tau_auto_snow, expo_auto_snow REAL :: dqlauto !--loss of liquid cloud content due to autoconversion to rain [kg/kg/s] REAL :: dqiauto !--loss of ice cloud content due to autoconversion to snow [kg/kg/s] !--Melting REAL :: dqsmelt_max, air_thermal_conduct REAL :: nb_snowflake_clr, nb_snowflake_cld REAL :: capa_snowflake, temp_wetbulb REAL :: rho, r_ice REAL :: dqsclrmelt, dqscldmelt, dqstotmelt REAL, DIMENSION(klon) :: qzero, qsat, dqsat !--Freezing REAL :: dqrfreez_max REAL :: tau_freez REAL :: dqrclrfreez, dqrcldfreez, dqrtotfreez, dqrtotfreez_step1, dqrtotfreez_step2 REAL :: coef_freez REAL :: dqifreez !--loss of ice cloud content due to collection of ice from rain [kg/kg/s] REAL :: Eff_rain_ice !--Initialisation of variables qzero(:) = 0. dqrcol(:) = 0. dqsagg(:) = 0. dqsauto(:) = 0. dqrauto(:) = 0. dqsrim(:) = 0. dqrmelt(:) = 0. dqsmelt(:) = 0. dqrfreez(:) = 0. dqsfreez(:) = 0. DO i = 1, klon !--Variables initialisation dqlcol = 0. dqiagg = 0. dqiauto = 0. dqlauto = 0. dqlrim = 0. !-- dhum_to_dflux = rho * dz/dt = 1 / g * dP/dt dhum_to_dflux(i) = ( paprsdn(i) - paprsup(i) ) / RG / dtime qtot(i) = qvap(i) + qliq(i) + qice(i) & + ( raincld(i) + rainclr(i) + snowcld(i) + snowclr(i) ) / dhum_to_dflux(i) !------------------------------------------------------------ !-- PRECIPITATION FRACTIONS UPDATE !------------------------------------------------------------ !--The goal of this routine is to reattribute precipitation fractions !--and fluxes to clear or cloudy air, depending on the variation of !--the cloud fraction on the vertical dimension. We assume a !--maximum-random overlap of the cloud cover (see Jakob and Klein, 2000, !--and LTP thesis, 2021) !--NB. in fact, we assume a maximum-random overlap of the total precip. frac !--Initialisation precipfractot = precipfracclr(i) + precipfraccld(i) !--Instead of using the cloud cover which was use in LTP thesis, we use the !--total precip. fraction to compute the maximum-random overlap. This is !--because all the information of the cloud cover is embedded into !--precipfractot, and this allows for taking into account the potential !--reduction of the precipitation fraction because either the flux is too !--small (see barrier at the end of poprecip_postcld) or the flux is completely !--evaporated (see barrier at the end of poprecip_precld) !--NB. precipfraccld(i) is here the cloud fraction of the layer above !precipfractot = 1. - ( 1. - precipfractot ) * & ! ( 1. - MAX( cldfra(i), precipfraccld(i) ) ) & ! / ( 1. - MIN( precipfraccld(i), 1. - eps ) ) IF ( precipfraccld(i) > ( 1. - eps ) ) THEN precipfractot = 1. ELSE precipfractot = 1. - ( 1. - precipfractot ) * & ( 1. - MAX( cldfra(i), precipfraccld(i) ) ) & / ( 1. - precipfraccld(i) ) ENDIF !--precipfraccld(i) is here the cloud fraction of the layer above dcldfra = cldfra(i) - precipfraccld(i) !--Tendency of the clear-sky precipitation fraction. We add a MAX on the !--calculation of the current CS precip. frac. !dprecipfracclr = MAX( 0., ( precipfractot - cldfra(i) ) ) - precipfracclr(i) !--We remove it, because precipfractot is guaranteed to be > cldfra (the MAX is activated !--if precipfractot < cldfra) dprecipfracclr = ( precipfractot - cldfra(i) ) - precipfracclr(i) !--Tendency of the cloudy precipitation fraction. We add a MAX on the !--calculation of the current CS precip. frac. !dprecipfraccld = MAX( dcldfra , - precipfraccld(i) ) !--We remove it, because cldfra is guaranteed to be > 0 (the MAX is activated !--if cldfra < 0) dprecipfraccld = dcldfra !--If the cloud extends IF ( dprecipfraccld > 0. ) THEN !--If there is no CS precip, nothing happens. !--If there is, we reattribute some of the CS precip flux !--to the cloud precip flux, proportionnally to the !--decrease of the CS precip fraction IF ( precipfracclr(i) <= 0. ) THEN drainclr = 0. dsnowclr = 0. ELSE drainclr = dprecipfracclr / precipfracclr(i) * rainclr(i) dsnowclr = dprecipfracclr / precipfracclr(i) * snowclr(i) ENDIF !--If the cloud narrows ELSEIF ( dprecipfraccld < 0. ) THEN !--We reattribute some of the cloudy precip flux !--to the CS precip flux, proportionnally to the !--decrease of the cloud precip fraction draincld = dprecipfraccld / precipfraccld(i) * raincld(i) dsnowcld = dprecipfraccld / precipfraccld(i) * snowcld(i) drainclr = - draincld dsnowclr = - dsnowcld !--If the cloud stays the same or if there is no cloud above and !--in the current layer, nothing happens ELSE drainclr = 0. dsnowclr = 0. ENDIF !--We add the tendencies !--The MAX is needed because in some cases, the flux can be slightly negative (numerical precision) precipfraccld(i) = precipfraccld(i) + dprecipfraccld precipfracclr(i) = precipfracclr(i) + dprecipfracclr rainclr(i) = MAX(0., rainclr(i) + drainclr) snowclr(i) = MAX(0., snowclr(i) + dsnowclr) raincld(i) = MAX(0., raincld(i) - drainclr) snowcld(i) = MAX(0., snowcld(i) - dsnowclr) !--If vertical heterogeneity is taken into account, we use !--the "true" volume fraction instead of a modified !--surface fraction (which is larger and artificially !--reduces the in-cloud water). IF ( ( iflag_cloudth_vert >= 3 ) .AND. ( iflag_rain_incloud_vol == 1 ) ) THEN eff_cldfra = ctot_vol(i) ELSE eff_cldfra = cldfra(i) ENDIF !--Start precipitation growth processes !--If the cloud is big enough, the precipitation processes activate ! TODO met on seuil_neb ici ? IF ( cldfra(i) >= seuil_neb ) THEN !--------------------------------------------------------- !-- COLLECTION AND AGGREGATION !--------------------------------------------------------- !--Collection: processus through which rain collects small liquid droplets !--in suspension, and add it to the rain flux !--Aggregation: same for snow (precip flux) and ice crystals (in suspension) !--Those processes are treated before autoconversion because we do not !--want to collect/aggregate the newly formed fluxes, which already !--"saw" the cloud as they come from it !--The formulas come from Muench and Lohmann 2020 !--gamma_col: tuning coefficient [-] !--rho_rain: volumic mass of rain [kg/m3] !--r_rain: size of the rain droplets [m] !--Eff_rain_liq: efficiency of the collection process [-] (between 0 and 1) !--dqlcol is a gridbox-mean quantity, as is qliq and raincld. They are !--divided by respectively eff_cldfra, eff_cldfra and precipfraccld to !--get in-cloud mean quantities. The two divisions by eff_cldfra are !--then simplified. !--The collection efficiency is perfect. Eff_rain_liq = 1. coef_col = gamma_col * 3. / 4. / rho_rain / r_rain * Eff_rain_liq IF ( raincld(i) > 0. ) THEN !--Exact explicit version, which does not need a barrier because of !--the exponential decrease dqlcol = qliq(i) * ( EXP( - dtime * coef_col * raincld(i) / precipfraccld(i) ) - 1. ) !--Add tendencies qliq(i) = qliq(i) + dqlcol raincld(i) = raincld(i) - dqlcol * dhum_to_dflux(i) !--Diagnostic tendencies dqrcol(i) = - dqlcol / dtime ENDIF !--Same as for aggregation !--Eff_snow_liq formula: !--it s a product of a collection efficiency and a sticking efficiency ! Milbrandt and Yau formula that gives very low values: ! Eff_snow_ice = 0.05 * EXP( 0.1 * ( temp(i) - RTT ) ) ! Lin 1983's formula Eff_snow_ice = EXP( 0.025 * MIN( ( temp(i) - RTT ), 0.) ) !--rho_snow formula follows Brandes et al. 2007 (JAMC) rho_snow = 1.e3 * 0.178 * ( r_snow * 2. * 1000. )**(-0.922) coef_agg = gamma_agg * 3. / 4. / rho_snow / r_snow * Eff_snow_ice IF ( snowcld(i) > 0. ) THEN !--Exact explicit version, which does not need a barrier because of !--the exponential decrease dqiagg = qice(i) * ( EXP( - dtime * coef_agg * snowcld(i) / precipfraccld(i) ) - 1. ) !--Add tendencies qice(i) = qice(i) + dqiagg snowcld(i) = snowcld(i) - dqiagg * dhum_to_dflux(i) !--Diagnostic tendencies dqsagg(i) = - dqiagg / dtime ENDIF !--------------------------------------------------------- !-- AUTOCONVERSION !--------------------------------------------------------- !--Autoconversion converts liquid droplets/ice crystals into !--rain drops/snowflakes. It relies on the formulations by !--Sundqvist 1978. !--If we are in a convective point, we have different parameters !--for the autoconversion IF ( ptconv(i) ) THEN qthresh_auto_rain = cld_lc_con qthresh_auto_snow = cld_lc_con_snow tau_auto_rain = cld_tau_con !--tau for snow depends on the ice fraction in mixed-phase clouds tau_auto_snow = tau_auto_snow_max & + ( tau_auto_snow_min - tau_auto_snow_max ) * ( 1. - icefrac(i) ) expo_auto_rain = cld_expo_con expo_auto_snow = cld_expo_con ELSE qthresh_auto_rain = cld_lc_lsc qthresh_auto_snow = cld_lc_lsc_snow tau_auto_rain = cld_tau_lsc !--tau for snow depends on the ice fraction in mixed-phase clouds tau_auto_snow = tau_auto_snow_max & + ( tau_auto_snow_min - tau_auto_snow_max ) * ( 1. - icefrac(i) ) expo_auto_rain = cld_expo_lsc expo_auto_snow = cld_expo_lsc ENDIF ! Liquid water quantity to remove according to (Sundqvist, 1978) ! dqliq/dt = -qliq/tau * ( 1-exp(-(qliqincld/qthresh)**2) ) ! !--And same formula for ice ! !--We first treat the second term (with exponential) in an explicit way !--and then treat the first term (-q/tau) in an exact way dqlauto = - qliq(i) * ( 1. - exp( - dtime / tau_auto_rain * ( 1. - exp( & - ( qliq(i) / eff_cldfra / qthresh_auto_rain ) ** expo_auto_rain ) ) ) ) dqiauto = - qice(i) * ( 1. - exp( - dtime / tau_auto_snow * ( 1. - exp( & - ( qice(i) / eff_cldfra / qthresh_auto_snow ) ** expo_auto_snow ) ) ) ) !--Barriers so that we don't create more rain/snow !--than there is liquid/ice dqlauto = MAX( - qliq(i), dqlauto ) dqiauto = MAX( - qice(i), dqiauto ) !--Add tendencies qliq(i) = qliq(i) + dqlauto qice(i) = qice(i) + dqiauto raincld(i) = raincld(i) - dqlauto * dhum_to_dflux(i) snowcld(i) = snowcld(i) - dqiauto * dhum_to_dflux(i) !--Diagnostic tendencies dqsauto(i) = - dqiauto / dtime dqrauto(i) = - dqlauto / dtime !--------------------------------------------------------- !-- RIMING !--------------------------------------------------------- !--Process which converts liquid droplets in suspension into !--snow because of the collision between !--those and falling snowflakes. !--The formula comes from Muench and Lohmann 2020 !--NB.: this process needs a temperature adjustment !--Eff_snow_liq formula: following Ferrier 1994, !--assuming 1 Eff_snow_liq = 1.0 !--rho_snow formula follows Brandes et al. 2007 (JAMC) rho_snow = 1.e3 * 0.178 * ( r_snow * 2. * 1000. )**(-0.922) coef_rim = gamma_rim * 3. / 4. / rho_snow / r_snow * Eff_snow_liq IF ( snowcld(i) > 0. ) THEN !--Exact version, which does not need a barrier because of !--the exponential decrease dqlrim = qliq(i) * ( EXP( - dtime * coef_rim * snowcld(i) / precipfraccld(i) ) - 1. ) !--Add tendencies !--The MAX is needed because in some cases, the flux can be slightly negative (numerical precision) qliq(i) = qliq(i) + dqlrim snowcld(i) = snowcld(i) - dqlrim * dhum_to_dflux(i) !--Temperature adjustment with the release of latent !--heat because of solid condensation temp(i) = temp(i) - dqlrim * RLMLT / RCPD & / ( 1. + RVTMP2 * qtot(i) ) !--Diagnostic tendencies dqsrim(i) = - dqlrim / dtime ENDIF ENDIF ! cldfra .GE. seuil_neb ENDDO ! loop on klon !--Re-calculation of saturation specific humidity !--because riming changed temperature CALL calc_qsat_ecmwf(klon, temp, qzero, pplay, RTT, 0, .FALSE., qsat, dqsat) DO i = 1, klon !--------------------------------------------------------- !-- MELTING !--------------------------------------------------------- !--Process through which snow melts into rain. !--The formula is homemade. !--NB.: this process needs a temperature adjustment !--dqsmelt_max : maximum snow melting so that temperature !-- stays higher than 273 K [kg/kg] !--capa_snowflake : capacitance of a snowflake, equal to !-- the radius if the snowflake is a sphere [m] !--temp_wetbulb : wet-bulb temperature [K] !--snow_fallspeed : snow fall velocity (in clear/cloudy sky) [m/s] !--air_thermal_conduct : thermal conductivity of the air [J/m/K/s] !--gamma_melt : tuning parameter for melting [-] !--nb_snowflake : number of snowflakes (in clear/cloudy air) [-] IF ( ( snowclr(i) + snowcld(i) ) > 0. ) THEN !--Computed according to !--Cpdry * Delta T * (1 + (Cpvap/Cpdry - 1) * qtot) = Lfusion * Delta q dqsmelt_max = MIN(0., ( RTT - temp(i) ) / RLMLT * RCPD & * ( 1. + RVTMP2 * qtot(i) )) !--Initialisation dqsclrmelt = 0. dqscldmelt = 0. !--We assume that the snowflakes are spherical capa_snowflake = r_snow !--Thermal conductivity of the air, empirical formula from Beard and Pruppacher (1971) air_thermal_conduct = ( 5.69 + 0.017 * ( temp(i) - RTT ) ) * 1.e-3 * 4.184 !--rho_snow formula follows Brandes et al. 2007 (JAMC) rho_snow = 1.e3 * 0.178 * ( r_snow * 2. * 1000. )**(-0.922) !--In clear air IF ( ( snowclr(i) > 0. ) .AND. ( precipfracclr(i) > 0. ) ) THEN !--Formula for the wet-bulb temperature from ECMWF (IFS) !--The vapor used is the vapor in the clear sky temp_wetbulb = temp(i) & - ( qsat(i) - ( qvap(i) - cldfra(i) * qsat(i) ) / ( 1. - cldfra(i) ) ) & * ( 1329.31 + 0.0074615 * ( pplay(i) - 0.85e5 ) & - 40.637 * ( temp(i) - 275. ) ) !--Calculated according to !-- flux = velocity_snowflakes * nb_snowflakes * volume_snowflakes * rho_snow nb_snowflake_clr = snowclr(i) / precipfracclr(i) / snow_fallspeed_clr & / ( 4. / 3. * RPI * r_snow**3. * rho_snow ) dqsclrmelt = - nb_snowflake_clr * 4. * RPI * air_thermal_conduct & * capa_snowflake / RLMLT * gamma_melt & * MAX(0., temp_wetbulb - RTT) * dtime !--Barrier to limit the melting flux to the clr snow flux in the mesh dqsclrmelt = MAX( dqsclrmelt , -snowclr(i) / dhum_to_dflux(i)) ENDIF !--In cloudy air IF ( ( snowcld(i) > 0. ) .AND. ( precipfraccld(i) > 0. ) ) THEN !--As the air is saturated, the wet-bulb temperature is equal to the !--temperature temp_wetbulb = temp(i) !--Calculated according to !-- flux = velocity_snowflakes * nb_snowflakes * volume_snowflakes * rho_snow nb_snowflake_cld = snowcld(i) / precipfraccld(i) / snow_fallspeed_cld & / ( 4. / 3. * RPI * r_snow**3. * rho_snow ) dqscldmelt = - nb_snowflake_cld * 4. * RPI * air_thermal_conduct & * capa_snowflake / RLMLT * gamma_melt & * MAX(0., temp_wetbulb - RTT) * dtime !--Barrier to limit the melting flux to the cld snow flux in the mesh dqscldmelt = MAX(dqscldmelt , - snowcld(i) / dhum_to_dflux(i)) ENDIF !--Barrier on temperature. If the total melting flux leads to a !--positive temperature, it is limited to keep temperature above 0 degC. !--It is activated if the total is LOWER than the max !--because everything is negative dqstotmelt = dqsclrmelt + dqscldmelt IF ( dqstotmelt < dqsmelt_max ) THEN !--We redistribute the max melted snow keeping !--the clear/cloud partition of the melted snow dqsclrmelt = dqsmelt_max * dqsclrmelt / dqstotmelt dqscldmelt = dqsmelt_max * dqscldmelt / dqstotmelt dqstotmelt = dqsmelt_max ENDIF !--Add tendencies !--The MAX is needed because in some cases, the flux can be slightly negative (numerical precision) rainclr(i) = MAX(0., rainclr(i) - dqsclrmelt * dhum_to_dflux(i)) raincld(i) = MAX(0., raincld(i) - dqscldmelt * dhum_to_dflux(i)) snowclr(i) = MAX(0., snowclr(i) + dqsclrmelt * dhum_to_dflux(i)) snowcld(i) = MAX(0., snowcld(i) + dqscldmelt * dhum_to_dflux(i)) !--Temperature adjustment with the release of latent !--heat because of melting temp(i) = temp(i) + dqstotmelt * RLMLT / RCPD & / ( 1. + RVTMP2 * qtot(i) ) !--Diagnostic tendencies dqrmelt(i) = - dqstotmelt / dtime dqsmelt(i) = dqstotmelt / dtime ENDIF !--------------------------------------------------------- !-- FREEZING !--------------------------------------------------------- !--Process through which rain freezes into snow. !-- We parameterize it as a 2 step process: !--first: freezing following collision with ice crystals !--second: immersion freezing following (inspired by Bigg 1953) !--the latter is parameterized as an exponential decrease of the rain !--water content with a homemade formulya !--This is based on a caracteritic time of freezing, which !--exponentially depends on temperature so that it is !--equal to 1 for temp_nowater (see below) and is close to !--0 for RTT (=273.15 K). !--NB.: this process needs a temperature adjustment !--dqrfreez_max : maximum rain freezing so that temperature !-- stays lower than 273 K [kg/kg] !--tau_freez : caracteristic time of freezing [s] !--gamma_freez : tuning parameter [s-1] !--alpha_freez : tuning parameter for the shape of the exponential curve [-] !--temp_nowater : temperature below which no liquid water exists [K] (about -40 degC) IF ( ( rainclr(i) + raincld(i) ) > 0. ) THEN !--1st step: freezing following collision with ice crystals !--Sub-process of freezing which quantifies the collision between !--ice crystals in suspension and falling rain droplets. !--The rain droplets freeze, becoming graupel, and carrying !--the ice crystal (which acted as an ice nucleating particle). !--The formula is adapted from the riming formula. !--it works only in the cloudy part dqifreez = 0. dqrtotfreez_step1 = 0. IF ( ( qice(i) > 0. ) .AND. ( cldfra(i) > 0. ) .AND. & ( raincld(i) > 0. ) .AND. ( precipfraccld(i) > 0. ) ) THEN dqrclrfreez = 0. dqrcldfreez = 0. !--Computed according to !--Cpdry * Delta T * (1 + (Cpvap/Cpdry - 1) * qtot) = Lfusion * Delta q dqrfreez_max = MIN(0., ( temp(i) - RTT ) / RLMLT * RCPD & * ( 1. + RVTMP2 * qtot(i) )) !--The collision efficiency is assumed unity Eff_rain_ice = 1. coef_freez = gamma_freez * 3. / 4. / rho_rain / r_rain * Eff_rain_ice !--Exact version, which does not need a barrier because of !--the exponential decrease. dqifreez = qice(i) * ( EXP( - dtime * coef_freez * raincld(i) / precipfraccld(i) ) - 1. ) !--We add the part of rain water that freezes, limited by a temperature barrier !--This quantity is calculated assuming that the number of drop that freeze correspond to the number !--of crystals collected (and assuming uniform distributions of ice crystals and rain drops) !--The ice specific humidity that collide with rain is dqi = dNi 4/3 PI rho_ice r_ice**3 !--The rain that collide with ice is, similarly, dqr = dNr 4/3 PI rho_rain r_rain**3 !--The assumption above corresponds to dNi = dNr, i.e., !-- dqr = dqi * (4/3 PI rho_rain * r_rain**3) / (4/3 PI rho_ice * r_ice**3) !--Dry density [kg/m3] rho = pplay(i) / temp(i) / RD !--r_ice formula from Sun and Rikus (1999) r_ice = 1.e-6 * ( 45.8966 * ( qice(i) / cldfra(i) * rho * 1e3 )**0.2214 & + 0.7957 * ( qice(i) / cldfra(i) * rho * 1e3 )**0.2535 * ( temp(i) - RTT + 190. ) ) / 2. dqrcldfreez = dqifreez * rho_rain * r_rain**3. / ( rho_ice * r_ice**3. ) dqrcldfreez = MAX(dqrcldfreez, - raincld(i) / dhum_to_dflux(i)) dqrcldfreez = MAX(dqrcldfreez, dqrfreez_max) dqrtotfreez_step1 = dqrcldfreez !--Add tendencies !--The MAX is needed because in some cases, the flux can be slightly negative (numerical precision) qice(i) = qice(i) + dqifreez raincld(i) = MAX(0., raincld(i) + dqrcldfreez * dhum_to_dflux(i)) snowcld(i) = MAX(0., snowcld(i) - dqrcldfreez * dhum_to_dflux(i) - dqifreez * dhum_to_dflux(i)) temp(i) = temp(i) - dqrtotfreez_step1 * RLMLT / RCPD & / ( 1. + RVTMP2 * qtot(i) ) ENDIF !-- Second step immersion freezing of rain drops !-- with a homemade timeconstant depending on temperature dqrclrfreez = 0. dqrcldfreez = 0. dqrtotfreez_step2 = 0. !--Computed according to !--Cpdry * Delta T * (1 + (Cpvap/Cpdry - 1) * qtot) = Lfusion * Delta q dqrfreez_max = MIN(0., ( temp(i) - RTT ) / RLMLT * RCPD & * ( 1. + RVTMP2 * qtot(i) )) tau_freez = 1. / ( beta_freez & * EXP( - alpha_freez * ( temp(i) - temp_nowater ) / ( RTT - temp_nowater ) ) ) !--In clear air IF ( rainclr(i) > 0. ) THEN !--Exact solution of dqrain/dt = -qrain/tau_freez dqrclrfreez = rainclr(i) / dhum_to_dflux(i) * ( EXP( - dtime / tau_freez ) - 1. ) ENDIF !--In cloudy air IF ( raincld(i) > 0. ) THEN !--Exact solution of dqrain/dt = -qrain/tau_freez dqrcldfreez = raincld(i) / dhum_to_dflux(i) * ( EXP( - dtime / tau_freez ) - 1. ) ENDIF !--temperature barrier step 2 !--It is activated if the total is LOWER than the max !--because everything is negative dqrtotfreez_step2 = dqrclrfreez + dqrcldfreez IF ( dqrtotfreez_step2 < dqrfreez_max ) THEN !--We redistribute the max freezed rain keeping !--the clear/cloud partition of the freezing rain dqrclrfreez = dqrfreez_max * dqrclrfreez / dqrtotfreez_step2 dqrcldfreez = dqrfreez_max * dqrcldfreez / dqrtotfreez_step2 dqrtotfreez_step2 = dqrfreez_max ENDIF !--Add tendencies !--The MAX is needed because in some cases, the flux can be slightly negative (numerical precision) rainclr(i) = MAX(0., rainclr(i) + dqrclrfreez * dhum_to_dflux(i)) raincld(i) = MAX(0., raincld(i) + dqrcldfreez * dhum_to_dflux(i)) snowclr(i) = MAX(0., snowclr(i) - dqrclrfreez * dhum_to_dflux(i)) snowcld(i) = MAX(0., snowcld(i) - dqrcldfreez * dhum_to_dflux(i)) !--Temperature adjustment with the uptake of latent !--heat because of freezing temp(i) = temp(i) - dqrtotfreez_step2 * RLMLT / RCPD & / ( 1. + RVTMP2 * qtot(i) ) !--Diagnostic tendencies dqrtotfreez = dqrtotfreez_step1 + dqrtotfreez_step2 dqrfreez(i) = dqrtotfreez / dtime dqsfreez(i) = -(dqrtotfreez + dqifreez) / dtime ENDIF !--If the local flux of rain+snow in clear/cloudy air is lower than rain_int_min, !--we reduce the precipiration fraction in the clear/cloudy air so that the new !--local flux of rain+snow is equal to rain_int_min. !--Here, rain+snow is the gridbox-mean flux of precip. !--Therefore, (rain+snow)/precipfrac is the local flux of precip. !--If the local flux of precip is lower than rain_int_min, i.e., !-- (rain+snow)/precipfrac < rain_int_min , i.e., !-- (rain+snow)/rain_int_min < precipfrac , then we want to reduce !--the precip fraction to the equality, i.e., precipfrac = (rain+snow)/rain_int_min. !--Note that this is physically different than what is proposed in LTP thesis. precipfracclr(i) = MIN( precipfracclr(i), ( rainclr(i) + snowclr(i) ) / rain_int_min ) precipfraccld(i) = MIN( precipfraccld(i), ( raincld(i) + snowcld(i) ) / rain_int_min ) !--Calculate outputs rain(i) = rainclr(i) + raincld(i) snow(i) = snowclr(i) + snowcld(i) !--Diagnostics !--BEWARE this is indeed a diagnostic: this is an estimation from !--the value of the flux at the bottom interface of the mesh and !--and assuming an upstream numerical calculation !--If ok_radocond_snow is TRUE, then the diagnostic qsnowdiag is !--used for computing the total ice water content in the mesh !--for radiation only qraindiag(i) = ( rainclr(i) / ( pplay(i) / RD / temp(i) ) / rain_fallspeed_clr & + raincld(i) / ( pplay(i) / RD / temp(i) ) / rain_fallspeed_cld ) qsnowdiag(i) = ( snowclr(i) / ( pplay(i) / RD / temp(i) ) / snow_fallspeed_clr & + snowcld(i) / ( pplay(i) / RD / temp(i) ) / snow_fallspeed_cld ) ENDDO ! loop on klon END SUBROUTINE poprecip_postcld END MODULE lmdz_lscp_poprecip