MODULE phys_output_write_xios_mod USE phytrac_mod, ONLY: d_tr_cl, d_tr_th, d_tr_cv, d_tr_lessi_impa, & d_tr_lessi_nucl, d_tr_insc, d_tr_bcscav, d_tr_evapls, d_tr_ls, & d_tr_trsp, d_tr_sscav, d_tr_sat, d_tr_uscav, flux_tr_dry ! Author: Abderrahmane IDELKADI (original include file) ! Author: Laurent FAIRHEAD (transformation to module/subroutine) ! Author: Ulysse GERARD (effective implementation) ! Author: Arnaud DUROCHER (rewritten for XIOS only) CONTAINS ! ug Routine pour définir (lors du premier passage) ET sortir les variables SUBROUTINE phys_output_write_xios(itap, pdtphys, paprs, pphis, & pplay, lmax_th, aerosol_couple, & ok_ade, ok_aie, ok_volcan, ivap, iliq, isol, ok_sync, & ptconv, read_climoz, clevSTD, ptconvth, & d_u, d_t, qx, d_qx, zmasse, flag_aerosol, flag_aerosol_strat, ok_cdnc) ! This subroutine does the actual writing of diagnostics that were ! defined and initialised in phys_output_mod.F90 USE phys_output_write_xios_preprocess USE dimphy, ONLY: klon, klev, klevp1 USE mod_phys_lmdz_para, ONLY: is_north_pole_phy, is_south_pole_phy USE mod_grid_phy_lmdz, ONLY: nbp_lon USE time_phylmdz_mod, ONLY: itau_phy USE vertical_layers_mod, ONLY: ap, bp, aps, bps USE phys_output_ctrlout_mod, ONLY: o_phis, o_aire, is_ter, is_lic, is_oce, & o_longitude, o_latitude, & o_Ahyb, o_Bhyb, o_Ahyb_bounds, o_Bhyb_bounds, & o_Ahyb_mid, o_Bhyb_mid, o_Ahyb_mid_bounds, o_Bhyb_mid_bounds, & is_ave, is_sic, o_contfracATM, o_contfracOR, & o_flat, o_slp, o_ptstar, o_pt0, o_tsol, & o_t2m, o_t2m_min, o_t2m_max, & o_t2m_min_mon, o_t2m_max_mon, & o_q2m, o_ustar, o_u10m, o_v10m, & o_wind10m, o_wind10max, o_wind100m, o_gusts, o_sicf, & o_psol, o_mass, o_qsurf, o_qsol, & o_precip, o_rain_fall, o_rain_con, o_ndayrain, o_plul, o_pluc, o_plun, & o_snow, o_msnow, o_fsnow, o_evap, o_ep, & ! epmax_cape o_tops, o_tops0, o_topl, o_topl0, & o_SWupTOA, o_SWupTOAclr, o_SWupTOAcleanclr, o_SWdnTOA, & o_SWdnTOAclr, o_nettop, o_SWup200, & o_SWup200clr, o_SWdn200, o_SWdn200clr, & o_LWup200, o_LWup200clr, o_LWdn200, & o_LWdn200clr, o_sols, o_sols0, & o_soll, o_radsol, o_soll0, o_SWupSFC, & o_SWupSFCclr, o_SWupSFCcleanclr, o_SWdnSFC, o_SWdnSFCclr, o_SWdnSFCcleanclr, & o_LWupSFC, o_LWdnSFC, o_LWupSFCclr, & o_LWdnSFCclr, o_LWupTOAcleanclr, o_LWdnSFCcleanclr, o_bils, o_bils_diss, & o_bils_ec, o_bils_ech, o_bils_tke, o_bils_kinetic, & o_bils_latent, o_bils_enthalp, o_sens, & o_fder, o_ffonte, o_fqcalving, o_fqfonte, o_mrroli, o_runofflic, & o_taux, o_tauy, o_snowsrf, o_qsnow, & o_snowhgt, o_toice, o_sissnow, o_runoff, & o_albslw3, o_pourc_srf, o_fract_srf, & o_taux_srf, o_tauy_srf, o_tsol_srf, & o_evappot_srf, o_ustar_srf, o_u10m_srf, & o_v10m_srf, o_t2m_srf, o_evap_srf, & o_sens_srf, o_lat_srf, o_flw_srf, & o_fsw_srf, o_wbils_srf, o_wbilo_srf, & o_wevap_srf, o_wrain_srf, o_wsnow_srf, & o_tke_srf, o_tke_max_srf, o_dltpbltke_srf, o_wstar, & o_l_mixmin, & o_cdrm, o_cdrh, o_cldl, o_cldm, o_cldh, & o_cldt, o_JrNt, o_cldljn, o_cldmjn, & o_cldhjn, o_cldtjn, o_cldq, o_lwp, o_iwp, & o_ue, o_ve, o_uq, o_vq, o_cape, o_pbase, & o_uwat, o_vwat, & o_ptop, o_fbase, o_plcl, o_plfc, & o_wbeff, o_convoccur, o_cape_max, o_upwd, o_ep, & o_Mipsh, o_Ma, & o_dnwd, o_dnwd0, o_ftime_deepcv, o_ftime_con, o_mc, & o_prw, o_prlw, o_prsw, o_s_pblh, o_s_pblt, o_s_lcl, & o_s_therm, o_uSTDlevs, o_vSTDlevs, & o_wSTDlevs, o_zSTDlevs, o_qSTDlevs, & o_tSTDlevs, epsfra, o_t_oce_sic, & o_ale_bl, o_alp_bl, o_ale_wk, o_alp_wk, & o_dtvdf_x, o_dtvdf_w, o_dqvdf_x, o_dqvdf_w, & o_sens_x, o_sens_w, o_flat_x, o_flat_w, & o_delta_tsurf, & o_cdragh_x, o_cdragh_w, o_cdragm_x, o_cdragm_w, & o_kh, o_kh_x, o_kh_w, & o_ale, o_alp, o_cin, o_WAPE, o_wake_h, o_cv_gen, o_wake_dens, & o_wake_s, o_wake_deltat, o_wake_deltaq, & o_wake_omg, o_dtwak, o_dqwak, o_dqwak2d, o_Vprecip, & o_qtaa, o_Clwaa, & o_ftd, o_fqd, o_wdtrainA, o_wdtrainS, o_wdtrainM, & o_n2, o_s2, o_proba_notrig, & o_random_notrig, o_ale_bl_stat, & o_ale_bl_trig, o_alp_bl_det, & o_alp_bl_fluct_m, o_alp_bl_fluct_tke, & o_alp_bl_conv, o_alp_bl_stat, & o_slab_qflux, o_tslab, o_slab_bils, & o_slab_bilg, o_slab_sic, o_slab_tice, & o_slab_hdiff, o_slab_ekman, o_slab_gm, & o_weakinv, o_dthmin, o_cldtau, & o_cldemi, o_pr_con_l, o_pr_con_i, & o_pr_lsc_l, o_pr_lsc_i, o_re, o_fl, & o_rh2m, & o_qsat2m, o_tpot, o_tpote, o_SWnetOR, & o_LWdownOR, o_snowl, & o_solldown, o_dtsvdfo, o_dtsvdft, & o_dtsvdfg, o_dtsvdfi, o_z0m, o_z0h, o_od443aer, o_od550aer, & o_dryod550aer, o_od865aer, o_abs550aer, o_od550lt1aer, & o_sconcso4, o_sconcno3, o_sconcoa, o_sconcbc, & o_sconcss, o_sconcdust, o_concso4, o_concno3, & o_concoa, o_concbc, o_concss, o_concdust, & o_loadso4, o_loadoa, o_loadbc, o_loadss, & o_loaddust, o_loadno3, o_tausumaero, & o_drytausumaero, o_tausumaero_lw, & o_topswad, o_topswad0, o_solswad, o_solswad0, & o_toplwad, o_toplwad0, o_sollwad, o_sollwad0, & o_swtoaas_nat, o_swsrfas_nat, & o_swtoacs_nat, o_swtoaas_ant, & o_swsrfas_ant, o_swtoacs_ant, & o_swsrfcs_ant, o_swtoacf_nat, & o_swsrfcf_nat, o_swtoacf_ant, & o_swsrfcs_nat, o_swsrfcf_ant, & o_swtoacf_zero, o_swsrfcf_zero, & o_topswai, o_solswai, o_toplwai, o_sollwai, o_scdnc, & o_cldncl, o_reffclws, o_reffclwc, o_solbnd, o_stratomask, & o_cldnvi, o_lcc, o_lcc3d, o_lcc3dcon, & o_lcc3dstra, o_icc3dcon, o_icc3dstra, & o_cldicemxrat, o_cldwatmxrat, o_reffclwtop, o_ec550aer, & o_lwcon, o_iwcon, o_temp, o_theta, & o_ovapinit, o_ovap, o_oliq, o_ocond, o_geop, & o_vitu, o_vitv, o_vitw, o_pres, o_paprs, & o_zfull, o_zhalf, o_rneb, o_rnebjn, o_rnebcon, & o_rnebls, o_rneblsvol, o_rhum, o_ozone, o_ozone_light, & o_duphy, o_dtphy, o_dqphy, o_dqphy2d, o_dqlphy, o_dqlphy2d, & o_dqsphy, o_dqsphy2d, o_albe_srf, o_z0m_srf, o_z0h_srf, & o_ages_srf, o_snow_srf, o_alb1, o_alb2, o_tke, & o_tke_max, o_kz, o_kz_max, o_clwcon, & o_dtdyn, o_dqdyn, o_dqdyn2d, o_dqldyn, o_dqldyn2d, & o_dqsdyn, o_dqsdyn2d, o_dudyn, o_dvdyn, & o_dtcon, o_tntc, o_ducon, o_dvcon, & o_dqcon, o_dqcon2d, o_tnhusc, o_tnhusc, o_dtlsc, & o_dtlschr, o_dqlsc, o_dqlsc2d, o_beta_prec, & o_dtlscth, o_dtlscst, o_dqlscth, o_dqlscth2d, & o_dqlscst, o_dqlscst2d, o_plulth, o_plulst, & o_ptconvth, o_lmaxth, o_dtvdf, & o_dtdis, o_dqvdf, o_dqvdf2d, o_dteva, o_dqeva, o_dqeva2d, & o_ptconv, o_ratqs, o_dtthe, & o_duthe, o_dvthe, o_ftime_th, & o_f_th, o_e_th, o_w_th, o_q_th, & o_a_th, o_cloudth_sth, o_cloudth_senv, & o_cloudth_sigmath, o_cloudth_sigmaenv, & o_d_th, o_f0_th, o_zmax_th, & o_dqthe, o_dqthe2d, o_dtajs, o_dqajs, o_dqajs2d, o_dtswr, & o_dtsw0, o_dtlwr, o_dtlw0, o_dtec, & o_duvdf, o_dvvdf, o_duoro, o_dvoro, & o_dtoro, o_dulif, o_dvlif, o_dtlif, & o_du_gwd_hines, o_dv_gwd_hines, o_dthin, o_dqch4, o_rsu, & o_du_gwd_front, o_dv_gwd_front, & o_east_gwstress, o_west_gwstress, & o_rsd, o_rlu, o_rld, o_rsucs, o_rsdcs, o_rsucsaf, o_rsdcsaf, & o_rlucs, o_rldcs, o_tnt, o_tntr, & o_tntscpbl, o_tnhus, o_tnhusscpbl, & o_evu, o_h2o, o_mcd, o_dmc, o_ref_liq, & o_ref_ice, o_rsut4co2, o_rlut4co2, & o_rsutcs4co2, o_rlutcs4co2, o_rsu4co2, & o_rlu4co2, o_rsucs4co2, o_rlucs4co2, & o_rsd4co2, o_rld4co2, o_rsdcs4co2, & o_rldcs4co2, o_ta, o_zg, & o_hus, o_hur, o_ua, o_va, o_wap, & o_tro3, o_tro3_daylight, & o_uxv, o_vxq, o_vxT, o_wxq, o_vxphi, & o_wxT, o_uxu, o_vxv, o_TxT, o_trac, & o_dtr_vdf, o_dtr_the, o_dtr_con, & o_dtr_lessi_impa, o_dtr_lessi_nucl, & o_dtr_insc, o_dtr_bcscav, o_dtr_evapls, & o_dtr_ls, o_dtr_trsp, o_dtr_sscav, o_dtr_dry, & o_dtr_sat, o_dtr_uscav, o_trac_cum, o_du_gwd_rando, o_dv_gwd_rando, & o_ustr_gwd_hines, o_vstr_gwd_hines, o_ustr_gwd_rando, o_vstr_gwd_rando, & o_ustr_gwd_front, o_vstr_gwd_front, & o_sens_prec_liq_oce, o_sens_prec_liq_sic, & o_sens_prec_sol_oce, o_sens_prec_sol_sic, & o_lat_prec_liq_oce, o_lat_prec_liq_sic, & o_lat_prec_sol_oce, o_lat_prec_sol_sic, & o_sza, & ! Marine o_map_prop_hc, o_map_prop_hist, o_map_emis_hc, o_map_iwp_hc, & o_map_deltaz_hc, o_map_pcld_hc, o_map_tcld_hc, & o_map_emis_hist, o_map_iwp_hist, o_map_deltaz_hist, & o_map_emis_Cb, o_map_pcld_Cb, o_map_tcld_Cb, & o_map_emis_ThCi, o_map_pcld_ThCi, o_map_tcld_ThCi, & o_map_emis_Anv, o_map_pcld_Anv, o_map_tcld_Anv, & o_map_ntot, o_map_hc, o_map_hist, o_map_Cb, o_map_ThCi, o_map_Anv, & o_alt_tropo, & ! Tropopause o_p_tropopause, o_z_tropopause, o_t_tropopause, & o_col_O3_strato, o_col_O3_tropo, & !--interactive CO2 o_flx_co2_ocean, o_flx_co2_land, o_flx_co2_ff, o_flx_co2_bb USE phys_output_ctrlout_mod, ONLY: o_heat_volc, o_cool_volc !NL USE phys_state_var_mod, ONLY: heat_volc, cool_volc !NL USE phys_state_var_mod, ONLY: pctsrf, rain_fall, snow_fall, & qsol, z0m, z0h, fevap, agesno, & nday_rain, rain_con, snow_con, & topsw, toplw, toplw0, swup, swdn, & topsw0, swupc0, swdnc0, swup0, swdn0, SWup200, SWup200clr, & SWdn200, SWdn200clr, LWup200, LWup200clr, & LWdn200, LWdn200clr, solsw, solsw0, sollw, & radsol, swradcorr, sollw0, sollwdown, sollw, gustiness, & sollwdownclr, lwdnc0, lwdn0, ftsol, ustar, u10m, & v10m, pbl_tke, wake_delta_pbl_TKE, & delta_tsurf, & wstar, cape, ema_pcb, ema_pct, & ema_cbmf, Mipsh, Ma, fm_therm, ale_bl, alp_bl, ale, & alp, cin, wake_pe, wake_dens, wake_s, wake_deltat, & wake_deltaq, ftd, fqd, ale_bl_trig, albsol1, & ale_wake, ale_bl_stat, & rnebcon, wo, falb1, albsol2, coefh, clwcon0, & ratqs, entr_therm, zqasc, detr_therm, f0, & lwup, lwdn, lwupc0, lwup0, coefm, & swupp, lwupp, swup0p, lwup0p, swdnp, lwdnp, & swdn0p, lwdn0p, & nlevSTD, du_gwd_rando, du_gwd_front, & ulevSTD, vlevSTD, wlevSTD, philevSTD, qlevSTD, tlevSTD, & rhlevSTD, O3STD, O3daySTD, uvSTD, vqSTD, vTSTD, wqSTD, & vphiSTD, wTSTD, u2STD, v2STD, T2STD, missing_val_nf90 USE phys_local_var_mod, ONLY: zxfluxlat, slp, ptstar, pt0, zxtsol, & zt2m_cor, zq2m_cor, zu10m_cor, zv10m_cor, zqsat2m_cor, & t2m_min_mon, t2m_max_mon, evap, & l_mixmin, & zustar, zxqsurf, & rain_lsc, rain_num, snow_lsc, bils, sens, fder, & zxffonte, zxfqcalving, zxfqfonte, zxrunofflic, fluxu, & fluxv, zxsnow, qsnow, snowhgt, to_ice, & sissnow, runoff, albsol3_lic, evap_pot, & t2m, fluxt, fluxlat, fsollw, fsolsw, & wfbils, wfbilo, wfevap, wfrain, wfsnow, & cdragm, cdragh, cldl, cldm, & cldh, cldt, JrNt, & cldq, flwp, fiwp, ue, ve, uq, vq, & uwat, vwat, & plcl, plfc, wbeff, convoccur, upwd, dnwd, dnwd0, prw, prlw, prsw, & s_pblh, s_pblt, s_lcl, s_therm, & alp_wake, & d_t_vdf_x, d_t_vdf_w, d_q_vdf_x, d_q_vdf_w, & sens_x, sens_w, zxfluxlat_x, zxfluxlat_w, & cdragh_x, cdragh_w, cdragm_x, cdragm_w, & kh, kh_x, kh_w, & cv_gen, wake_h, & wake_omg, d_t_wake, d_q_wake, Vprecip, qtaa, Clw, & wdtrainA, wdtrainS, wdtrainM, n2, s2, proba_notrig, & random_notrig, & alp_bl_det, alp_bl_fluct_m, alp_bl_conv, & alp_bl_stat, alp_bl_fluct_tke, slab_wfbils, & weak_inversion, dthmin, cldtau, cldemi, & pmflxr, pmflxs, prfl, psfl, re, fl, rh2m, & tpote, tpot, d_ts, od443aer, od550aer, dryod550aer, & od865aer, abs550aer, od550lt1aer, sconcso4, sconcno3, & sconcoa, sconcbc, sconcss, sconcdust, concso4, concno3, & concoa, concbc, concss, concdust, loadso4, & loadoa, loadbc, loadss, loaddust, loadno3, tausum_aero, drytausum_aero, & topswad_aero, topswad0_aero, solswad_aero, & solswad0_aero, topsw_aero, solsw_aero, & topsw0_aero, solsw0_aero, topswcf_aero, & solswcf_aero, topswai_aero, solswai_aero, & toplwad_aero, toplwad0_aero, sollwad_aero, & sollwad0_aero, toplwai_aero, sollwai_aero, & scdnc, cldncl, reffclws, reffclwc, cldnvi, stratomask, & lcc, lcc3d, lcc3dcon, lcc3dstra, & icc3dcon, icc3dstra, zfice, reffclwtop, & ec550aer, flwc, fiwc, t_seri, theta, q_seri, & ql_seri, qs_seri, tr_seri, & zphi, u_seri, v_seri, omega, cldfra, & rneb, rneblsvol, zx_rh, d_t_dyn, & d_q_dyn, d_ql_dyn, d_qs_dyn, & d_q_dyn2d, d_ql_dyn2d, d_qs_dyn2d, & d_u_dyn, d_v_dyn, d_t_con, d_t_ajsb, d_t_ajs, & d_u_ajs, d_v_ajs, & d_u_con, d_v_con, d_q_con, d_q_ajs, d_t_lsc, & d_t_lwr, d_t_lw0, d_t_swr, d_t_sw0, & d_t_eva, d_q_lsc, beta_prec, d_t_lscth, & d_t_lscst, d_q_lscth, d_q_lscst, plul_th, & plul_st, d_t_vdf, d_t_diss, d_q_vdf, d_q_eva, & zw2, fraca, zmax_th, d_q_ajsb, d_t_ec, d_u_vdf, & d_v_vdf, d_u_oro, d_v_oro, d_t_oro, d_u_lif, & d_v_lif, d_t_lif, du_gwd_hines, dv_gwd_hines, d_t_hin, & dv_gwd_rando, dv_gwd_front, & east_gwstress, west_gwstress, & d_q_ch4, pmfd, pmfu, ref_liq, ref_ice, & ep, & ! epmax_cape p_tropopause, t_tropopause, z_tropopause USE carbon_cycle_mod, ONLY: fco2_ff, fco2_bb, fco2_land, fco2_ocean USE phys_output_var_mod, ONLY: vars_defined, snow_o, zfra_o, bils_diss, & bils_ec, bils_ech, bils_tke, bils_kinetic, bils_latent, bils_enthalp, & nfiles, & zustr_gwd_hines, zvstr_gwd_hines, zustr_gwd_rando, zvstr_gwd_rando, & zustr_gwd_front, zvstr_gwd_front, sza_o, & sens_prec_liq_o, sens_prec_sol_o, lat_prec_liq_o, lat_prec_sol_o, & cloudth_sth, cloudth_senv, cloudth_sigmath, cloudth_sigmaenv, & ! Marine map_prop_hc, map_prop_hist, & map_emis_hc, map_iwp_hc, map_deltaz_hc, & map_pcld_hc, map_tcld_hc, & map_emis_hist, map_iwp_hist, map_deltaz_hist, & map_ntot, map_hc, map_hist, & map_Cb, map_ThCi, map_Anv, & map_emis_Cb, map_pcld_Cb, map_tcld_Cb, & map_emis_ThCi, map_pcld_ThCi, map_tcld_ThCi, & map_emis_Anv, map_pcld_Anv, map_tcld_Anv, & alt_tropo, & !Ionela ok_4xCO2atm USE ocean_slab_mod, ONLY: nslay, tslab, slab_bilg, tice, seaice, & slab_ekman, slab_hdiff, slab_gm, dt_ekman, dt_hdiff, dt_gm, dt_qflux USE pbl_surface_mod, ONLY: snow USE indice_sol_mod, ONLY: nbsrf USE infotrac_phy, ONLY: nqtot, nqo, type_trac, tname, niadv USE geometry_mod, ONLY: cell_area, latitude_deg, longitude_deg USE surface_data, ONLY: type_ocean, version_ocean, ok_veget, ok_snow USE aero_mod, ONLY: naero_tot, id_STRAT_phy USE ioipsl, ONLY: histend, histsync USE iophy_xios, ONLY: histwrite_phy USE netcdf, ONLY: nf90_fill_real USE print_control_mod, ONLY: prt_level, lunout USE xios_interface, ONLY : CPP_XIOS_defined, xios_fieldgroup, xios_field, xios_get_handle, xios_add_child, xios_set_attr, xios_update_calendar, xios_setVar USE wxios, ONLY: wxios_closedef, missing_val, wxios_set_context USE vertical_layers_mod, ONLY: presnivs IMPLICIT NONE INCLUDE "clesphys.h" INCLUDE "thermcell.h" INCLUDE "compbl.h" INCLUDE "YOMCST.h" ! Input INTEGER :: itap, ivap, iliq, isol, read_climoz INTEGER, DIMENSION(klon) :: lmax_th LOGICAL :: aerosol_couple, ok_sync LOGICAL :: ok_ade, ok_aie, ok_volcan LOGICAL, DIMENSION(klon, klev) :: ptconv, ptconvth REAL :: pdtphys CHARACTER(LEN=4), DIMENSION(nlevSTD) :: clevSTD REAL, DIMENSION(klon, nlevSTD) :: zx_tmp_fi3d_STD REAL, DIMENSION(klon) :: pphis REAL, DIMENSION(klon, klev) :: pplay, d_u, d_t REAL, DIMENSION(klon, klev + 1) :: paprs REAL, DIMENSION(klon, klev, nqtot) :: qx, d_qx REAL, DIMENSION(klon, klev) :: zmasse INTEGER :: flag_aerosol_strat INTEGER :: flag_aerosol LOGICAL :: ok_cdnc, var_is_set ! Local INTEGER :: itau_w INTEGER :: i, iq, iiq, nsrf, k, ll, naero REAL, DIMENSION(klon) :: zx_tmp_fi2d, zpt_conv2d REAL, DIMENSION(klon, klev) :: zx_tmp_fi3d, zpt_conv REAL, DIMENSION(klon, klev + 1) :: zx_tmp_fi3d1 REAL, DIMENSION(klon, NSW) :: zx_tmp_fi3dsp CHARACTER(LEN=4) :: bb2 REAL, PARAMETER :: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2 ! REAL, PARAMETER :: missing_val=nf90_fill_real REAL, DIMENSION(klev + 1, 2) :: Ahyb_bounds, Bhyb_bounds REAL, DIMENSION(klev, 2) :: Ahyb_mid_bounds, Bhyb_mid_bounds INTEGER :: ilev INTEGER, SAVE :: kmax_100m !$omp THREADPRIVATE(kmax_100m) REAL, PARAMETER :: un_jour = 86400. INTEGER ISW CHARACTER*1 ch1 CHARACTER(len=3) :: isrf_str CHARACTER*20 varname TYPE(xios_fieldgroup) :: group_handle TYPE(xios_field) :: child REAL, DIMENSION(klon, klev) :: z, dz REAL, DIMENSION(klon) :: zrho, zt type(ctrl_out), SAVE :: o_wo_1 = ctrl_out(flag=0, name="wo_1", description = "Temporary", unit = "-", type_ecrit = "") type(ctrl_out), SAVE :: o_swradcorr = ctrl_out(flag=0, name="swradcorr", description = "Temporary", unit = "-", type_ecrit = "") if( .not. CPP_XIOS_defined ) call abort_physic("phys_output_write_xios", "This io backend can only be used when LMDZ is compiled with XIOS support",1 ) if( .not. ok_all_xml ) call abort_physic("phys_output_write_xios", "This io backend only supports ok_all_xml = .true.", 1) ! On calcul le nouveau tau: itau_w = itau_phy + itap CALL wxios_set_context IF (.NOT. vars_defined) THEN kmax_100m = 1 DO k = 1, klev - 1 IF (presnivs(k) .GT. 0.97*101325.) kmax_100m = k !--finding out max level for 100 m with a good margin ENDDO ENDIF Ahyb_bounds(1, 1) = 0. Ahyb_bounds(1, 2) = aps(1) Bhyb_bounds(1, 1) = 1. Bhyb_bounds(1, 2) = bps(1) DO ilev = 2, klev Ahyb_bounds(ilev, 1) = aps(ilev - 1) Ahyb_bounds(ilev, 2) = aps(ilev) Bhyb_bounds(ilev, 1) = bps(ilev - 1) Bhyb_bounds(ilev, 2) = bps(ilev) ENDDO Ahyb_bounds(klev + 1, 1) = aps(klev) Ahyb_bounds(klev + 1, 2) = 0. Bhyb_bounds(klev + 1, 1) = bps(klev) Bhyb_bounds(klev + 1, 2) = 0. DO ilev = 1, klev Ahyb_mid_bounds(ilev, 1) = ap(ilev) Ahyb_mid_bounds(ilev, 2) = ap(ilev + 1) Bhyb_mid_bounds(ilev, 1) = bp(ilev) Bhyb_mid_bounds(ilev, 2) = bp(ilev + 1) END DO !$omp MASTER IF (.not. vars_defined) THEN var_is_set = xios_setVar("pdtphys", pdtphys) var_is_set = xios_setVar("RG", RG) !wo_coeff = dobson_u*1e3/rmo3*rmd var_is_set = xios_setVar("dobson_u", dobson_u) var_is_set = xios_setVar("rmo3", rmo3) var_is_set = xios_setVar("rmd", rmd) var_is_set = xios_setVar("missing_val", missing_val) ENDIF IF (.not. vars_defined .and. ok_strataer) THEN !On ajoute les variables 3D traceurs par l interface fortran CALL xios_get_handle("fields_strataer_trac_3D", group_handle) ! On boucle sur les traceurs pour les ajouter au groupe puis fixer les attributs DO iq = nqo + 1, nqtot iiq = niadv(iq) varname = trim(tname(iiq)) WRITE (lunout, *) 'XIOS var=', nqo, iq, nqtot, varname CALL xios_add_child(group_handle, child, varname) CALL xios_set_attr(child, name=varname, unit="kg kg-1") varname = 'd'//trim(tname(iiq))//'_vdf' CALL xios_add_child(group_handle, child, varname) CALL xios_set_attr(child, name=varname, unit="kg kg-1 s-1") varname = 'd'//trim(tname(iiq))//'_the' CALL xios_add_child(group_handle, child, varname) CALL xios_set_attr(child, name=varname, unit="kg kg-1 s-1") varname = 'd'//trim(tname(iiq))//'_con' CALL xios_add_child(group_handle, child, varname) CALL xios_set_attr(child, name=varname, unit="kg kg-1 s-1") varname = 'd'//trim(tname(iiq))//'_lessi_impa' CALL xios_add_child(group_handle, child, varname) CALL xios_set_attr(child, name=varname, unit="kg kg-1 s-1") varname = 'd'//trim(tname(iiq))//'_lessi_nucl' CALL xios_add_child(group_handle, child, varname) CALL xios_set_attr(child, name=varname, unit="kg kg-1 s-1") varname = 'd'//trim(tname(iiq))//'_insc' CALL xios_add_child(group_handle, child, varname) CALL xios_set_attr(child, name=varname, unit="kg kg-1 s-1") varname = 'd'//trim(tname(iiq))//'_bcscav' CALL xios_add_child(group_handle, child, varname) CALL xios_set_attr(child, name=varname, unit="kg kg-1 s-1") varname = 'd'//trim(tname(iiq))//'_evapls' CALL xios_add_child(group_handle, child, varname) CALL xios_set_attr(child, name=varname, unit="kg kg-1 s-1") varname = 'd'//trim(tname(iiq))//'_ls' CALL xios_add_child(group_handle, child, varname) CALL xios_set_attr(child, name=varname, unit="kg kg-1 s-1") varname = 'd'//trim(tname(iiq))//'_trsp' CALL xios_add_child(group_handle, child, varname) CALL xios_set_attr(child, name=varname, unit="kg kg-1 s-1") varname = 'd'//trim(tname(iiq))//'_sscav' CALL xios_add_child(group_handle, child, varname) CALL xios_set_attr(child, name=varname, unit="kg kg-1 s-1") varname = 'd'//trim(tname(iiq))//'_sat' CALL xios_add_child(group_handle, child, varname) CALL xios_set_attr(child, name=varname, unit="kg kg-1 s-1") varname = 'd'//trim(tname(iiq))//'_uscav' CALL xios_add_child(group_handle, child, varname) CALL xios_set_attr(child, name=varname, unit="kg kg-1 s-1") ENDDO !On ajoute les variables 2D traceurs par l interface fortran CALL xios_get_handle("fields_strataer_trac_2D", group_handle) ! On boucle sur les traceurs pour les ajouter au groupe puis fixer les attributs DO iq = nqo + 1, nqtot iiq = niadv(iq) varname = 'cum'//trim(tname(iiq)) WRITE (lunout, *) 'XIOS var=', iq, nqtot, varname CALL xios_add_child(group_handle, child, varname) CALL xios_set_attr(child, name=varname, unit="kg m-2") varname = 'cumd'//trim(tname(iiq))//'_dry' CALL xios_add_child(group_handle, child, varname) CALL xios_set_attr(child, name=varname, unit="kg m-2 s-1") ENDDO ENDIF !$omp END MASTER !$omp MASTER IF (vars_defined) THEN IF (prt_level >= 10) then write (lunout, *) "phys_output_write: call xios_update_calendar, itau_w=", itau_w ENDIF CALL xios_update_calendar(itap) ENDIF !$omp END MASTER !$omp BARRIER ! On procède à l'écriture ou à la définition des nombreuses variables: !!! Champs 1D !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! if( vars_defined ) then CALL histwrite_phy(o_phis, pphis) zx_tmp_fi2d = cell_area IF (is_north_pole_phy) then zx_tmp_fi2d(1) = cell_area(1)/nbp_lon ENDIF IF (is_south_pole_phy) then zx_tmp_fi2d(klon) = cell_area(klon)/nbp_lon ENDIf CALL histwrite_phy(o_aire, zx_tmp_fi2d) ! DO i = 1, klon ! zx_tmp_fi2d(i) = pctsrf(i, is_ter) + pctsrf(i, is_lic) ! ENDDO ! CALL histwrite_phy(o_contfracATM, zx_tmp_fi2d) !CALL histwrite_phy(o_contfracOR, pctsrf(:, is_ter)) CALL histwrite_phy("R_ecc", R_ecc) CALL histwrite_phy("R_peri", R_peri) CALL histwrite_phy("R_incl", R_incl) CALL histwrite_phy("solaire", solaire) CALL histwrite_phy(o_Ahyb, ap) CALL histwrite_phy(o_Bhyb, bp) CALL histwrite_phy(o_Ahyb_bounds, Ahyb_bounds) CALL histwrite_phy(o_Bhyb_bounds, Bhyb_bounds) CALL histwrite_phy(o_Ahyb_mid, aps) CALL histwrite_phy(o_Bhyb_mid, bps) CALL histwrite_phy(o_Ahyb_mid_bounds, Ahyb_mid_bounds) CALL histwrite_phy(o_Bhyb_mid_bounds, Bhyb_mid_bounds) CALL histwrite_phy(o_longitude, longitude_deg) CALL histwrite_phy(o_latitude, latitude_deg) IF (ok_rrtm .and. iflag_rrtm .EQ. 1) THEN DO ISW = 1, NSW WRITE (ch1, '(i1)') ISW CALL histwrite_phy("rsun"//ch1, RSUN(ISW)) ENDDO ENDIF CALL histwrite_phy("co2_ppm", co2_ppm) CALL histwrite_phy("CH4_ppb", CH4_ppb) CALL histwrite_phy("N2O_ppb", N2O_ppb) CALL histwrite_phy("CFC11_ppt", CFC11_ppt) CALL histwrite_phy("CFC12_ppt", CFC12_ppt) !!! Champs 2D !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! Simulateur AIRS IF (ok_airs) then CALL histwrite_phy(o_alt_tropo, alt_tropo) CALL histwrite_phy(o_map_prop_hc, map_prop_hc) CALL histwrite_phy(o_map_prop_hist, map_prop_hist) CALL histwrite_phy(o_map_emis_hc, map_emis_hc) CALL histwrite_phy(o_map_iwp_hc, map_iwp_hc) CALL histwrite_phy(o_map_deltaz_hc, map_deltaz_hc) CALL histwrite_phy(o_map_pcld_hc, map_pcld_hc) CALL histwrite_phy(o_map_tcld_hc, map_tcld_hc) CALL histwrite_phy(o_map_emis_hist, map_emis_hist) CALL histwrite_phy(o_map_iwp_hist, map_iwp_hist) CALL histwrite_phy(o_map_deltaz_hist, map_deltaz_hist) CALL histwrite_phy(o_map_ntot, map_ntot) CALL histwrite_phy(o_map_hc, map_hc) CALL histwrite_phy(o_map_hist, map_hist) CALL histwrite_phy(o_map_Cb, map_Cb) CALL histwrite_phy(o_map_ThCi, map_ThCi) CALL histwrite_phy(o_map_Anv, map_Anv) CALL histwrite_phy(o_map_emis_Cb, map_emis_Cb) CALL histwrite_phy(o_map_pcld_Cb, map_pcld_Cb) CALL histwrite_phy(o_map_tcld_Cb, map_tcld_Cb) CALL histwrite_phy(o_map_emis_ThCi, map_emis_ThCi) CALL histwrite_phy(o_map_pcld_ThCi, map_pcld_ThCi) CALL histwrite_phy(o_map_tcld_ThCi, map_tcld_ThCi) CALL histwrite_phy(o_map_emis_Anv, map_emis_Anv) CALL histwrite_phy(o_map_pcld_Anv, map_pcld_Anv) CALL histwrite_phy(o_map_tcld_Anv, map_tcld_Anv) ENDIF CALL histwrite_phy(o_sza, sza_o) CALL histwrite_phy(o_flat, zxfluxlat) CALL histwrite_phy(o_ptstar, ptstar) CALL histwrite_phy(o_pt0, pt0) CALL histwrite_phy(o_slp, slp) CALL histwrite_phy(o_tsol, zxtsol) CALL histwrite_phy(o_t2m, zt2m_cor) !CALL histwrite_phy(o_t2m_min, zt2m_cor) !CALL histwrite_phy(o_t2m_max, zt2m_cor) CALL histwrite_phy(o_t2m_max_mon, t2m_max_mon) CALL histwrite_phy(o_t2m_min_mon, t2m_min_mon) ! DO i = 1, klon ! zx_tmp_fi2d(i) = SQRT(zu10m_cor(i)*zu10m_cor(i) + zv10m_cor(i)*zv10m_cor(i)) ! ENDDO ! CALL histwrite_phy(o_wind10m, zx_tmp_fi2d) ! DO i = 1, klon ! zx_tmp_fi2d(i) = SQRT(zu10m_cor(i)*zu10m_cor(i) + zv10m_cor(i)*zv10m_cor(i)) ! ENDDO ! CALL histwrite_phy(o_wind10max, zx_tmp_fi2d) CALL histwrite_phy(o_gusts, gustiness) missing_val = missing_val_nf90 DO k = 1, kmax_100m !--we could stop much lower zrho(:) = pplay(:, k)/t_seri(:, k)/RD ! air density in kg/m3 dz(:, k) = (paprs(:, k) - paprs(:, k + 1))/zrho(:)/RG ! layer thickness in m IF (k == 1) THEN z(:, 1) = (paprs(:, 1) - pplay(:, 1))/zrho(:)/RG ! altitude middle of first layer in m zt(:) = dz(:, 1) ! altitude top of first layer in m ELSE z(:, k) = zt(:) + (paprs(:, k) - pplay(:, k))/zrho(:)/RG ! altitude middle of layer k in m zt(:) = zt(:) + dz(:, k) ! altitude top of layer k in m ENDIF ENDDO zx_tmp_fi2d(:) = missing_val DO k = 1, kmax_100m - 1 !--we could stop much lower DO i = 1, klon IF (z(i, k) .LT. 100. .AND. z(i, k + 1) .GE. 100.) THEN zx_tmp_fi2d(i) = SQRT((u_seri(i, k) + (100.-z(i, k))/(z(i, k + 1) - z(i, k))*(u_seri(i, k + 1) - u_seri(i, k)))**2.0 + & (v_seri(i, k) + (100.-z(i, k))/(z(i, k + 1) - z(i, k))*(v_seri(i, k + 1) - v_seri(i, k)))**2.0) ENDIF ENDDO ENDDO CALL histwrite_phy(o_wind100m, zx_tmp_fi2d) !CALL histwrite_phy(o_sicf, pctsrf(1:klon, is_sic)) CALL histwrite_phy(o_q2m, zq2m_cor) CALL histwrite_phy(o_ustar, zustar) CALL histwrite_phy(o_u10m, zu10m_cor) CALL histwrite_phy(o_v10m, zv10m_cor) CALL histwrite_phy(o_psol, paprs(1:klon, 1)) CALL histwrite_phy(o_mass, zmasse) CALL histwrite_phy(o_qsurf, zxqsurf) IF (.NOT. ok_veget) THEN CALL histwrite_phy(o_qsol, qsol) ENDIF ! DO i = 1, klon ! zx_tmp_fi2d(i) = rain_fall(i) + snow_fall(i) ! ENDDO ! CALL histwrite_phy(o_precip, zx_tmp_fi2d) CALL histwrite_phy(o_rain_fall, rain_fall) CALL histwrite_phy(o_ndayrain, nday_rain) CALL histwrite_phy(o_ep, ep) ! DO i = 1, klon ! zx_tmp_fi2d(i) = rain_lsc(i) + snow_lsc(i) ! ENDDO ! CALL histwrite_phy(o_plul, zx_tmp_fi2d) CALL histwrite_phy(o_plul, rain_lsc) CALL histwrite_phy(o_plun, rain_num) ! DO i = 1, klon ! zx_tmp_fi2d(i) = rain_con(i) + snow_con(i) ! ENDDO ! CALL histwrite_phy(o_pluc, zx_tmp_fi2d) CALL histwrite_phy(o_pluc, snow_con) CALL histwrite_phy(o_rain_con, rain_con) CALL histwrite_phy(o_snow, snow_fall) CALL histwrite_phy(o_msnow, zxsnow) CALL histwrite_phy(o_fsnow, zfra_o) CALL histwrite_phy(o_evap, evap) CALL histwrite_phy(o_topl, toplw) CALL histwrite_phy(o_topl0, toplw0) ! zx_tmp_fi2d = topsw*swradcorr ! CALL histwrite_phy(o_tops, zx_tmp_fi2d) ! zx_tmp_fi2d = topsw0*swradcorr ! CALL histwrite_phy(o_tops0, zx_tmp_fi2d) ! zx_tmp_fi2d(:) = swup(:, klevp1)*swradcorr(:) ! CALL histwrite_phy(o_SWupTOA, zx_tmp_fi2d) ! zx_tmp_fi2d(:) = swup0(:, klevp1)*swradcorr(:) ! CALL histwrite_phy(o_SWupTOAclr, zx_tmp_fi2d) ! zx_tmp_fi2d(:) = swupc0(:, klevp1)*swradcorr(:) ! CALL histwrite_phy(o_SWupTOAcleanclr, zx_tmp_fi2d) ! zx_tmp_fi2d(:) = swdn(:, klevp1)*swradcorr(:) ! CALL histwrite_phy(o_SWdnTOA, zx_tmp_fi2d) ! zx_tmp_fi2d(:) = swdn0(:, klevp1)*swradcorr(:) ! CALL histwrite_phy(o_SWdnTOAclr, zx_tmp_fi2d) ! zx_tmp_fi2d(:) = topsw(:)*swradcorr(:) - toplw(:) ! CALL histwrite_phy(o_nettop, zx_tmp_fi2d) ! zx_tmp_fi2d = SWup200*swradcorr ! CALL histwrite_phy(o_SWup200, zx_tmp_fi2d) ! zx_tmp_fi2d = SWup200clr*swradcorr ! CALL histwrite_phy(o_SWup200clr, zx_tmp_fi2d) ! zx_tmp_fi2d = SWdn200*swradcorr ! CALL histwrite_phy(o_SWdn200, zx_tmp_fi2d) ! zx_tmp_fi2d = SWdn200clr*swradcorr ! CALL histwrite_phy(o_SWdn200clr, zx_tmp_fi2d) ! zx_tmp_fi2d = solsw*swradcorr ! CALL histwrite_phy(o_sols, zx_tmp_fi2d) ! zx_tmp_fi2d = solsw0*swradcorr ! CALL histwrite_phy(o_sols0, zx_tmp_fi2d) ! zx_tmp_fi2d(:) = swup(:, 1)*swradcorr(:) ! CALL histwrite_phy(o_SWupSFC, zx_tmp_fi2d) ! zx_tmp_fi2d(:) = swup0(:, 1)*swradcorr(:) ! CALL histwrite_phy(o_SWupSFCclr, zx_tmp_fi2d) ! zx_tmp_fi2d(:) = swupc0(:, 1)*swradcorr(:) ! CALL histwrite_phy(o_SWupSFCcleanclr, zx_tmp_fi2d) ! zx_tmp_fi2d(:) = swdn(:, 1)*swradcorr(:) ! CALL histwrite_phy(o_SWdnSFC, zx_tmp_fi2d) ! zx_tmp_fi2d(:) = swdn0(:, 1)*swradcorr(:) ! CALL histwrite_phy(o_SWdnSFCclr, zx_tmp_fi2d) ! zx_tmp_fi2d(:) = swdnc0(:, 1)*swradcorr(:) ! CALL histwrite_phy(o_SWdnSFCcleanclr, zx_tmp_fi2d) CALL histwrite_phy(o_swradcorr, swradcorr) CALL histwrite_phy(o_tops, topsw) CALL histwrite_phy(o_tops0, topsw0) CALL histwrite_phy(o_SWupTOA, swup(:, klevp1)) CALL histwrite_phy(o_SWupTOAclr, swup0(:, klevp1)) CALL histwrite_phy(o_SWupTOAcleanclr, swupc0(:, klevp1)) CALL histwrite_phy(o_SWdnTOA, swdn(:, klevp1)) CALL histwrite_phy(o_SWdnTOAclr, swdn0(:, klevp1)) CALL histwrite_phy(o_SWup200, SWup200) CALL histwrite_phy(o_SWup200clr, SWup200clr) CALL histwrite_phy(o_SWdn200, SWdn200) CALL histwrite_phy(o_SWdn200clr, SWdn200clr) CALL histwrite_phy(o_SWupSFC, swup(:, 1)) CALL histwrite_phy(o_SWupSFCclr, swup0(:, 1)) CALL histwrite_phy(o_SWupSFCcleanclr, swupc0(:, 1)) CALL histwrite_phy(o_SWdnSFC, swdn(:, 1)) CALL histwrite_phy(o_SWdnSFCclr, swdn0(:, 1)) CALL histwrite_phy(o_SWdnSFCcleanclr, swdnc0(:, 1)) CALL histwrite_phy(o_LWup200, LWup200) CALL histwrite_phy(o_LWup200clr, LWup200clr) CALL histwrite_phy(o_LWdn200, LWdn200) CALL histwrite_phy(o_LWdn200clr, LWdn200clr) CALL histwrite_phy(o_sols, solsw) CALL histwrite_phy(o_sols0, solsw0) CALL histwrite_phy(o_soll, sollw) CALL histwrite_phy(o_soll0, sollw0) CALL histwrite_phy(o_radsol, radsol) CALL histwrite_phy(o_LWdnSFC, sollwdown) !sollwdownclr(1:klon) = -1.*lwdn0(1:klon, 1) !zx_tmp_fi2d(1:klon) = sollwdownclr(1:klon) - sollw0(1:klon) !CALL histwrite_phy(o_LWupSFCclr, zx_tmp_fi2d) !CALL histwrite_phy(o_LWdnSFCclr, sollwdownclr) CALL histwrite_phy(o_LWdnSFCclr, lwdn0(1:klon, 1)) CALL histwrite_phy(o_LWupTOAcleanclr, lwupc0(:, klevp1)) ! zx_tmp_fi2d(:) = -1.*lwdnc0(:, 1) ! CALL histwrite_phy(o_LWdnSFCcleanclr, zx_tmp_fi2d) CALL histwrite_phy(o_LWdnSFCcleanclr, lwdnc0(:, 1)) CALL histwrite_phy(o_bils, bils) CALL histwrite_phy(o_bils_diss, bils_diss) CALL histwrite_phy(o_bils_ec, bils_ec) CALL histwrite_phy(o_bils_ech, bils_ech) CALL histwrite_phy(o_bils_tke, bils_tke) CALL histwrite_phy(o_bils_kinetic, bils_kinetic) CALL histwrite_phy(o_bils_latent, bils_latent) CALL histwrite_phy(o_bils_enthalp, bils_enthalp) ! zx_tmp_fi2d(1:klon) = -1*sens(1:klon) ! CALL histwrite_phy(o_sens, zx_tmp_fi2d) CALL histwrite_phy(o_sens, sens(1:klon)) CALL histwrite_phy(o_fder, fder) CALL histwrite_phy(o_ffonte, zxffonte) CALL histwrite_phy(o_fqcalving, zxfqcalving) CALL histwrite_phy(o_fqfonte, zxfqfonte) ! zx_tmp_fi2d(1:klon) = (zxfqfonte(1:klon) + rain_fall(1:klon))*pctsrf(1:klon, is_lic) ! CALL histwrite_phy(o_mrroli, zx_tmp_fi2d) CALL histwrite_phy(o_runofflic, zxrunofflic) ! zx_tmp_fi2d = 0. ! DO nsrf = 1, nbsrf ! zx_tmp_fi2d(:) = zx_tmp_fi2d(:) + pctsrf(:, nsrf)*fluxu(:, 1, nsrf) ! ENDDO ! CALL histwrite_phy(o_taux, zx_tmp_fi2d) ! zx_tmp_fi2d = 0. ! DO nsrf = 1, nbsrf ! zx_tmp_fi2d(:) = zx_tmp_fi2d(:) + pctsrf(:, nsrf)*fluxv(:, 1, nsrf) ! ENDDO ! CALL histwrite_phy(o_tauy, zx_tmp_fi2d) IF (ok_snow) THEN CALL histwrite_phy(o_snowsrf, snow_o) CALL histwrite_phy(o_qsnow, qsnow) CALL histwrite_phy(o_snowhgt, snowhgt) CALL histwrite_phy(o_toice, to_ice) CALL histwrite_phy(o_sissnow, sissnow) CALL histwrite_phy(o_runoff, runoff) CALL histwrite_phy(o_albslw3, albsol3_lic) ENDIF DO nsrf = 1, nbsrf ! zx_tmp_fi2d(1:klon) = pctsrf(1:klon, nsrf)*100. ! CALL histwrite_phy(o_pourc_srf(nsrf), zx_tmp_fi2d) CALL histwrite_phy(o_fract_srf(nsrf), pctsrf(1:klon, nsrf)) CALL histwrite_phy(o_taux_srf(nsrf), fluxu(1:klon, 1, nsrf)) CALL histwrite_phy(o_tauy_srf(nsrf), fluxv(1:klon, 1, nsrf)) CALL histwrite_phy(o_tsol_srf(nsrf), ftsol(1:klon, nsrf)) CALL histwrite_phy(o_evappot_srf(nsrf), evap_pot(1:klon, nsrf)) CALL histwrite_phy(o_ustar_srf(nsrf), ustar(1:klon, nsrf)) CALL histwrite_phy(o_u10m_srf(nsrf), u10m(1:klon, nsrf)) CALL histwrite_phy(o_v10m_srf(nsrf), v10m(1:klon, nsrf)) CALL histwrite_phy(o_t2m_srf(nsrf), t2m(1:klon, nsrf)) CALL histwrite_phy(o_evap_srf(nsrf), fevap(1:klon, nsrf)) CALL histwrite_phy(o_sens_srf(nsrf), fluxt(1:klon, 1, nsrf)) CALL histwrite_phy(o_lat_srf(nsrf), fluxlat(1:klon, nsrf)) CALL histwrite_phy(o_flw_srf(nsrf), fsollw(1:klon, nsrf)) CALL histwrite_phy(o_fsw_srf(nsrf), fsolsw(1:klon, nsrf)) CALL histwrite_phy(o_wbils_srf(nsrf), wfbils(1:klon, nsrf)) CALL histwrite_phy(o_wbilo_srf(nsrf), wfbilo(1:klon, nsrf)) CALL histwrite_phy(o_wevap_srf(nsrf), wfevap(1:klon, nsrf)) CALL histwrite_phy(o_wrain_srf(nsrf), wfrain(1:klon, nsrf)) CALL histwrite_phy(o_wsnow_srf(nsrf), wfsnow(1:klon, nsrf)) IF (iflag_pbl > 1) THEN CALL histwrite_phy(o_tke_srf(nsrf), pbl_tke(:, 1:klev, nsrf)) CALL histwrite_phy(o_l_mixmin(nsrf), l_mixmin(:, 1:klev, nsrf)) !CALL histwrite_phy(o_tke_max_srf(nsrf), pbl_tke(:, 1:klev, nsrf)) ENDIF IF (iflag_pbl > 1 .AND. iflag_wake >= 1 .AND. iflag_pbl_split >= 1) THEN CALL histwrite_phy(o_dltpbltke_srf(nsrf), wake_delta_pbl_TKE(:, 1:klev, nsrf)) ENDIF ENDDO CALL histwrite_phy(o_sens_prec_liq_oce, sens_prec_liq_o(1:klon, 1)) CALL histwrite_phy(o_sens_prec_liq_sic, sens_prec_liq_o(1:klon, 2)) CALL histwrite_phy(o_sens_prec_sol_oce, sens_prec_sol_o(1:klon, 1)) CALL histwrite_phy(o_sens_prec_sol_sic, sens_prec_sol_o(1:klon, 2)) CALL histwrite_phy(o_lat_prec_liq_oce, lat_prec_liq_o(1:klon, 1)) CALL histwrite_phy(o_lat_prec_liq_sic, lat_prec_liq_o(1:klon, 2)) CALL histwrite_phy(o_lat_prec_sol_oce, lat_prec_sol_o(1:klon, 1)) CALL histwrite_phy(o_lat_prec_sol_sic, lat_prec_sol_o(1:klon, 2)) DO nsrf = 1, nbsrf + 1 CALL histwrite_phy(o_wstar(nsrf), wstar(1:klon, nsrf)) ENDDO CALL histwrite_phy(o_cdrm, cdragm) CALL histwrite_phy(o_cdrh, cdragh) CALL histwrite_phy(o_cldl, cldl) CALL histwrite_phy(o_cldm, cldm) CALL histwrite_phy(o_cldh, cldh) CALL histwrite_phy(o_cldt, cldt) CALL histwrite_phy(o_JrNt, JrNt) ! zx_tmp_fi2d = cldl*JrNt ! CALL histwrite_phy(o_cldljn, zx_tmp_fi2d) ! zx_tmp_fi2d = cldm*JrNt ! CALL histwrite_phy(o_cldmjn, zx_tmp_fi2d) ! zx_tmp_fi2d = cldh*JrNt ! CALL histwrite_phy(o_cldhjn, zx_tmp_fi2d) ! zx_tmp_fi2d = cldt*JrNt ! CALL histwrite_phy(o_cldtjn, zx_tmp_fi2d) CALL histwrite_phy(o_cldq, cldq) CALL histwrite_phy(o_lwp, flwp(1:klon)) CALL histwrite_phy(o_iwp, fiwp(1:klon)) CALL histwrite_phy(o_ue, ue) CALL histwrite_phy(o_ve, ve) CALL histwrite_phy(o_uq, uq) CALL histwrite_phy(o_vq, vq) CALL histwrite_phy(o_uwat, uwat) CALL histwrite_phy(o_vwat, vwat) IF (iflag_con .GE. 3) THEN ! sb CALL histwrite_phy(o_cape, cape) CALL histwrite_phy(o_pbase, ema_pcb) CALL histwrite_phy(o_ptop, ema_pct) CALL histwrite_phy(o_fbase, ema_cbmf) IF (iflag_con /= 30) THEN CALL histwrite_phy(o_plcl, plcl) CALL histwrite_phy(o_plfc, plfc) CALL histwrite_phy(o_wbeff, wbeff) CALL histwrite_phy(o_convoccur, convoccur) ENDIF !CALL histwrite_phy(o_cape_max, cape) CALL histwrite_phy(o_upwd, upwd) CALL histwrite_phy(o_Ma, Ma) CALL histwrite_phy(o_dnwd, dnwd) CALL histwrite_phy(o_dnwd0, dnwd0) !! The part relative to the frequency of occurence of convection !! is now grouped with the part relative to thermals and shallow !! convection (output of the 3 fields: ftime_deepcv, ftime_th and !! ftime_con). ! IF (iflag_thermals >= 1) THEN ! zx_tmp_fi3d = -dnwd + dnwd0 + upwd + fm_therm(:, 1:klev) ! ELSE ! zx_tmp_fi3d = -dnwd + dnwd0 + upwd ! ENDIF ! CALL histwrite_phy(o_mc, zx_tmp_fi3d) ENDIF !iflag_con .GE. 3 CALL histwrite_phy(o_prw, prw) CALL histwrite_phy(o_prlw, prlw) CALL histwrite_phy(o_prsw, prsw) CALL histwrite_phy(o_s_pblh, s_pblh) CALL histwrite_phy(o_s_pblt, s_pblt) CALL histwrite_phy(o_s_lcl, s_lcl) CALL histwrite_phy(o_s_therm, s_therm) ll = 0 DO k = 1, nlevSTD bb2 = clevSTD(k) IF (bb2 .EQ. "850" .OR. bb2 .EQ. "700" .OR. & bb2 .EQ. "500" .OR. bb2 .EQ. "200" .OR. & bb2 .EQ. "100" .OR. & bb2 .EQ. "50" .OR. bb2 .EQ. "10") THEN ll = ll + 1 CALL histwrite_phy(o_uSTDlevs(ll), ulevSTD(:, k)) CALL histwrite_phy(o_vSTDlevs(ll), vlevSTD(:, k)) CALL histwrite_phy(o_wSTDlevs(ll), wlevSTD(:, k)) CALL histwrite_phy(o_zSTDlevs(ll), philevSTD(:, k)) CALL histwrite_phy(o_qSTDlevs(ll), qlevSTD(:, k)) CALL histwrite_phy(o_tSTDlevs(ll), tlevSTD(:, k)) ENDIF !(bb2.EQ."850".OR.bb2.EQ."700".OR. ENDDO if( epsfra /= 1.0E-05 ) call abort_physic("phys_output_write_xios", "epsfra changed and is not synchronized with field_def_lmdz.xml", 1) ! DO i = 1, klon ! IF (pctsrf(i, is_oce) .GT. epsfra .OR. & ! pctsrf(i, is_sic) .GT. epsfra) THEN ! zx_tmp_fi2d(i) = (ftsol(i, is_oce)*pctsrf(i, is_oce) + & ! ftsol(i, is_sic)*pctsrf(i, is_sic))/ & ! (pctsrf(i, is_oce) + pctsrf(i, is_sic)) ! ELSE ! zx_tmp_fi2d(i) = 273.15 ! ENDIF ! ENDDO ! CALL histwrite_phy(o_t_oce_sic, zx_tmp_fi2d) ! Couplage convection-couche limite IF (iflag_con .GE. 3) THEN IF (iflag_coupl >= 1) THEN CALL histwrite_phy(o_ale_bl, ale_bl) CALL histwrite_phy(o_alp_bl, alp_bl) ENDIF !iflag_coupl>=1 ENDIF !(iflag_con.GE.3) ! Wakes IF (iflag_con .EQ. 3) THEN CALL histwrite_phy(o_Mipsh, Mipsh) IF (iflag_wake >= 1) THEN CALL histwrite_phy(o_ale_wk, ale_wake) CALL histwrite_phy(o_alp_wk, alp_wake) IF (iflag_pbl_split >= 1) THEN ! zx_tmp_fi3d(1:klon, 1:klev) = d_t_vdf_x(1:klon, 1:klev)/pdtphys ! CALL histwrite_phy(o_dtvdf_x, zx_tmp_fi3d) ! zx_tmp_fi3d(1:klon, 1:klev) = d_t_vdf_w(1:klon, 1:klev)/pdtphys ! CALL histwrite_phy(o_dtvdf_w, zx_tmp_fi3d) ! zx_tmp_fi3d(1:klon, 1:klev) = d_q_vdf_x(1:klon, 1:klev)/pdtphys ! CALL histwrite_phy(o_dqvdf_x, zx_tmp_fi3d) ! zx_tmp_fi3d(1:klon, 1:klev) = d_q_vdf_w(1:klon, 1:klev)/pdtphys ! CALL histwrite_phy(o_dqvdf_w, zx_tmp_fi3d) CALL histwrite_phy(o_dtvdf_x, d_t_vdf_x(1:klon, 1:klev)) CALL histwrite_phy(o_dtvdf_w, d_t_vdf_w(1:klon, 1:klev)) CALL histwrite_phy(o_dqvdf_x, d_q_vdf_x(1:klon, 1:klev)) CALL histwrite_phy(o_dqvdf_w, d_q_vdf_w(1:klon, 1:klev)) CALL histwrite_phy(o_sens_x, sens_x) CALL histwrite_phy(o_sens_w, sens_w) CALL histwrite_phy(o_flat_x, zxfluxlat_x) CALL histwrite_phy(o_flat_w, zxfluxlat_w) CALL histwrite_phy(o_delta_tsurf, delta_tsurf) CALL histwrite_phy(o_cdragh_x, cdragh_x) CALL histwrite_phy(o_cdragh_w, cdragh_w) CALL histwrite_phy(o_cdragm_x, cdragm_x) CALL histwrite_phy(o_cdragm_w, cdragm_w) CALL histwrite_phy(o_kh, kh) CALL histwrite_phy(o_kh_x, kh_x) CALL histwrite_phy(o_kh_w, kh_w) ENDIF ! (iflag_pbl_split>=1) CALL histwrite_phy(o_ale, ale) CALL histwrite_phy(o_alp, alp) CALL histwrite_phy(o_cin, cin) CALL histwrite_phy(o_WAPE, wake_pe) CALL histwrite_phy(o_cv_gen, cv_gen) CALL histwrite_phy(o_wake_h, wake_h) CALL histwrite_phy(o_wake_dens, wake_dens) CALL histwrite_phy(o_wake_s, wake_s) CALL histwrite_phy(o_wake_deltat, wake_deltat) CALL histwrite_phy(o_wake_deltaq, wake_deltaq) CALL histwrite_phy(o_wake_omg, wake_omg) ! zx_tmp_fi3d(1:klon, 1:klev) = d_t_wake(1:klon, 1:klev) & ! /pdtphys ! CALL histwrite_phy(o_dtwak, zx_tmp_fi3d) ! zx_tmp_fi3d(1:klon, 1:klev) = d_q_wake(1:klon, 1:klev)/pdtphys ! CALL histwrite_phy(o_dqwak, zx_tmp_fi3d) CALL histwrite_phy(o_dtwak, d_t_wake(1:klon, 1:klev)) CALL histwrite_phy(o_dqwak, d_q_wake(1:klon, 1:klev)) zx_tmp_fi3d(1:klon, 1:klev) = d_q_wake(1:klon, 1:klev)/pdtphys CALL water_int(klon, klev, zx_tmp_fi3d, zmasse, zx_tmp_fi2d) CALL histwrite_phy(o_dqwak2d, zx_tmp_fi2d) ENDIF ! iflag_wake>=1 CALL histwrite_phy(o_ftd, ftd) CALL histwrite_phy(o_fqd, fqd) ENDIF !(iflag_con.EQ.3) IF (iflag_con .EQ. 3 .OR. iflag_con .EQ. 30) THEN ! sortie RomP convection descente insaturee iflag_con=30 ! etendue a iflag_con=3 (jyg) CALL histwrite_phy(o_Vprecip, Vprecip) CALL histwrite_phy(o_qtaa, qtaa) CALL histwrite_phy(o_clwaa, clw) CALL histwrite_phy(o_wdtrainA, wdtrainA) CALL histwrite_phy(o_wdtrainS, wdtrainS) CALL histwrite_phy(o_wdtrainM, wdtrainM) ENDIF !(iflag_con.EQ.3.or.iflag_con.EQ.30) IF (iflag_trig_bl >= 1) THEN CALL histwrite_phy(o_n2, n2) CALL histwrite_phy(o_s2, s2) CALL histwrite_phy(o_proba_notrig, proba_notrig) CALL histwrite_phy(o_random_notrig, random_notrig) CALL histwrite_phy(o_ale_bl_stat, ale_bl_stat) CALL histwrite_phy(o_ale_bl_trig, ale_bl_trig) ENDIF !(iflag_trig_bl>=1) IF (iflag_clos_bl >= 1) THEN CALL histwrite_phy(o_alp_bl_det, alp_bl_det) CALL histwrite_phy(o_alp_bl_fluct_m, alp_bl_fluct_m) CALL histwrite_phy(o_alp_bl_fluct_tke, & alp_bl_fluct_tke) CALL histwrite_phy(o_alp_bl_conv, alp_bl_conv) CALL histwrite_phy(o_alp_bl_stat, alp_bl_stat) ENDIF !(iflag_clos_bl>=1) ! Output of slab ocean variables IF (type_ocean == 'slab ') THEN CALL histwrite_phy(o_slab_bils, slab_wfbils) IF (nslay .EQ. 1) THEN CALL histwrite_phy(o_tslab, tslab(:, 1)) CALL histwrite_phy(o_slab_qflux, dt_qflux(:, 1)) ELSE CALL histwrite_phy(o_tslab, tslab(:, 1:nslay)) CALL histwrite_phy(o_slab_qflux, dt_qflux(:, 1:nslay)) ENDIF IF (version_ocean == 'sicINT') THEN CALL histwrite_phy(o_slab_bilg, slab_bilg) CALL histwrite_phy(o_slab_tice, tice) CALL histwrite_phy(o_slab_sic, seaice) ENDIF IF (slab_gm) THEN CALL histwrite_phy(o_slab_gm, dt_gm(:, 1:nslay)) ENDIF IF (slab_hdiff) THEN IF (nslay .EQ. 1) THEN CALL histwrite_phy(o_slab_hdiff, dt_hdiff(:, 1)) ELSE CALL histwrite_phy(o_slab_hdiff, dt_hdiff(:, 1:nslay)) ENDIF ENDIF IF (slab_ekman .GT. 0) THEN IF (nslay .EQ. 1) THEN CALL histwrite_phy(o_slab_ekman, dt_ekman(:, 1)) ELSE CALL histwrite_phy(o_slab_ekman, dt_ekman(:, 1:nslay)) ENDIF ENDIF ENDIF !type_ocean == force/slab CALL histwrite_phy(o_weakinv, weak_inversion) CALL histwrite_phy(o_dthmin, dthmin) CALL histwrite_phy(o_cldtau, cldtau) CALL histwrite_phy(o_cldemi, cldemi) CALL histwrite_phy(o_pr_con_l, pmflxr(:, 1:klev)) CALL histwrite_phy(o_pr_con_i, pmflxs(:, 1:klev)) CALL histwrite_phy(o_pr_lsc_l, prfl(:, 1:klev)) CALL histwrite_phy(o_pr_lsc_i, psfl(:, 1:klev)) CALL histwrite_phy(o_re, re) CALL histwrite_phy(o_fl, fl) ! DO i = 1, klon ! zx_tmp_fi2d(i) = MIN(100., rh2m(i)*100.) ! ENDDO ! CALL histwrite_phy(o_rh2m, zx_tmp_fi2d) CALL histwrite_phy(o_rh2m, rh2m) CALL histwrite_phy(o_qsat2m, zqsat2m_cor) CALL histwrite_phy(o_tpot, tpot) CALL histwrite_phy(o_tpote, tpote) !CALL histwrite_phy(o_SWnetOR, fsolsw(1:klon, is_ter)) !CALL histwrite_phy(o_LWdownOR, sollwdown) CALL histwrite_phy(o_snowl, snow_lsc) !CALL histwrite_phy(o_solldown, sollwdown) CALL histwrite_phy(o_dtsvdfo, d_ts(:, is_oce)) CALL histwrite_phy(o_dtsvdft, d_ts(:, is_ter)) CALL histwrite_phy(o_dtsvdfg, d_ts(:, is_lic)) CALL histwrite_phy(o_dtsvdfi, d_ts(:, is_sic)) CALL histwrite_phy(o_z0m, z0m(:, nbsrf + 1)) CALL histwrite_phy(o_z0h, z0h(:, nbsrf + 1)) ! od550 per species !--OLIVIER !This is warranted by treating INCA aerosols as offline aerosols IF (flag_aerosol .GT. 0) THEN CALL histwrite_phy(o_od443aer, od443aer) CALL histwrite_phy(o_od550aer, od550aer) CALL histwrite_phy(o_od865aer, od865aer) CALL histwrite_phy(o_abs550aer, abs550aer) CALL histwrite_phy(o_od550lt1aer, od550lt1aer) CALL histwrite_phy(o_sconcso4, sconcso4) CALL histwrite_phy(o_sconcno3, sconcno3) CALL histwrite_phy(o_sconcoa, sconcoa) CALL histwrite_phy(o_sconcbc, sconcbc) CALL histwrite_phy(o_sconcss, sconcss) CALL histwrite_phy(o_sconcdust, sconcdust) CALL histwrite_phy(o_concso4, concso4) CALL histwrite_phy(o_concno3, concno3) CALL histwrite_phy(o_concoa, concoa) CALL histwrite_phy(o_concbc, concbc) CALL histwrite_phy(o_concss, concss) CALL histwrite_phy(o_concdust, concdust) CALL histwrite_phy(o_loadso4, loadso4) CALL histwrite_phy(o_loadoa, loadoa) CALL histwrite_phy(o_loadbc, loadbc) CALL histwrite_phy(o_loadss, loadss) CALL histwrite_phy(o_loaddust, loaddust) CALL histwrite_phy(o_loadno3, loadno3) CALL histwrite_phy(o_dryod550aer, dryod550aer) DO naero = 1, naero_tot - 1 CALL histwrite_phy(o_drytausumaero(naero), drytausum_aero(:, naero)) END DO ENDIF !--STRAT AER IF (flag_aerosol .GT. 0 .OR. flag_aerosol_strat .GT. 0) THEN DO naero = 1, naero_tot CALL histwrite_phy(o_tausumaero(naero), tausum_aero(:, 2, naero)) END DO ENDIF IF (flag_aerosol_strat .GT. 0) THEN CALL histwrite_phy(o_tausumaero_lw, tausum_aero(:, 6, id_STRAT_phy)) ENDIF CALL histwrite_phy(o_p_tropopause, p_tropopause) CALL histwrite_phy(o_t_tropopause, t_tropopause) CALL histwrite_phy(o_z_tropopause, z_tropopause) ! ThL -- In the following, we assume read_climoz == 1 zx_tmp_fi2d = 0.0 ! Computation for strato, added ThL DO k = 1, klev zx_tmp_fi2d(:) = zx_tmp_fi2d(:) + wo(:, k, 1)*stratomask(:, k)*1.e3 END DO CALL histwrite_phy(o_col_O3_strato, zx_tmp_fi2d) ! Added ThL zx_tmp_fi2d = 0.0 ! Computation for tropo, added ThL DO k = 1, klev zx_tmp_fi2d(:) = zx_tmp_fi2d(:) + wo(:, k, 1)*(1.0 - stratomask(:, k))*1.e3 END DO CALL histwrite_phy(o_col_O3_tropo, zx_tmp_fi2d) ! Added ThL CALL histwrite_phy(o_wo_1, wo(:,:,1)) IF (ok_strataer .and. type_trac == 'coag') THEN CALL histwrite_phy(o_R2SO4, R2SO4) CALL histwrite_phy(o_OCS_lifetime, OCS_lifetime) CALL histwrite_phy(o_SO2_lifetime, SO2_lifetime) CALL histwrite_phy(o_budg_3D_backgr_ocs, budg_3D_backgr_ocs) CALL histwrite_phy(o_budg_3D_backgr_so2, budg_3D_backgr_so2) CALL histwrite_phy(o_budg_3D_ocs_to_so2, budg_3D_ocs_to_so2) CALL histwrite_phy(o_budg_3D_so2_to_h2so4, budg_3D_so2_to_h2so4) CALL histwrite_phy(o_budg_3D_nucl, budg_3D_nucl) CALL histwrite_phy(o_budg_3D_cond_evap, budg_3D_cond_evap) CALL histwrite_phy(o_budg_dep_dry_ocs, budg_dep_dry_ocs) CALL histwrite_phy(o_budg_dep_wet_ocs, budg_dep_wet_ocs) CALL histwrite_phy(o_budg_dep_dry_so2, budg_dep_dry_so2) CALL histwrite_phy(o_budg_dep_wet_so2, budg_dep_wet_so2) CALL histwrite_phy(o_budg_dep_dry_h2so4, budg_dep_dry_h2so4) CALL histwrite_phy(o_budg_dep_wet_h2so4, budg_dep_wet_h2so4) CALL histwrite_phy(o_budg_dep_dry_part, budg_dep_dry_part) CALL histwrite_phy(o_budg_dep_wet_part, budg_dep_wet_part) CALL histwrite_phy(o_budg_emi_ocs, budg_emi_ocs) CALL histwrite_phy(o_budg_emi_so2, budg_emi_so2) CALL histwrite_phy(o_budg_emi_h2so4, budg_emi_h2so4) CALL histwrite_phy(o_budg_emi_part, budg_emi_part) CALL histwrite_phy(o_budg_ocs_to_so2, budg_ocs_to_so2) CALL histwrite_phy(o_budg_so2_to_h2so4, budg_so2_to_h2so4) CALL histwrite_phy(o_budg_h2so4_to_part, budg_h2so4_to_part) CALL histwrite_phy(o_budg_sed_part, budg_sed_part) CALL histwrite_phy(o_surf_PM25_sulf, surf_PM25_sulf) CALL histwrite_phy(o_vsed_aer, vsed_aer) CALL histwrite_phy(o_f_r_wet, f_r_wet) CALL histwrite_phy(o_ext_strat_550, tau_strat_550) CALL histwrite_phy(o_ext_strat_1020, tau_strat_1020) CALL histwrite_phy(o_tau_strat_550, tausum_strat(:, 1)) CALL histwrite_phy(o_tau_strat_1020, tausum_strat(:, 2)) ENDIF IF (ok_volcan .AND. ok_ade) THEN DO k = 1, klev zx_tmp_fi3d(:, k) = heat_volc(:, k)*swradcorr(:) ENDDO CALL histwrite_phy(o_heat_volc, zx_tmp_fi3d) ! DO k = 1, klev ! zx_tmp_fi3d(:, k) = cool_volc(:, k) ! ENDDO ! CALL histwrite_phy(o_cool_volc, zx_tmp_fi3d) CALL histwrite_phy(o_cool_volc, cool_volc) ENDIF IF (ok_ade) THEN ! zx_tmp_fi2d(:) = topswad_aero*swradcorr ! CALL histwrite_phy(o_topswad, zx_tmp_fi2d) ! zx_tmp_fi2d(:) = topswad0_aero*swradcorr ! CALL histwrite_phy(o_topswad0, zx_tmp_fi2d) ! zx_tmp_fi2d(:) = solswad_aero*swradcorr ! CALL histwrite_phy(o_solswad, zx_tmp_fi2d) ! zx_tmp_fi2d(:) = solswad0_aero*swradcorr ! CALL histwrite_phy(o_solswad0, zx_tmp_fi2d) CALL histwrite_phy(o_topswad, topswad_aero) CALL histwrite_phy(o_topswad0, topswad0_aero) CALL histwrite_phy(o_solswad, solswad_aero) CALL histwrite_phy(o_solswad0, solswad0_aero) CALL histwrite_phy(o_toplwad, toplwad_aero) CALL histwrite_phy(o_toplwad0, toplwad0_aero) CALL histwrite_phy(o_sollwad, sollwad_aero) CALL histwrite_phy(o_sollwad0, sollwad0_aero) !====MS forcing diagnostics !ym warning : topsw_aero, solsw_aero, topsw0_aero, solsw0_aero are not defined by model !ym => init to 0 in radlwsw_m.F90 ztopsw_aero, zsolsw_aero, ztopsw0_aero, zsolsw0_aero ! zx_tmp_fi2d(:) = topsw_aero(:, 1)*swradcorr(:) ! CALL histwrite_phy(o_swtoaas_nat, zx_tmp_fi2d) ! zx_tmp_fi2d(:) = solsw_aero(:, 1)*swradcorr(:) ! CALL histwrite_phy(o_swsrfas_nat, zx_tmp_fi2d) ! zx_tmp_fi2d(:) = topsw0_aero(:, 1)*swradcorr(:) ! CALL histwrite_phy(o_swtoacs_nat, zx_tmp_fi2d) ! zx_tmp_fi2d(:) = solsw0_aero(:, 1)*swradcorr(:) ! CALL histwrite_phy(o_swsrfcs_nat, zx_tmp_fi2d) ! !ant ! zx_tmp_fi2d(:) = topsw_aero(:, 2)*swradcorr(:) ! CALL histwrite_phy(o_swtoaas_ant, zx_tmp_fi2d) ! zx_tmp_fi2d(:) = solsw_aero(:, 2)*swradcorr(:) ! CALL histwrite_phy(o_swsrfas_ant, zx_tmp_fi2d) ! zx_tmp_fi2d(:) = topsw0_aero(:, 2)*swradcorr(:) ! CALL histwrite_phy(o_swtoacs_ant, zx_tmp_fi2d) ! zx_tmp_fi2d(:) = solsw0_aero(:, 2)*swradcorr(:) ! CALL histwrite_phy(o_swsrfcs_ant, zx_tmp_fi2d) CALL histwrite_phy(o_swtoaas_nat, topsw_aero(:, 1)) CALL histwrite_phy(o_swsrfas_nat, solsw_aero(:, 1)) CALL histwrite_phy(o_swtoacs_nat, topsw0_aero(:, 1)) CALL histwrite_phy(o_swsrfcs_nat, solsw0_aero(:, 1)) !ant CALL histwrite_phy(o_swtoaas_ant, topsw_aero(:, 2)) CALL histwrite_phy(o_swsrfas_ant, solsw_aero(:, 2)) CALL histwrite_phy(o_swtoacs_ant, topsw0_aero(:, 2)) CALL histwrite_phy(o_swsrfcs_ant, solsw0_aero(:, 2)) !cf IF (.not. aerosol_couple) THEN ! zx_tmp_fi2d(:) = topswcf_aero(:, 1)*swradcorr(:) ! CALL histwrite_phy(o_swtoacf_nat, zx_tmp_fi2d) ! zx_tmp_fi2d(:) = solswcf_aero(:, 1)*swradcorr(:) ! CALL histwrite_phy(o_swsrfcf_nat, zx_tmp_fi2d) ! zx_tmp_fi2d(:) = topswcf_aero(:, 2)*swradcorr(:) ! CALL histwrite_phy(o_swtoacf_ant, zx_tmp_fi2d) ! zx_tmp_fi2d(:) = solswcf_aero(:, 2)*swradcorr(:) ! CALL histwrite_phy(o_swsrfcf_ant, zx_tmp_fi2d) ! zx_tmp_fi2d(:) = topswcf_aero(:, 3)*swradcorr(:) ! CALL histwrite_phy(o_swtoacf_zero, zx_tmp_fi2d) ! zx_tmp_fi2d(:) = solswcf_aero(:, 3)*swradcorr(:) ! CALL histwrite_phy(o_swsrfcf_zero, zx_tmp_fi2d) CALL histwrite_phy(o_swtoacf_nat, topswcf_aero(:, 1)) CALL histwrite_phy(o_swsrfcf_nat, solswcf_aero(:, 1)) CALL histwrite_phy(o_swtoacf_ant, topswcf_aero(:, 2)) CALL histwrite_phy(o_swsrfcf_ant, solswcf_aero(:, 2)) CALL histwrite_phy(o_swtoacf_zero, topswcf_aero(:, 3)) CALL histwrite_phy(o_swsrfcf_zero, solswcf_aero(:, 3)) ENDIF !====MS forcing diagnostics ENDIF IF (ok_aie) THEN CALL histwrite_phy(o_topswai, topswai_aero) CALL histwrite_phy(o_toplwai, toplwai_aero) CALL histwrite_phy(o_solswai, solswai_aero) CALL histwrite_phy(o_sollwai, sollwai_aero) ENDIF IF (flag_aerosol .GT. 0 .AND. ok_cdnc) THEN CALL histwrite_phy(o_scdnc, scdnc) CALL histwrite_phy(o_cldncl, cldncl) CALL histwrite_phy(o_reffclws, reffclws) CALL histwrite_phy(o_reffclwc, reffclwc) CALL histwrite_phy(o_cldnvi, cldnvi) CALL histwrite_phy(o_lcc, lcc) CALL histwrite_phy(o_lcc3d, lcc3d) CALL histwrite_phy(o_lcc3dcon, lcc3dcon) CALL histwrite_phy(o_lcc3dstra, lcc3dstra) CALL histwrite_phy(o_icc3dcon, icc3dcon) CALL histwrite_phy(o_icc3dstra, icc3dstra) CALL histwrite_phy(o_cldicemxrat, zfice) ! zx_tmp_fi3d(:, :) = 1 - zfice(:, :) ! CALL histwrite_phy(o_cldwatmxrat, zx_tmp_fi3d) CALL histwrite_phy(o_cldwatmxrat, zfice) CALL histwrite_phy(o_reffclwtop, reffclwtop) ENDIF ! Champs 3D: IF (ok_ade .OR. ok_aie) then CALL histwrite_phy(o_ec550aer, ec550aer) ENDIF CALL histwrite_phy(o_lwcon, flwc) CALL histwrite_phy(o_iwcon, fiwc) CALL histwrite_phy(o_temp, t_seri) CALL histwrite_phy(o_theta, theta) CALL histwrite_phy(o_ovapinit, qx(:, :, ivap)) CALL histwrite_phy(o_ovap, q_seri) CALL histwrite_phy(o_oliq, ql_seri) ! zx_tmp_fi3d = ql_seri + qs_seri ! CALL histwrite_phy(o_ocond, zx_tmp_fi3d) CALL histwrite_phy(o_ocond, qs_seri) CALL histwrite_phy(o_geop, zphi) CALL histwrite_phy(o_vitu, u_seri) CALL histwrite_phy(o_vitv, v_seri) CALL histwrite_phy(o_vitw, omega) CALL histwrite_phy(o_pres, pplay) CALL histwrite_phy(o_paprs, paprs(:, 1:klev)) ! zx_tmp_fi3d = zphi/RG ! CALL histwrite_phy(o_zfull, zx_tmp_fi3d) IF (ok_rrtm .and. iflag_rrtm .EQ. 1) THEN DO ISW = 1, NSW zx_tmp_fi3dsp(:, ISW) = swdn(:, klevp1)*swradcorr(:)*RSUN(ISW) ENDDO CALL histwrite_phy(o_solbnd, zx_tmp_fi3dsp) ENDIF !IF (flag_aerosol_strat .EQ. 2) THEN CALL histwrite_phy(o_stratomask, stratomask) !ENDIF zx_tmp_fi3d(:, 1) = pphis(:)/RG DO k = 2, klev DO i = 1, klon zx_tmp_fi3d(i, k) = zphi(i, k - 1)/RG + & (zphi(i, k) - zphi(i, k - 1))/RG* & (paprs(i, k) - pplay(i, k - 1))/(pplay(i, k) - pplay(i, k - 1)) ENDDO ENDDO CALL histwrite_phy(o_zhalf, zx_tmp_fi3d) CALL histwrite_phy(o_rneb, cldfra) CALL histwrite_phy(o_rnebcon, rnebcon) CALL histwrite_phy(o_rnebls, rneb) CALL histwrite_phy(o_rneblsvol, rneblsvol) DO k = 1, klev DO i = 1, klon zx_tmp_fi3d(i, k) = cldfra(i, k)*JrNt(i) ENDDO ENDDO CALL histwrite_phy(o_rnebjn, zx_tmp_fi3d) CALL histwrite_phy(o_rhum, zx_rh) ! zx_tmp_fi3d = wo(:, :, 1)*dobson_u*1e3/zmasse/rmo3*rmd ! CALL histwrite_phy(o_ozone, zx_tmp_fi3d) ! o_wo_1*dobson_u*1e3/o_mass/rmo3*rmd IF (read_climoz == 2) THEN ! zx_tmp_fi3d = wo(:, :, 2)*dobson_u*1e3/zmasse/rmo3*rmd ! CALL histwrite_phy(o_ozone_light, zx_tmp_fi3d) CALL histwrite_phy(o_ozone_light, wo(:, :, 2)) ENDIF CALL histwrite_phy(o_duphy, d_u) CALL histwrite_phy(o_dtphy, d_t) CALL histwrite_phy(o_dqphy, d_qx(:, :, ivap)) CALL water_int(klon, klev, d_qx(:, :, ivap), zmasse, zx_tmp_fi2d) CALL histwrite_phy(o_dqphy2d, zx_tmp_fi2d) CALL histwrite_phy(o_dqlphy, d_qx(:, :, iliq)) CALL water_int(klon, klev, d_qx(:, :, iliq), zmasse, zx_tmp_fi2d) CALL histwrite_phy(o_dqlphy2d, zx_tmp_fi2d) IF (nqo .EQ. 3) THEN CALL histwrite_phy(o_dqsphy, d_qx(:, :, isol)) CALL water_int(klon, klev, d_qx(:, :, isol), zmasse, zx_tmp_fi2d) CALL histwrite_phy(o_dqsphy2d, zx_tmp_fi2d) ELSE zx_tmp_fi3d = 0.0 CALL histwrite_phy(o_dqsphy, zx_tmp_fi3d) zx_tmp_fi2d = 0.0 CALL histwrite_phy(o_dqsphy2d, zx_tmp_fi2d) ENDIF DO nsrf = 1, nbsrf CALL histwrite_phy(o_albe_srf(nsrf), falb1(1:klon, nsrf)) CALL histwrite_phy(o_z0m_srf(nsrf), z0m(1:klon, nsrf)) CALL histwrite_phy(o_z0h_srf(nsrf), z0h(1:klon, nsrf)) CALL histwrite_phy(o_ages_srf(nsrf), agesno(1:klon, nsrf)) CALL histwrite_phy(o_snow_srf(nsrf), snow(1:klon, nsrf)) ENDDO !nsrf=1, nbsrf CALL histwrite_phy(o_alb1, albsol1) CALL histwrite_phy(o_alb2, albsol2) !FH Sorties pour la couche limite IF (iflag_pbl > 1) THEN zx_tmp_fi3d = 0. DO nsrf = 1, nbsrf DO k = 1, klev zx_tmp_fi3d(:, k) = zx_tmp_fi3d(:, k) & + pctsrf(:, nsrf)*pbl_tke(:, k, nsrf) ENDDO ENDDO ! reduce( sum(nsrf[1,4], o_fract_srf(nsrf)(:) * o_tke_srf(nsrf)(:,:)) ) ! == sum( o_fract_srf(nsrf)(:) * reduce(o_tke_srf(nsrf)(:,:)) ) CALL histwrite_phy(o_tke, zx_tmp_fi3d) !CALL histwrite_phy(o_tke_max, zx_tmp_fi3d) ENDIF CALL histwrite_phy(o_kz, coefh(:, :, is_ave)) !CALL histwrite_phy(o_kz_max, coefh(:, :, is_ave)) CALL histwrite_phy(o_clwcon, clwcon0) CALL histwrite_phy(o_dtdyn, d_t_dyn) CALL histwrite_phy(o_dqdyn, d_q_dyn) CALL histwrite_phy(o_dqdyn2d, d_q_dyn2d) CALL histwrite_phy(o_dqldyn, d_ql_dyn) CALL histwrite_phy(o_dqldyn2d, d_ql_dyn2d) CALL histwrite_phy(o_dqsdyn, d_qs_dyn) CALL histwrite_phy(o_dqsdyn2d, d_qs_dyn2d) CALL histwrite_phy(o_dudyn, d_u_dyn) CALL histwrite_phy(o_dvdyn, d_v_dyn) ! zx_tmp_fi3d(1:klon, 1:klev) = d_t_con(1:klon, 1:klev)/pdtphys ! CALL histwrite_phy(o_dtcon, zx_tmp_fi3d) CALL histwrite_phy(o_dtcon, d_t_con(:, 1:klev)) IF (iflag_thermals .EQ. 0) THEN zx_tmp_fi3d(1:klon, 1:klev) = d_t_con(1:klon, 1:klev)/pdtphys + & d_t_ajsb(1:klon, 1:klev)/pdtphys CALL histwrite_phy(o_tntc, zx_tmp_fi3d) ! o_tntc = dtcon + o_dtthe ELSE IF (iflag_thermals .GE. 1 .AND. iflag_wake .EQ. 1) THEN zx_tmp_fi3d(1:klon, 1:klev) = d_t_con(1:klon, 1:klev)/pdtphys + & d_t_ajs(1:klon, 1:klev)/pdtphys + & d_t_wake(1:klon, 1:klev)/pdtphys CALL histwrite_phy(o_tntc, zx_tmp_fi3d) ! o_tntc = dtcon + ? + o_dtwak ENDIF ! zx_tmp_fi3d(1:klon, 1:klev) = d_u_con(1:klon, 1:klev)/pdtphys ! CALL histwrite_phy(o_ducon, zx_tmp_fi3d) ! zx_tmp_fi3d(1:klon, 1:klev) = d_v_con(1:klon, 1:klev)/pdtphys ! CALL histwrite_phy(o_dvcon, zx_tmp_fi3d) ! zx_tmp_fi3d(1:klon, 1:klev) = d_q_con(1:klon, 1:klev)/pdtphys ! CALL histwrite_phy(o_dqcon, zx_tmp_fi3d) CALL histwrite_phy(o_ducon, d_u_con(1:klon, 1:klev)) CALL histwrite_phy(o_dvcon, d_v_con(1:klon, 1:klev)) CALL histwrite_phy(o_dqcon, d_q_con(1:klon, 1:klev)) zx_tmp_fi3d(1:klon, 1:klev) = d_q_con(1:klon, 1:klev)/pdtphys CALL water_int(klon, klev, zx_tmp_fi3d, zmasse, zx_tmp_fi2d) CALL histwrite_phy(o_dqcon2d, zx_tmp_fi2d) IF (iflag_thermals .EQ. 0) THEN ! zx_tmp_fi3d(1:klon, 1:klev) = d_q_con(1:klon, 1:klev)/pdtphys ! CALL histwrite_phy(o_tnhusc, d_q_con) CALL histwrite_phy(o_tnhusc, d_q_con(1:klon, 1:klev)) ELSE IF (iflag_thermals .GE. 1 .AND. iflag_wake .EQ. 1) THEN zx_tmp_fi3d(1:klon, 1:klev) = d_q_con(1:klon, 1:klev)/pdtphys + & d_q_ajs(1:klon, 1:klev)/pdtphys + & d_q_wake(1:klon, 1:klev)/pdtphys CALL histwrite_phy(o_tnhusc, zx_tmp_fi3d) ENDIF zx_tmp_fi3d(1:klon, 1:klev) = d_t_lsc(1:klon, 1:klev)/pdtphys CALL histwrite_phy(o_dtlsc, zx_tmp_fi3d) zx_tmp_fi3d(1:klon, 1:klev) = (d_t_lsc(1:klon, 1:klev) + & d_t_eva(1:klon, 1:klev))/pdtphys CALL histwrite_phy(o_dtlschr, zx_tmp_fi3d) zx_tmp_fi3d(1:klon, 1:klev) = d_q_lsc(1:klon, 1:klev)/pdtphys CALL histwrite_phy(o_dqlsc, zx_tmp_fi3d) CALL water_int(klon, klev, zx_tmp_fi3d, zmasse, zx_tmp_fi2d) CALL histwrite_phy(o_dqlsc2d, zx_tmp_fi2d) zx_tmp_fi3d(1:klon, 1:klev) = beta_prec(1:klon, 1:klev) CALL histwrite_phy(o_beta_prec, zx_tmp_fi3d) ! Sorties specifiques a la separation thermiques/non thermiques IF (iflag_thermals >= 1) THEN ! zx_tmp_fi3d(1:klon, 1:klev) = d_t_lscth(1:klon, 1:klev)/pdtphys ! CALL histwrite_phy(o_dtlscth, zx_tmp_fi3d) ! zx_tmp_fi3d(1:klon, 1:klev) = d_t_lscst(1:klon, 1:klev)/pdtphys ! CALL histwrite_phy(o_dtlscst, zx_tmp_fi3d) ! zx_tmp_fi3d(1:klon, 1:klev) = d_q_lscth(1:klon, 1:klev)/pdtphys ! CALL histwrite_phy(o_dqlscth, zx_tmp_fi3d) ! zx_tmp_fi3d(1:klon, 1:klev) = d_q_lscst(1:klon, 1:klev)/pdtphys ! CALL histwrite_phy(o_dqlscst, zx_tmp_fi3d) CALL histwrite_phy(o_dtlscth, d_t_lscth(1:klon, 1:klev)) CALL histwrite_phy(o_dtlscst, d_t_lscst(1:klon, 1:klev)) CALL histwrite_phy(o_dqlscth, d_q_lscth(1:klon, 1:klev)) CALL histwrite_phy(o_dqlscst, d_q_lscst(1:klon, 1:klev)) zx_tmp_fi3d(1:klon, 1:klev) = d_q_lscth(1:klon, 1:klev)/pdtphys CALL water_int(klon, klev, zx_tmp_fi3d, zmasse, zx_tmp_fi2d) CALL histwrite_phy(o_dqlscth2d, zx_tmp_fi2d) zx_tmp_fi3d(1:klon, 1:klev) = d_q_lscst(1:klon, 1:klev)/pdtphys CALL water_int(klon, klev, zx_tmp_fi3d, zmasse, zx_tmp_fi2d) CALL histwrite_phy(o_dqlscst2d, zx_tmp_fi2d) CALL histwrite_phy(o_plulth, plul_th) CALL histwrite_phy(o_plulst, plul_st) zx_tmp_fi2d(:) = lmax_th(1:klon) ! Cast from int to real CALL histwrite_phy(o_lmaxth, zx_tmp_fi2d) ! DO k = 1, klev ! DO i = 1, klon ! IF (ptconvth(i, k)) THEN ! zx_tmp_fi3d(i, k) = 1. ! ELSE ! zx_tmp_fi3d(i, k) = 0. ! ENDIF ! ENDDO ! ENDDO ! CALL histwrite_phy(o_ptconvth, zx_tmp_fi3d) zx_tmp_fi3d(:,:) = MERGE(1., 0., ptconvth(:,:)) ! Cast from logical to real CALL histwrite_phy(o_ptconvth, zx_tmp_fi3d) ENDIF ! iflag_thermals>=1 zpt_conv(:,:) = MERGE(1., 0., ptconv(:,:)) CALL histwrite_phy(o_ptconv, zpt_conv) zpt_conv2d(:) = 0. DO k = 1, klev WHERE (ptconv(:, k)) zpt_conv2d(:) = 1. ENDDO CALL histwrite_phy(o_ftime_deepcv, zpt_conv2d) zx_tmp_fi2d(:) = 0. DO k = 1, klev WHERE (ptconvth(:, k)) zx_tmp_fi2d(:) = 1. ENDDO CALL histwrite_phy(o_ftime_th, zx_tmp_fi2d) ! zx_tmp_fi2d(:) = max(zx_tmp_fi2d(:), zpt_conv2d(:)) ! CALL histwrite_phy(o_ftime_con, zx_tmp_fi2d) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! CALL histwrite_phy(o_dtvdf, d_t_vdf(1:klon, 1:klev)) CALL histwrite_phy(o_dtdis, d_t_diss(1:klon, 1:klev)) CALL histwrite_phy(o_dqvdf, d_q_vdf(1:klon, 1:klev)) CALL histwrite_phy(o_dteva, d_t_eva(1:klon, 1:klev)) CALL histwrite_phy(o_dqeva, d_q_eva(1:klon, 1:klev)) CALL histwrite_phy(o_duthe, d_u_ajs(1:klon, 1:klev)) CALL histwrite_phy(o_dvthe, d_v_ajs(1:klon, 1:klev)) zx_tmp_fi3d(1:klon, 1:klev) = d_q_vdf(1:klon, 1:klev)/pdtphys CALL water_int(klon, klev, zx_tmp_fi3d, zmasse, zx_tmp_fi2d) CALL histwrite_phy(o_dqvdf2d, zx_tmp_fi2d) zx_tmp_fi3d(1:klon, 1:klev) = d_q_eva(1:klon, 1:klev)/pdtphys CALL water_int(klon, klev, zx_tmp_fi3d, zmasse, zx_tmp_fi2d) CALL histwrite_phy(o_dqeva2d, zx_tmp_fi2d) ! zx_tmp_fi3d(1:klon, 1:klev) = d_t_ajs(1:klon, 1:klev)/pdtphys - & ! d_t_ajsb(1:klon, 1:klev)/pdtphys ! CALL histwrite_phy(o_dtthe, zx_tmp_fi3d) ! d_t_ajs(1:klon, 1:klev)/pdtphys + o_dtajs CALL histwrite_phy(o_dtthe, d_t_ajs(1:klon, 1:klev)) CALL histwrite_phy(o_ratqs, ratqs) IF (iflag_thermals >= 1) THEN ! Pour l instant 0 a y reflichir pour les thermiques ! regroupe avec ftime_deepcv et ftime_con !!zx_tmp_fi2d=0. !!CALL histwrite_phy(o_ftime_th, zx_tmp_fi2d) CALL histwrite_phy(o_f_th, fm_therm) CALL histwrite_phy(o_e_th, entr_therm) CALL histwrite_phy(o_w_th, zw2) CALL histwrite_phy(o_q_th, zqasc) CALL histwrite_phy(o_a_th, fraca) CALL histwrite_phy(o_cloudth_sth, cloudth_sth) CALL histwrite_phy(o_cloudth_senv, cloudth_senv) CALL histwrite_phy(o_cloudth_sigmath, cloudth_sigmath) CALL histwrite_phy(o_cloudth_sigmaenv, cloudth_sigmaenv) CALL histwrite_phy(o_d_th, detr_therm) CALL histwrite_phy(o_f0_th, f0) CALL histwrite_phy(o_zmax_th, zmax_th) zx_tmp_fi3d(1:klon, 1:klev) = d_q_ajs(1:klon, 1:klev)/pdtphys - & d_q_ajsb(1:klon, 1:klev)/pdtphys CALL histwrite_phy(o_dqthe, zx_tmp_fi3d) CALL water_int(klon, klev, zx_tmp_fi3d, zmasse, zx_tmp_fi2d) CALL histwrite_phy(o_dqthe2d, zx_tmp_fi2d) ELSE zx_tmp_fi2d(:) = 0 CALL histwrite_phy(o_f_th, zx_tmp_fi2d) ENDIF !iflag_thermals zx_tmp_fi3d(1:klon, 1:klev) = d_q_ajsb(1:klon, 1:klev)/pdtphys CALL water_int(klon, klev, zx_tmp_fi3d, zmasse, zx_tmp_fi2d) CALL histwrite_phy(o_dqajs2d, zx_tmp_fi2d) CALL histwrite_phy(o_dtajs, d_t_ajsb(1:klon, 1:klev)) CALL histwrite_phy(o_dqajs, d_q_ajsb(1:klon, 1:klev)) CALL histwrite_phy(o_dtswr, d_t_swr(1:klon, 1:klev)) CALL histwrite_phy(o_dtsw0, d_t_sw0(1:klon, 1:klev)) CALL histwrite_phy(o_dtlwr, d_t_lwr(1:klon, 1:klev)) CALL histwrite_phy(o_dtlw0, d_t_lw0(1:klon, 1:klev)) CALL histwrite_phy(o_dtec, d_t_ec(1:klon, 1:klev)) CALL histwrite_phy(o_duvdf, d_u_vdf(1:klon, 1:klev)) CALL histwrite_phy(o_dvvdf, d_v_vdf(1:klon, 1:klev)) IF (ok_orodr) THEN ! zx_tmp_fi3d(1:klon, 1:klev) = d_u_oro(1:klon, 1:klev)/pdtphys ! CALL histwrite_phy(o_duoro, zx_tmp_fi3d) ! zx_tmp_fi3d(1:klon, 1:klev) = d_v_oro(1:klon, 1:klev)/pdtphys ! CALL histwrite_phy(o_dvoro, zx_tmp_fi3d) ! zx_tmp_fi3d(1:klon, 1:klev) = d_t_oro(1:klon, 1:klev)/pdtphys ! CALL histwrite_phy(o_dtoro, zx_tmp_fi3d) CALL histwrite_phy(o_duoro, d_u_oro(1:klon, 1:klev)) CALL histwrite_phy(o_dvoro, d_v_oro(1:klon, 1:klev)) CALL histwrite_phy(o_dtoro, d_t_oro(1:klon, 1:klev)) ENDIF IF (ok_orolf) THEN ! zx_tmp_fi3d(1:klon, 1:klev) = d_u_lif(1:klon, 1:klev)/pdtphys ! CALL histwrite_phy(o_dulif, zx_tmp_fi3d) ! zx_tmp_fi3d(1:klon, 1:klev) = d_v_lif(1:klon, 1:klev)/pdtphys ! CALL histwrite_phy(o_dvlif, zx_tmp_fi3d) ! zx_tmp_fi3d(1:klon, 1:klev) = d_t_lif(1:klon, 1:klev)/pdtphys ! CALL histwrite_phy(o_dtlif, zx_tmp_fi3d) CALL histwrite_phy(o_dulif, d_u_lif(1:klon, 1:klev)) CALL histwrite_phy(o_dvlif, d_v_lif(1:klon, 1:klev)) CALL histwrite_phy(o_dtlif, d_t_lif(1:klon, 1:klev)) ENDIF IF (ok_hines) THEN ! zx_tmp_fi3d = du_gwd_hines/pdtphys ! CALL histwrite_phy(o_du_gwd_hines, zx_tmp_fi3d) ! zx_tmp_fi3d = dv_gwd_hines/pdtphys ! CALL histwrite_phy(o_dv_gwd_hines, zx_tmp_fi3d) ! zx_tmp_fi3d = d_t_hin(1:klon, 1:klev)/pdtphys CALL histwrite_phy(o_du_gwd_hines, du_gwd_hines) CALL histwrite_phy(o_dv_gwd_hines, dv_gwd_hines) CALL histwrite_phy(o_dthin, d_t_hin) CALL histwrite_phy(o_ustr_gwd_hines, zustr_gwd_hines) CALL histwrite_phy(o_vstr_gwd_hines, zvstr_gwd_hines) ENDIF IF (.not. ok_hines .and. ok_gwd_rando) THEN ! zx_tmp_fi3d = du_gwd_front/pdtphys ! CALL histwrite_phy(o_du_gwd_front, zx_tmp_fi3d) ! zx_tmp_fi3d = dv_gwd_front/pdtphys ! CALL histwrite_phy(o_dv_gwd_front, zx_tmp_fi3d) CALL histwrite_phy(o_du_gwd_front, du_gwd_front) CALL histwrite_phy(o_dv_gwd_front, dv_gwd_front) CALL histwrite_phy(o_ustr_gwd_front, zustr_gwd_front) CALL histwrite_phy(o_vstr_gwd_front, zvstr_gwd_front) ENDIF IF (ok_gwd_rando) THEN ! zx_tmp_fi3d = du_gwd_rando/pdtphys ! CALL histwrite_phy(o_du_gwd_rando, zx_tmp_fi3d) ! zx_tmp_fi3d = dv_gwd_rando/pdtphys ! CALL histwrite_phy(o_dv_gwd_rando, zx_tmp_fi3d) CALL histwrite_phy(o_du_gwd_rando, du_gwd_rando) CALL histwrite_phy(o_dv_gwd_rando, dv_gwd_rando) CALL histwrite_phy(o_ustr_gwd_rando, zustr_gwd_rando) CALL histwrite_phy(o_vstr_gwd_rando, zvstr_gwd_rando) CALL histwrite_phy(o_east_gwstress, east_gwstress) CALL histwrite_phy(o_west_gwstress, west_gwstress) ENDIF IF (ok_qch4) THEN ! GLITCHY : not in field_def_lmdz.xml zx_tmp_fi3d = d_q_ch4/pdtphys CALL histwrite_phy(o_dqch4, zx_tmp_fi3d) ENDIF DO k = 1, klevp1 zx_tmp_fi3d1(:, k) = swup(:, k)*swradcorr(:) ENDDO CALL histwrite_phy(o_rsu, zx_tmp_fi3d1) DO k = 1, klevp1 zx_tmp_fi3d1(:, k) = swdn(:, k)*swradcorr(:) ENDDO CALL histwrite_phy(o_rsd, zx_tmp_fi3d1) DO k = 1, klevp1 zx_tmp_fi3d1(:, k) = swup0(:, k)*swradcorr(:) ENDDO CALL histwrite_phy(o_rsucs, zx_tmp_fi3d1) DO k = 1, klevp1 zx_tmp_fi3d1(:, k) = swupc0(:, k)*swradcorr(:) ENDDO CALL histwrite_phy(o_rsucsaf, zx_tmp_fi3d1) DO k = 1, klevp1 zx_tmp_fi3d1(:, k) = swdn0(:, k)*swradcorr(:) ENDDO CALL histwrite_phy(o_rsdcs, zx_tmp_fi3d1) DO k = 1, klevp1 zx_tmp_fi3d1(:, k) = swdnc0(:, k)*swradcorr(:) ENDDO CALL histwrite_phy(o_rsdcsaf, zx_tmp_fi3d1) CALL histwrite_phy(o_rlu, lwup) CALL histwrite_phy(o_rld, lwdn) CALL histwrite_phy(o_rlucs, lwup0) CALL histwrite_phy(o_rldcs, lwdn0) CALL histwrite_phy(o_evu, coefm(:, :, is_ave)) ! zx_tmp_fi3d(1:klon, 1:klev) = d_t(1:klon, 1:klev) + & ! d_t_dyn(1:klon, 1:klev) ! CALL histwrite_phy(o_tnt, zx_tmp_fi3d) ! o_dtphy + o_dtdyn ! zx_tmp_fi3d(1:klon, 1:klev) = d_t_swr(1:klon, 1:klev)/pdtphys + & ! d_t_lwr(1:klon, 1:klev)/pdtphys ! CALL histwrite_phy(o_tntr, zx_tmp_fi3d)!o_dtswr + o_dtlwr ! zx_tmp_fi3d(1:klon, 1:klev) = (d_t_lsc(1:klon, 1:klev) + & ! d_t_eva(1:klon, 1:klev) + & ! d_t_vdf(1:klon, 1:klev))/pdtphys ! CALL histwrite_phy(o_tntscpbl, zx_tmp_fi3d) ! o_dtlsc + o_dteva + o_dtvdf ! zx_tmp_fi3d(1:klon, 1:klev) = d_qx(1:klon, 1:klev, ivap) + & ! d_q_dyn(1:klon, 1:klev) ! CALL histwrite_phy(o_tnhus, zx_tmp_fi3d) ! o_dqphy + o_dqdyn ! zx_tmp_fi3d(1:klon, 1:klev) = d_q_lsc(1:klon, 1:klev)/pdtphys + & ! d_q_eva(1:klon, 1:klev)/pdtphys ! CALL histwrite_phy(o_tnhusscpbl, zx_tmp_fi3d) ! o_dqlsc + o_dqeva ! zx_tmp_fi3d(1:klon, 1:klev) = q_seri(1:klon, 1:klev) + & ! ql_seri(1:klon, 1:klev) ! CALL histwrite_phy(o_h2o, zx_tmp_fi3d) ! o_ovap + o_oliq IF (iflag_con >= 3) THEN zx_tmp_fi3d(1:klon, 1:klev) = -1*(dnwd(1:klon, 1:klev) + & dnwd0(1:klon, 1:klev)) CALL histwrite_phy(o_mcd, zx_tmp_fi3d) ! - (o_dnwd + dnwd0) zx_tmp_fi3d(1:klon, 1:klev) = upwd(1:klon, 1:klev) + & dnwd(1:klon, 1:klev) + dnwd0(1:klon, 1:klev) CALL histwrite_phy(o_dmc, zx_tmp_fi3d) ! o_upwd - o_mcd ELSE IF (iflag_con == 2) THEN CALL histwrite_phy(o_mcd, pmfd) zx_tmp_fi3d = pmfu + pmfd CALL histwrite_phy(o_dmc, zx_tmp_fi3d) ! pmfu + o_mcd ENDIF CALL histwrite_phy(o_ref_liq, ref_liq) CALL histwrite_phy(o_ref_ice, ref_ice) IF (ok_4xCO2atm) THEN ! zx_tmp_fi2d(:) = swupp(:, klevp1)*swradcorr(:) ! CALL histwrite_phy(o_rsut4co2, zx_tmp_fi2d) ! zx_tmp_fi2d(:) = lwupp(:, klevp1) ! CALL histwrite_phy(o_rlut4co2, zx_tmp_fi2d) ! zx_tmp_fi2d(:) = swup0p(:, klevp1)*swradcorr(:) ! CALL histwrite_phy(o_rsutcs4co2, zx_tmp_fi2d) ! zx_tmp_fi2d(:) = lwup0p(:, klevp1) ! CALL histwrite_phy(o_rlutcs4co2, zx_tmp_fi2d) CALL histwrite_phy(o_rsut4co2, swupp(:, klevp1)) CALL histwrite_phy(o_rlut4co2, lwupp(:, klevp1)) CALL histwrite_phy(o_rsutcs4co2, swup0p(:, klevp1)) CALL histwrite_phy(o_rlutcs4co2, lwup0p(:, klevp1)) if( any(swradcorr(:) /= 1.0) ) then DO k = 1, klevp1 zx_tmp_fi3d1(:, k) = swupp(:, k)*swradcorr(:) ENDDO CALL histwrite_phy(o_rsu4co2, zx_tmp_fi3d1) DO k = 1, klevp1 zx_tmp_fi3d1(:, k) = swup0p(:, k)*swradcorr(:) ENDDO CALL histwrite_phy(o_rsucs4co2, zx_tmp_fi3d1) DO k = 1, klevp1 zx_tmp_fi3d1(:, k) = swdnp(:, k)*swradcorr(:) ENDDO CALL histwrite_phy(o_rsd4co2, zx_tmp_fi3d1) DO k = 1, klevp1 zx_tmp_fi3d1(:, k) = swdn0p(:, k)*swradcorr(:) ENDDO CALL histwrite_phy(o_rsdcs4co2, zx_tmp_fi3d1) else CALL histwrite_phy(o_rsu4co2, swupp) CALL histwrite_phy(o_rsucs4co2, swup0p) CALL histwrite_phy(o_rsd4co2, swdnp) CALL histwrite_phy(o_rsdcs4co2, swdn0p) endif CALL histwrite_phy(o_rlu4co2, lwupp) CALL histwrite_phy(o_rlucs4co2, lwup0p) CALL histwrite_phy(o_rld4co2, lwdnp) CALL histwrite_phy(o_rldcs4co2, lwdn0p) ENDIF !ok_4xCO2atm !!!!!!!!!!!! Sorties niveaux de pression NMC !!!!!!!!!!!!!!!!!!!! CALL histwrite_phy(o_ta, tlevSTD(:, :)) CALL histwrite_phy(o_zg, philevSTD(:, :)) CALL histwrite_phy(o_hus, qlevSTD(:, :)) CALL histwrite_phy(o_hur, rhlevSTD(:, :)) CALL histwrite_phy(o_ua, ulevSTD(:, :)) CALL histwrite_phy(o_va, vlevSTD(:, :)) CALL histwrite_phy(o_wap, wlevSTD(:, :)) ! DO k = 1, nlevSTD ! DO i = 1, klon ! IF (O3STD(i, k) .NE. missing_val) THEN ! zx_tmp_fi3d_STD(i, k) = O3STD(i, k)*1.e+9 ! ELSE ! zx_tmp_fi3d_STD(i, k) = missing_val ! ENDIF ! ENDDO ! ENDDO !k=1, nlevSTD ! CALL histwrite_phy(o_tro3, zx_tmp_fi3d_STD) ! !(this/=missing_val)?this*1.e+9:missing_val CALL histwrite_phy(o_tro3, O3STD(1:klon, 1:nlevSTD)) ! IF (read_climoz == 2) THEN ! DO k = 1, nlevSTD ! DO i = 1, klon ! IF (O3daySTD(i, k) .NE. missing_val) THEN ! zx_tmp_fi3d_STD(i, k) = O3daySTD(i, k)*1.e+9 ! ELSE ! zx_tmp_fi3d_STD(i, k) = missing_val ! ENDIF ! ENDDO ! ENDDO !k=1, nlevSTD ! ENDIF ! CALL histwrite_phy(o_tro3_daylight, zx_tmp_fi3d_STD) ! !(this/=missing_val)?this*1.e+9:missing_val IF (read_climoz == 2) THEN CALL histwrite_phy(o_tro3_daylight, O3daySTD(1:klon, 1:nlevSTD)) else CALL histwrite_phy(o_tro3_daylight, O3STD(1:klon, 1:nlevSTD)) ENDIF CALL histwrite_phy(o_uxv, uvSTD(:, :)) CALL histwrite_phy(o_vxq, vqSTD(:, :)) CALL histwrite_phy(o_vxT, vTSTD(:, :)) CALL histwrite_phy(o_wxq, wqSTD(:, :)) CALL histwrite_phy(o_vxphi, vphiSTD(:, :)) CALL histwrite_phy(o_wxT, wTSTD(:, :)) CALL histwrite_phy(o_uxu, u2STD(:, :)) CALL histwrite_phy(o_vxv, v2STD(:, :)) CALL histwrite_phy(o_TxT, T2STD(:, :)) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! IF (iflag_phytrac == 1) then IF (type_trac == 'lmdz' .OR. type_trac == 'repr' .OR. type_trac == 'coag') THEN DO iq = nqo + 1, nqtot !--3D fields CALL histwrite_phy(o_trac(iq - nqo), tr_seri(:, :, iq - nqo)) CALL histwrite_phy(o_dtr_vdf(iq - nqo), d_tr_cl(:, :, iq - nqo)) CALL histwrite_phy(o_dtr_the(iq - nqo), d_tr_th(:, :, iq - nqo)) CALL histwrite_phy(o_dtr_con(iq - nqo), d_tr_cv(:, :, iq - nqo)) CALL histwrite_phy(o_dtr_lessi_impa(iq - nqo), d_tr_lessi_impa(:, :, iq - nqo)) CALL histwrite_phy(o_dtr_lessi_nucl(iq - nqo), d_tr_lessi_nucl(:, :, iq - nqo)) CALL histwrite_phy(o_dtr_insc(iq - nqo), d_tr_insc(:, :, iq - nqo)) CALL histwrite_phy(o_dtr_bcscav(iq - nqo), d_tr_bcscav(:, :, iq - nqo)) CALL histwrite_phy(o_dtr_evapls(iq - nqo), d_tr_evapls(:, :, iq - nqo)) CALL histwrite_phy(o_dtr_ls(iq - nqo), d_tr_ls(:, :, iq - nqo)) CALL histwrite_phy(o_dtr_trsp(iq - nqo), d_tr_trsp(:, :, iq - nqo)) CALL histwrite_phy(o_dtr_sscav(iq - nqo), d_tr_sscav(:, :, iq - nqo)) CALL histwrite_phy(o_dtr_sat(iq - nqo), d_tr_sat(:, :, iq - nqo)) CALL histwrite_phy(o_dtr_uscav(iq - nqo), d_tr_uscav(:, :, iq - nqo)) !--2D fields CALL histwrite_phy(o_dtr_dry(iq - nqo), flux_tr_dry(:, iq - nqo)) if (.not. ok_reprobus) then zx_tmp_fi2d = 0. DO k = 1, klev zx_tmp_fi2d(:) = zx_tmp_fi2d(:) + zmasse(:, k)*tr_seri(:, k, iq - nqo) ENDDO CALL histwrite_phy(o_trac_cum(iq - nqo), zx_tmp_fi2d) end if ENDDO !--iq ENDIF !--type_trac IF (type_trac == 'co2i') THEN DO iq = nqo + 1, nqtot !--3D fields CALL histwrite_phy(o_trac(iq - nqo), tr_seri(:, :, iq - nqo)) CALL histwrite_phy(o_dtr_vdf(iq - nqo), d_tr_cl(:, :, iq - nqo)) CALL histwrite_phy(o_dtr_the(iq - nqo), d_tr_th(:, :, iq - nqo)) CALL histwrite_phy(o_dtr_con(iq - nqo), d_tr_cv(:, :, iq - nqo)) !--2D fields !--CO2 burden zx_tmp_fi2d = 0. DO k = 1, klev zx_tmp_fi2d(:) = zx_tmp_fi2d(:) + zmasse(:, k)*tr_seri(:, k, iq - nqo) ENDDO CALL histwrite_phy(o_trac_cum(iq - nqo), zx_tmp_fi2d) ENDDO !--iq !--CO2 net fluxes CALL histwrite_phy(o_flx_co2_land, fco2_land) CALL histwrite_phy(o_flx_co2_ocean, fco2_ocean) CALL histwrite_phy(o_flx_co2_ff, fco2_ff) CALL histwrite_phy(o_flx_co2_bb, fco2_bb) ENDIF !--type_trac co2i IF (ok_reprobus .and. type_trac == 'repr') THEN DO iq = 1, nbnas CALL histwrite_phy(o_nas(iq), nas(:, :, iq)) ENDDO ENDIF ENDIF !(iflag_phytrac==1) else ! (.NOT. vars_defined) !$omp MASTER !On finalise l'initialisation: CALL wxios_closedef() !$omp END MASTER !$omp BARRIER vars_defined = .TRUE. ENDIF !--.NOT.vars_defined END SUBROUTINE phys_output_write_xios END MODULE phys_output_write_xios_mod