! ! $Id: hines_gwd.F 1299 2010-01-20 14:27:21Z asima $ ! SUBROUTINE HINES_GWD(NLON,NLEV,DTIME,paphm1x, papm1x, I rlat,tx,ux,vx, O zustrhi,zvstrhi, O d_t_hin, d_u_hin, d_v_hin) C ######################################################################## C Parametrization of the momentum flux deposition due to a broad band C spectrum of gravity waves, following Hines (1997a,b), as coded by C McLANDRESS (1995). Modified by McFARLANE and MANZINI (1995-1997) C MAECHAM model stand alone version C ######################################################################## C C USE dimphy implicit none cym#include "dimensions.h" cym#include "dimphy.h" #include "YOEGWD.h" #include "YOMCST.h" INTEGER NAZMTH PARAMETER(NAZMTH=8) C INPUT ARGUMENTS. C ----- ---------- C C - 2D C PAPHM1 : HALF LEVEL PRESSURE (T-DT) C PAPM1 : FULL LEVEL PRESSURE (T-DT) C PTM1 : TEMPERATURE (T-DT) C PUM1 : ZONAL WIND (T-DT) C PVM1 : MERIDIONAL WIND (T-DT) C C REFERENCE. C ---------- C SEE MODEL DOCUMENTATION C C AUTHOR. C ------- C C N. MCFARLANE DKRZ-HAMBURG MAY 1995 C STAND ALONE E. MANZINI MPI-HAMBURG FEBRUARY 1997 C C BASED ON A COMBINATION OF THE OROGRAPHIC SCHEME BY N.MCFARLANE 1987 C AND THE HINES SCHEME AS CODED BY C. MCLANDRESS 1995. C C C cym INTEGER KLEVM1 C REAL PAPHM1(klon,klev+1), PAPM1(klon,KLEV) REAL PTM1(klon,KLEV), PUM1(klon,KLEV), PVM1(klon,KLEV) REAL PRFLUX(klon) C1 C1 C1 REAL RLAT(klon),COSLAT(KLON) C REAL TH(klon,KLEV), 2 UTENDGW(klon,KLEV), VTENDGW(klon,KLEV), 3 PRESSG(klon), 4 UHS(klon,KLEV), VHS(klon,KLEV), ZPR(klon) C * VERTICAL POSITIONING ARRAYS. REAL SGJ(klon,KLEV), SHJ(klon,KLEV), 1 SHXKJ(klon,KLEV), DSGJ(klon,KLEV) C * LOGICAL SWITCHES TO CONTROL ROOF DRAG, ENVELOP GW DRAG AND C * HINES' DOPPLER SPREADING EXTROWAVE GW DRAG. C * LOZPR IS TRUE FOR ZPR ENHANCEMENT C * WORK ARRAYS. REAL M_ALPHA(klon,KLEV,NAZMTH), V_ALPHA(klon,KLEV,NAZMTH), 1 SIGMA_ALPHA(klon,KLEV,NAZMTH), 1 SIGSQH_ALPHA(klon,KLEV,NAZMTH), 2 DRAG_U(klon,KLEV), DRAG_V(klon,KLEV), FLUX_U(klon,KLEV), 3 FLUX_V(klon,KLEV), HEAT(klon,KLEV), DIFFCO(klon,KLEV), 4 BVFREQ(klon,KLEV), DENSITY(klon,KLEV), SIGMA_T(klon,KLEV), 5 VISC_MOL(klon,KLEV), ALT(klon,KLEV), 6 SIGSQMCW(klon,KLEV,NAZMTH), 6 SIGMATM(klon,KLEV), 7 AK_ALPHA(klon,NAZMTH), K_ALPHA(klon,NAZMTH), 8 MMIN_ALPHA(klon,NAZMTH), I_ALPHA(klon,NAZMTH), 9 RMSWIND(klon), BVFBOT(klon), DENSBOT(klon) REAL SMOOTHR1(klon,KLEV), SMOOTHR2(klon,KLEV) REAL SIGALPMC(klon,KLEV,NAZMTH) REAL F2MOD(klon,KLEV) C * THES ARE THE INPUT PARAMETERS FOR HINES ROUTINE AND C * ARE SPECIFIED IN ROUTINE HINES_SETUP. SINCE THIS IS CALLED C * ONLY AT FIRST CALL TO THIS ROUTINE THESE VARIABLES MUST BE SAVED C * FOR USE AT SUBSEQUENT CALLS. THIS CAN BE AVOIDED BY CALLING C * HINES_SETUP IN MAIN PROGRAM AND PASSING THE PARAMETERS AS C * SUBROUTINE ARGUEMENTS. C REAL RMSCON INTEGER NMESSG, IPRINT, ILRMS INTEGER IFL C INTEGER NAZ,ICUTOFF,NSMAX,IHEATCAL REAL SLOPE,F1,F2,F3,F5,F6,KSTAR(KLON),ALT_CUTOFF,SMCO C C PROVIDED AS INPUT C integer nlon,nlev real dtime real paphm1x(nlon,nlev+1), papm1x(nlon,nlev) real ux(nlon,nlev), vx(nlon,nlev), tx(nlon,nlev) c c VARIABLES FOR OUTPUT c real d_t_hin(nlon,nlev),d_u_hin(nlon,nlev),d_v_hin(nlon,nlev) real zustrhi(nlon),zvstrhi(nlon) C C * LOGICAL SWITCHES TO CONTROL PRECIP ENHANCEMENT AND C * HINES' DOPPLER SPREADING EXTROWAVE GW DRAG. C * LOZPR IS TRUE FOR ZPR ENHANCEMENT C LOGICAL LOZPR, LORMS(klon) C C LOCAL PARAMETERS TO MAKE THINGS WORK (TEMPORARY VARIABLE) REAL RHOH2O,ZPCONS,RGOCP,ZLAT,DTTDSF,RATIO,HSCAL INTEGER I,J,L,JL,JK,LE,LREF,LREFP,LEVBOT C C DATA PARAMETERS NEEDED, EXPLAINED LATER REAL V0,VMIN,DMPSCAL,TAUFAC,HMIN,APIBT,CPART,FCRIT REAL PCRIT,PCONS INTEGER IPLEV,IERROR C C C PRINT *,' IT IS STARTED HINES GOING ON...' C C C C C* COMPUTATIONAL CONSTANTS. C ------------- ---------- C C d_t_hin(:,:)=0. RHOH2O=1000. ZPCONS = (1000.*86400.)/RHOH2O cym KLEVM1=KLEV-1 C do jl=kidia,kfdia PAPHM1(JL,1) = paphm1x(JL,klev+1) do jk=1,klev le=klev+1-jk PAPHM1(JL,JK+1) = paphm1x(JL,le) PAPM1(JL,JK) = papm1x(JL,le) PTM1(JL,JK) = tx(JL,le) PUM1(JL,JK) = ux(JL,le) PVM1(JL,JK) = vx(JL,le) enddo enddo C 100 CONTINUE C C Define constants and arrays needed for the ccc/mam gwd scheme C *Constants: RGOCP=RD/RCPD LREFP=KLEV-1 LREF=KLEV-2 C1 C1 *Arrays C1 DO 2101 JK=1,KLEV DO 2102 JL=KIDIA,KFDIA SHJ(JL,JK)=PAPM1(JL,JK)/PAPHM1(JL,klev+1) SGJ(JL,JK)=PAPM1(JL,JK)/PAPHM1(JL,klev+1) DSGJ(JL,JK)=(PAPHM1(JL,JK+1)-PAPHM1(JL,JK))/PAPHM1(JL,klev+1) SHXKJ(JL,JK)=(PAPM1(JL,JK)/PAPHM1(JL,klev+1))**RGOCP TH(JL,JK)= PTM1(JL,JK) 2102 CONTINUE 2101 CONTINUE CC DO 211 JL=KIDIA,KFDIA PRESSG(JL)=PAPHM1(JL,klev+1) 211 CONTINUE C C DO 301 JL=KIDIA,KFDIA PRFLUX(JL) = 0.0 ZPR(JL)=ZPCONS*PRFLUX(JL) ZLAT=(RLAT(JL)/180.)*RPI COSLAT(Jl)=COS(ZLAT) 301 CONTINUE C C 400 CONTINUE C C C C */######################################################################### */ */ C C * AUG. 14/95 - C. MCLANDRESS. C * SEP. 95 N. MCFARLANE. C C * THIS ROUTINE CALCULATES THE HORIZONTAL WIND TENDENCIES C * DUE TO MCFARLANE'S OROGRAPHIC GW DRAG SCHEME, HINES' C * DOPPLER SPREAD SCHEME FOR "EXTROWAVES" AND ADDS ON C * ROOF DRAG. IT IS BASED ON THE ROUTINE GWDFLX8. C C * LREFP IS THE INDEX OF THE MODEL LEVEL BELOW THE REFERENCE LEVEL C * I/O ARRAYS PASSED FROM MAIN. C * (PRESSG = SURFACE PRESSURE) C C C C C * CONSTANTS VALUES DEFINED IN DATA STATEMENT ARE : C * VMIN = MIMINUM WIND IN THE DIRECTION OF REFERENCE LEVEL C * WIND BEFORE WE CONSIDER BREAKING TO HAVE OCCURED. C * DMPSCAL = DAMPING TIME FOR GW DRAG IN SECONDS. C * TAUFAC = 1/(LENGTH SCALE). C * HMIN = MIMINUM ENVELOPE HEIGHT REQUIRED TO PRODUCE GW DRAG. C * V0 = VALUE OF WIND THAT APPROXIMATES ZERO. DATA VMIN / 5.0 /, V0 / 1.E-10 /, 1 TAUFAC/ 5.E-6 /, HMIN / 40000. /, 3 DMPSCAL / 6.5E+6 /, APIBT / 1.5708 /, 4 CPART / 0.7 /, FCRIT / 1. / C * HINES EXTROWAVE GWD CONSTANTS DEFINED IN DATA STATEMENT ARE: C * RMSCON = ROOT MEAN SQUARE GRAVITY WAVE WIND AT LOWEST LEVEL (M/S). C * NMESSG = UNIT NUMBER FOR PRINTED MESSAGES. C * IPRINT = 1 TO DO PRINT OUT SOME HINES ARRAYS. C * IFL = FIRST CALL FLAG TO HINES_SETUP ("SAVE" IT) C * PCRIT = CRITICAL VALUE OF ZPR (MM/D) C * IPLEV = LEVEL OF APPLICATION OF PRCIT C * PCONS = FACTOR OF ZPR ENHANCEMENT C DATA PCRIT / 5. /, PCONS / 4.75 / IPLEV = LREFP-1 C DATA RMSCON / 1.00 / 1 IPRINT / 2 /, NMESSG / 6 / DATA IFL / 0 / C LOZPR = .FALSE. C C----------------------------------------------------------------------- C C C C * SET ERROR FLAG IERROR = 0 C * SPECIFY VARIOUS PARAMETERS FOR HINES ROUTINE AT VERY FIRST CALL. C * (NOTE THAT ARRAY K_ALPHA IS SPECIFIED SO MAKE SURE THAT C * IT IS NOT OVERWRITTEN LATER ON). C CALL HINES_SETUP (NAZ,SLOPE,F1,F2,F3,F5,F6,KSTAR, 1 ICUTOFF,ALT_CUTOFF,SMCO,NSMAX,IHEATCAL, 2 K_ALPHA,IERROR,NMESSG,klon,NAZMTH,COSLAT) IF (IERROR.NE.0) GO TO 999 C C * START GWD CALCULATIONS. LREF = LREFP-1 C DO 105 J=1,NAZMTH DO 105 L=1,KLEV DO 105 I=kidia,klon SIGSQMCW(I,L,J) = 0. 105 CONTINUE c C * INITIALIZE NECESSARY ARRAYS. C DO 120 L=1,KLEV DO 120 I=KIDIA,KFDIA UTENDGW(I,L) = 0. VTENDGW(I,L) = 0. UHS(I,L) = 0. VHS(I,L) = 0. 120 CONTINUE C C * IF USING HINES SCHEME THEN CALCULATE B V FREQUENCY AT ALL POINTS C * AND SMOOTH BVFREQ. DO 130 L=2,KLEV DO 130 I=KIDIA,KFDIA DTTDSF=(TH(I,L)/SHXKJ(I,L)-TH(I,L-1)/ 1 SHXKJ(I,L-1))/(SHJ(I,L)-SHJ(I,L-1)) DTTDSF=MIN(DTTDSF, -5./SGJ(I,L)) BVFREQ(I,L)=SQRT(-DTTDSF*SGJ(I,L)*(SGJ(I,L)**RGOCP)/RD) 1 *RG/PTM1(I,L) 130 CONTINUE DO 135 L=1,KLEV DO 135 I=KIDIA,KFDIA IF(L.EQ.1) THEN BVFREQ(I,L) = BVFREQ(I,L+1) ENDIF IF(L.GT.1) THEN RATIO=5.*LOG(SGJ(I,L)/SGJ(I,L-1)) BVFREQ(I,L) = (BVFREQ(I,L-1) + RATIO*BVFREQ(I,L)) 1 /(1.+RATIO) ENDIF 135 CONTINUE C C 300 CONTINUE C * CALCULATE GW DRAG DUE TO HINES' EXTROWAVES C * SET MOLECULAR VISCOSITY TO A VERY SMALL VALUE. C * IF THE MODEL TOP IS GREATER THAN 100 KM THEN THE ACTUAL C * VISCOSITY COEFFICIENT COULD BE SPECIFIED HERE. DO 310 L=1,KLEV DO 310 I=KIDIA,KFDIA VISC_MOL(I,L) = 1.5E-5 DRAG_U(I,L) = 0. DRAG_V(I,L) = 0. FLUX_U(I,L) = 0. FLUX_V(I,L) = 0. HEAT(I,L) = 0. DIFFCO(I,L) = 0. 310 CONTINUE C * ALTITUDE AND DENSITY AT BOTTOM. DO 330 I=KIDIA,KFDIA HSCAL = RD * PTM1(I,KLEV) / RG DENSITY(I,KLEV) = SGJ(I,KLEV) * PRESSG(I) / (RG*HSCAL) ALT(I,KLEV) = 0. 330 CONTINUE C * ALTITUDE AND DENSITY AT REMAINING LEVELS. DO 340 L=KLEV-1,1,-1 DO 340 I=KIDIA,KFDIA HSCAL = RD * PTM1(I,L) / RG ALT(I,L) = ALT(I,L+1) + HSCAL * DSGJ(I,L) / SGJ(I,L) DENSITY(I,L) = SGJ(I,L) * PRESSG(I) / (RG*HSCAL) 340 CONTINUE C C * INITIALIZE SWITCHES FOR HINES GWD CALCULATION C ILRMS = 0 C DO 345 I=KIDIA,KFDIA LORMS(I) = .FALSE. 345 CONTINUE C C C * DEFILE BOTTOM LAUNCH LEVEL C LEVBOT = IPLEV C C * BACKGROUND WIND MINUS VALUE AT BOTTOM LAUNCH LEVEL. C DO 351 L=1,LEVBOT DO 351 I=KIDIA,KFDIA UHS(I,L) = PUM1(I,L) - PUM1(I,LEVBOT) VHS(I,L) = PVM1(I,L) - PVM1(I,LEVBOT) 351 CONTINUE C C * SPECIFY ROOT MEAN SQUARE WIND AT BOTTOM LAUNCH LEVEL. C DO 355 I=KIDIA,KFDIA RMSWIND(I) = RMSCON 355 CONTINUE IF (LOZPR) THEN DO 350 I=KIDIA,KFDIA IF (ZPR(I) .GT. PCRIT) THEN RMSWIND(I) = RMSCON > +( (ZPR(I)-PCRIT)/ZPR(I) )*PCONS ENDIF 350 CONTINUE ENDIF C DO 356 I=KIDIA,KFDIA IF (RMSWIND(I) .GT. 0.0) THEN ILRMS = ILRMS+1 LORMS(I) = .TRUE. ENDIF 356 CONTINUE C C * CALCULATE GWD (NOTE THAT DIFFUSION COEFFICIENT AND C * HEATING RATE ONLY CALCULATED IF IHEATCAL = 1). C IF ( ILRMS.GT.0 ) THEN C CALL HINES_EXTRO0 (DRAG_U,DRAG_V,HEAT,DIFFCO,FLUX_U,FLUX_V, 1 UHS,VHS,BVFREQ,DENSITY,VISC_MOL,ALT, 2 RMSWIND,K_ALPHA,M_ALPHA,V_ALPHA, 3 SIGMA_ALPHA,SIGSQH_ALPHA,AK_ALPHA, 4 MMIN_ALPHA,I_ALPHA,SIGMA_T,DENSBOT,BVFBOT, 5 1,IHEATCAL,ICUTOFF,IPRINT,NSMAX, 6 SMCO,ALT_CUTOFF,KSTAR,SLOPE, 7 F1,F2,F3,F5,F6,NAZ,SIGSQMCW,SIGMATM, 8 KIDIA,klon,1,LEVBOT,KLON,KLEV,NAZMTH, 9 LORMS,SMOOTHR1,SMOOTHR2, 9 SIGALPMC,F2MOD) C * ADD ON HINES' GWD TENDENCIES TO OROGRAPHIC TENDENCIES AND C * APPLY HINES' GW DRAG ON (UROW,VROW) WORK ARRAYS. DO 360 L=1,KLEV DO 360 I=KIDIA,KFDIA UTENDGW(I,L) = UTENDGW(I,L) + DRAG_U(I,L) VTENDGW(I,L) = VTENDGW(I,L) + DRAG_V(I,L) 360 CONTINUE C C * END OF HINES CALCULATIONS. C ENDIF C 500 CONTINUE C----------------------------------------------------------------------- C do jl=kidia,kfdia zustrhi(jl)=FLUX_U(jl,1) zvstrhi(jl)=FLUX_v(jl,1) do jk=1,klev le=klev-jk+1 d_u_hin(jl,JK) = UTENDGW(jl,le) * dtime d_v_hin(jl,JK) = VTENDGW(jl,le) * dtime enddo enddo c PRINT *,'UTENDGW:',UTENDGW C PRINT *,' HINES HAS BEEN COMPLETED (LONG ISNT IT...)' RETURN 999 CONTINUE C * IF ERROR DETECTED THEN ABORT. WRITE (NMESSG,6000) WRITE (NMESSG,6010) IERROR 6000 FORMAT (/' EXECUTION ABORTED IN GWDOREXV') 6010 FORMAT (' ERROR FLAG =',I4) C RETURN END */ */ SUBROUTINE HINES_EXTRO0 (DRAG_U,DRAG_V,HEAT,DIFFCO,FLUX_U,FLUX_V, 1 VEL_U,VEL_V,BVFREQ,DENSITY,VISC_MOL,ALT, 2 RMSWIND,K_ALPHA,M_ALPHA,V_ALPHA, 3 SIGMA_ALPHA,SIGSQH_ALPHA,AK_ALPHA, 4 MMIN_ALPHA,I_ALPHA,SIGMA_T,DENSB,BVFB, 5 IORDER,IHEATCAL,ICUTOFF,IPRINT,NSMAX, 6 SMCO,ALT_CUTOFF,KSTAR,SLOPE, 7 F1,F2,F3,F5,F6,NAZ,SIGSQMCW,SIGMATM, 8 IL1,IL2,LEV1,LEV2,NLONS,NLEVS,NAZMTH, 9 LORMS,SMOOTHR1,SMOOTHR2, 9 SIGALPMC,F2MOD) implicit none C C Main routine for Hines' "extrowave" gravity wave parameterization based C on Hines' Doppler spread theory. This routine calculates zonal C and meridional components of gravity wave drag, heating rates C and diffusion coefficient on a longitude by altitude grid. C No "mythical" lower boundary region calculation is made so it C is assumed that lowest level winds are weak (i.e, approximately zero). C C Aug. 13/95 - C. McLandress C SEPT. /95 - N.McFarlane C C Modifications: C C Output arguements: C C * DRAG_U = zonal component of gravity wave drag (m/s^2). C * DRAG_V = meridional component of gravity wave drag (m/s^2). C * HEAT = gravity wave heating (K/sec). C * DIFFCO = diffusion coefficient (m^2/sec) C * FLUX_U = zonal component of vertical momentum flux (Pascals) C * FLUX_V = meridional component of vertical momentum flux (Pascals) C C Input arguements: C C * VEL_U = background zonal wind component (m/s). C * VEL_V = background meridional wind component (m/s). C * BVFREQ = background Brunt Vassala frequency (radians/sec). C * DENSITY = background density (kg/m^3) C * VISC_MOL = molecular viscosity (m^2/s) C * ALT = altitude of momentum, density, buoyancy levels (m) C * (NOTE: levels ordered so that ALT(I,1) > ALT(I,2), etc.) C * RMSWIND = root mean square gravity wave wind at lowest level (m/s). C * K_ALPHA = horizontal wavenumber of each azimuth (1/m). C * IORDER = 1 means vertical levels are indexed from top down C * (i.e., highest level indexed 1 and lowest level NLEVS); C * .NE. 1 highest level is index NLEVS. C * IHEATCAL = 1 to calculate heating rates and diffusion coefficient. C * IPRINT = 1 to print out various arrays. C * ICUTOFF = 1 to exponentially damp GWD, heating and diffusion C * arrays above ALT_CUTOFF; otherwise arrays not modified. C * ALT_CUTOFF = altitude in meters above which exponential decay applied. C * SMCO = smoothing factor used to smooth cutoff vertical C * wavenumbers and total rms winds in vertical direction C * before calculating drag or heating C * (SMCO >= 1 ==> 1:SMCO:1 stencil used). C * NSMAX = number of times smoother applied ( >= 1), C * = 0 means no smoothing performed. C * KSTAR = typical gravity wave horizontal wavenumber (1/m). C * SLOPE = slope of incident vertical wavenumber spectrum C * (SLOPE must equal 1., 1.5 or 2.). C * F1 to F6 = Hines's fudge factors (F4 not needed since used for C * vertical flux of vertical momentum). C * NAZ = actual number of horizontal azimuths used. C * IL1 = first longitudinal index to use (IL1 >= 1). C * IL2 = last longitudinal index to use (IL1 <= IL2 <= NLONS). C * LEV1 = index of first level for drag calculation. C * LEV2 = index of last level for drag calculation C * (i.e., LEV1 < LEV2 <= NLEVS). C * NLONS = number of longitudes. C * NLEVS = number of vertical levels. C * NAZMTH = azimuthal array dimension (NAZMTH >= NAZ). C C Work arrays. C C * M_ALPHA = cutoff vertical wavenumber (1/m). C * V_ALPHA = wind component at each azimuth (m/s) and if IHEATCAL=1 C * holds vertical derivative of cutoff wavenumber. C * SIGMA_ALPHA = total rms wind in each azimuth (m/s). C * SIGSQH_ALPHA = portion of wind variance from waves having wave C * normals in the alpha azimuth (m/s). C * SIGMA_T = total rms horizontal wind (m/s). C * AK_ALPHA = spectral amplitude factor at each azimuth C * (i.e.,{AjKj}) in m^4/s^2. C * I_ALPHA = Hines' integral. C * MMIN_ALPHA = minimum value of cutoff wavenumber. C * DENSB = background density at bottom level. C * BVFB = buoyancy frequency at bottom level and C * work array for ICUTOFF = 1. C C * LORMS = .TRUE. for drag computation C INTEGER NAZ, NLONS, NLEVS, NAZMTH, IL1, IL2, LEV1, LEV2 INTEGER ICUTOFF, NSMAX, IORDER, IHEATCAL, IPRINT REAL KSTAR(NLONS), F1, F2, F3, F5, F6, SLOPE REAL ALT_CUTOFF, SMCO REAL DRAG_U(NLONS,NLEVS), DRAG_V(NLONS,NLEVS) REAL HEAT(NLONS,NLEVS), DIFFCO(NLONS,NLEVS) REAL FLUX_U(NLONS,NLEVS), FLUX_V(NLONS,NLEVS) REAL VEL_U(NLONS,NLEVS), VEL_V(NLONS,NLEVS) REAL BVFREQ(NLONS,NLEVS), DENSITY(NLONS,NLEVS) REAL VISC_MOL(NLONS,NLEVS), ALT(NLONS,NLEVS) REAL RMSWIND(NLONS), BVFB(NLONS), DENSB(NLONS) REAL SIGMA_T(NLONS,NLEVS), SIGSQMCW(NLONS,NLEVS,NAZMTH) REAL SIGMA_ALPHA(NLONS,NLEVS,NAZMTH), SIGMATM(NLONS,NLEVS) REAL SIGSQH_ALPHA(NLONS,NLEVS,NAZMTH) REAL M_ALPHA(NLONS,NLEVS,NAZMTH), V_ALPHA(NLONS,NLEVS,NAZMTH) REAL AK_ALPHA(NLONS,NAZMTH), K_ALPHA(NLONS,NAZMTH) REAL MMIN_ALPHA(NLONS,NAZMTH) , I_ALPHA(NLONS,NAZMTH) REAL SMOOTHR1(NLONS,NLEVS), SMOOTHR2(NLONS,NLEVS) REAL SIGALPMC(NLONS,NLEVS,NAZMTH) REAL F2MOD(NLONS,NLEVS) C LOGICAL LORMS(NLONS) C C Internal variables. C INTEGER LEVBOT, LEVTOP, I, N, L, LEV1P, LEV2M INTEGER ILPRT1, ILPRT2 C----------------------------------------------------------------------- C C PRINT *,' IN HINES_EXTRO0' LEV1P = LEV1 + 1 LEV2M = LEV2 - 1 C C Index of lowest altitude level (bottom of drag calculation). C LEVBOT = LEV2 LEVTOP = LEV1 IF (IORDER.NE.1) THEN write(6,1) 1 format(2x,' error: IORDER NOT ONE! ') END IF C C Buoyancy and density at bottom level. C DO 10 I = IL1,IL2 BVFB(I) = BVFREQ(I,LEVBOT) DENSB(I) = DENSITY(I,LEVBOT) 10 CONTINUE C C initialize some variables C DO 20 N = 1,NAZ DO 20 L=LEV1,LEV2 DO 20 I=IL1,IL2 M_ALPHA(I,L,N) = 0.0 20 CONTINUE DO 21 L=LEV1,LEV2 DO 21 I=IL1,IL2 SIGMA_T(I,L) = 0.0 21 CONTINUE DO 22 N = 1,NAZ DO 22 I=IL1,IL2 I_ALPHA(I,N) = 0.0 22 CONTINUE C C Compute azimuthal wind components from zonal and meridional winds. C CALL HINES_WIND ( V_ALPHA, ^ VEL_U, VEL_V, NAZ, ^ IL1, IL2, LEV1, LEV2, NLONS, NLEVS, NAZMTH ) C C Calculate cutoff vertical wavenumber and velocity variances. C CALL HINES_WAVNUM ( M_ALPHA, SIGMA_ALPHA, SIGSQH_ALPHA, SIGMA_T, ^ AK_ALPHA, V_ALPHA, VISC_MOL, DENSITY, DENSB, ^ BVFREQ, BVFB, RMSWIND, I_ALPHA, MMIN_ALPHA, ^ KSTAR, SLOPE, F1, F2, F3, NAZ, LEVBOT, ^ LEVTOP,IL1,IL2,NLONS,NLEVS,NAZMTH, SIGSQMCW, ^ SIGMATM,LORMS,SIGALPMC,F2MOD) C C Smooth cutoff wavenumbers and total rms velocity in the vertical C direction NSMAX times, using FLUX_U as temporary work array. C IF (NSMAX.GT.0) THEN DO 80 N = 1,NAZ DO 81 L=LEV1,LEV2 DO 81 I=IL1,IL2 SMOOTHR1(I,L) = M_ALPHA(I,L,N) 81 CONTINUE CALL VERT_SMOOTH (SMOOTHR1, ^ SMOOTHR2, SMCO, NSMAX, ^ IL1, IL2, LEV1, LEV2, NLONS, NLEVS ) DO 83 L=LEV1,LEV2 DO 83 I=IL1,IL2 M_ALPHA(I,L,N) = SMOOTHR1(I,L) 83 CONTINUE 80 CONTINUE CALL VERT_SMOOTH ( SIGMA_T, ^ SMOOTHR2, SMCO, NSMAX, ^ IL1, IL2, LEV1, LEV2, NLONS, NLEVS ) END IF C C Calculate zonal and meridional components of the C momentum flux and drag. C CALL HINES_FLUX ( FLUX_U, FLUX_V, DRAG_U, DRAG_V, ^ ALT, DENSITY, DENSB, M_ALPHA, ^ AK_ALPHA, K_ALPHA, SLOPE, NAZ, ^ IL1, IL2, LEV1, LEV2, NLONS, NLEVS, NAZMTH, ^ LORMS) C C Cutoff drag above ALT_CUTOFF, using BVFB as temporary work array. C IF (ICUTOFF.EQ.1) THEN CALL HINES_EXP ( DRAG_U, ^ BVFB, ALT, ALT_CUTOFF, IORDER, ^ IL1, IL2, LEV1, LEV2, NLONS, NLEVS ) CALL HINES_EXP ( DRAG_V, ^ BVFB, ALT, ALT_CUTOFF, IORDER, ^ IL1, IL2, LEV1, LEV2, NLONS, NLEVS ) END IF C C Print out various arrays for diagnostic purposes. C IF (IPRINT.EQ.1) THEN ILPRT1 = 15 ILPRT2 = 16 CALL HINES_PRINT ( FLUX_U, FLUX_V, DRAG_U, DRAG_V, ALT, ^ SIGMA_T, SIGMA_ALPHA, V_ALPHA, M_ALPHA, ^ 1, 1, 6, ILPRT1, ILPRT2, LEV1, LEV2, ^ NAZ, NLONS, NLEVS, NAZMTH) END IF C C If not calculating heating rate and diffusion coefficient then finished. C IF (IHEATCAL.NE.1) RETURN C C Calculate vertical derivative of cutoff wavenumber (store C in array V_ALPHA) using centered differences at interior gridpoints C and one-sided differences at first and last levels. C DO 130 N = 1,NAZ DO 100 L = LEV1P,LEV2M DO 90 I = IL1,IL2 V_ALPHA(I,L,N) = ( M_ALPHA(I,L+1,N) - M_ALPHA(I,L-1,N) ) ^ / ( ALT(I,L+1) - ALT(I,L-1) ) 90 CONTINUE 100 CONTINUE DO 110 I = IL1,IL2 V_ALPHA(I,LEV1,N) = ( M_ALPHA(I,LEV1P,N) - M_ALPHA(I,LEV1,N) ) ^ / ( ALT(I,LEV1P) - ALT(I,LEV1) ) 110 CONTINUE DO 120 I = IL1,IL2 V_ALPHA(I,LEV2,N) = ( M_ALPHA(I,LEV2,N) - M_ALPHA(I,LEV2M,N) ) ^ / ( ALT(I,LEV2) - ALT(I,LEV2M) ) 120 CONTINUE 130 CONTINUE C C Heating rate and diffusion coefficient. C CALL HINES_HEAT ( HEAT, DIFFCO, ^ M_ALPHA, V_ALPHA, AK_ALPHA, K_ALPHA, ^ BVFREQ, DENSITY, DENSB, SIGMA_T, VISC_MOL, ^ KSTAR, SLOPE, F2, F3, F5, F6, NAZ, ^ IL1, IL2, LEV1, LEV2, NLONS, NLEVS, NAZMTH) C C Finished. C RETURN C----------------------------------------------------------------------- END SUBROUTINE HINES_WAVNUM (M_ALPHA,SIGMA_ALPHA,SIGSQH_ALPHA,SIGMA_T, 1 AK_ALPHA,V_ALPHA,VISC_MOL,DENSITY,DENSB, 2 BVFREQ,BVFB,RMS_WIND,I_ALPHA,MMIN_ALPHA, 3 KSTAR,SLOPE,F1,F2,F3,NAZ,LEVBOT,LEVTOP, 4 IL1,IL2,NLONS,NLEVS,NAZMTH,SIGSQMCW, 5 SIGMATM,LORMS,SIGALPMC,F2MOD) C C This routine calculates the cutoff vertical wavenumber and velocity C variances on a longitude by altitude grid for the Hines' Doppler C spread gravity wave drag parameterization scheme. C NOTE: (1) only values of four or eight can be used for # azimuths (NAZ). C (2) only values of 1.0, 1.5 or 2.0 can be used for slope (SLOPE). C C Aug. 10/95 - C. McLandress C C Output arguements: C C * M_ALPHA = cutoff wavenumber at each azimuth (1/m). C * SIGMA_ALPHA = total rms wind in each azimuth (m/s). C * SIGSQH_ALPHA = portion of wind variance from waves having wave C * normals in the alpha azimuth (m/s). C * SIGMA_T = total rms horizontal wind (m/s). C * AK_ALPHA = spectral amplitude factor at each azimuth C * (i.e.,{AjKj}) in m^4/s^2. C C Input arguements: C C * V_ALPHA = wind component at each azimuth (m/s). C * VISC_MOL = molecular viscosity (m^2/s) C * DENSITY = background density (kg/m^3). C * DENSB = background density at model bottom (kg/m^3). C * BVFREQ = background Brunt Vassala frequency (radians/sec). C * BVFB = background Brunt Vassala frequency at model bottom. C * RMS_WIND = root mean square gravity wave wind at lowest level (m/s). C * KSTAR = typical gravity wave horizontal wavenumber (1/m). C * SLOPE = slope of incident vertical wavenumber spectrum C * (SLOPE = 1., 1.5 or 2.). C * F1,F2,F3 = Hines's fudge factors. C * NAZ = actual number of horizontal azimuths used (4 or 8). C * LEVBOT = index of lowest vertical level. C * LEVTOP = index of highest vertical level C * (NOTE: if LEVTOP < LEVBOT then level index C * increases from top down). C * IL1 = first longitudinal index to use (IL1 >= 1). C * IL2 = last longitudinal index to use (IL1 <= IL2 <= NLONS). C * NLONS = number of longitudes. C * NLEVS = number of vertical levels. C * NAZMTH = azimuthal array dimension (NAZMTH >= NAZ). C C * LORMS = .TRUE. for drag computation C C Input work arrays: C C * I_ALPHA = Hines' integral at a single level. C * MMIN_ALPHA = minimum value of cutoff wavenumber. C INTEGER NAZ, LEVBOT, LEVTOP, IL1, IL2, NLONS, NLEVS, NAZMTH REAL SLOPE, KSTAR(NLONS), F1, F2, F3 REAL M_ALPHA(NLONS,NLEVS,NAZMTH) REAL SIGMA_ALPHA(NLONS,NLEVS,NAZMTH) REAL SIGALPMC(NLONS,NLEVS,NAZMTH) REAL SIGSQH_ALPHA(NLONS,NLEVS,NAZMTH) REAL SIGSQMCW(NLONS,NLEVS,NAZMTH) REAL SIGMA_T(NLONS,NLEVS) REAL SIGMATM(NLONS,NLEVS) REAL AK_ALPHA(NLONS,NAZMTH) REAL V_ALPHA(NLONS,NLEVS,NAZMTH) REAL VISC_MOL(NLONS,NLEVS) REAL F2MOD(NLONS,NLEVS) REAL DENSITY(NLONS,NLEVS), DENSB(NLONS) REAL BVFREQ(NLONS,NLEVS), BVFB(NLONS), RMS_WIND(NLONS) REAL I_ALPHA(NLONS,NAZMTH), MMIN_ALPHA(NLONS,NAZMTH) C LOGICAL LORMS(NLONS) C C Internal variables. C INTEGER I, L, N, LSTART, LEND, LINCR, LBELOW REAL M_SUB_M_TURB, M_SUB_M_MOL, M_TRIAL REAL VISC, VISC_MIN, AZFAC, SP1 cc REAL N_OVER_M(1000), SIGFAC(1000) REAL N_OVER_M(NLONS), SIGFAC(NLONS) DATA VISC_MIN / 1.E-10 / C----------------------------------------------------------------------- C C PRINT *,'IN HINES_WAVNUM' SP1 = SLOPE + 1. C C Indices of levels to process. C IF (LEVBOT.GT.LEVTOP) THEN LSTART = LEVBOT - 1 LEND = LEVTOP LINCR = -1 ELSE write(6,1) 1 format(2x,' error: IORDER NOT ONE! ') END IF C C Use horizontal isotropy to calculate azimuthal variances at bottom level. C AZFAC = 1. / REAL(NAZ) DO 20 N = 1,NAZ DO 10 I = IL1,IL2 SIGSQH_ALPHA(I,LEVBOT,N) = AZFAC * RMS_WIND(I)**2 10 CONTINUE 20 CONTINUE C C Velocity variances at bottom level. C CALL HINES_SIGMA ( SIGMA_T, SIGMA_ALPHA, ^ SIGSQH_ALPHA, NAZ, LEVBOT, ^ IL1, IL2, NLONS, NLEVS, NAZMTH) c CALL HINES_SIGMA ( SIGMATM, SIGALPMC, ^ SIGSQMCW, NAZ, LEVBOT, ^ IL1, IL2, NLONS, NLEVS, NAZMTH) C C Calculate cutoff wavenumber and spectral amplitude factor C at bottom level where it is assumed that background winds vanish C and also initialize minimum value of cutoff wavnumber. C DO 40 N = 1,NAZ DO 30 I = IL1,IL2 IF (LORMS(I)) THEN M_ALPHA(I,LEVBOT,N) = BVFB(I) / ^ ( F1 * SIGMA_ALPHA(I,LEVBOT,N) ^ + F2 * SIGMA_T(I,LEVBOT) ) AK_ALPHA(I,N) = SIGSQH_ALPHA(I,LEVBOT,N) ^ / ( M_ALPHA(I,LEVBOT,N)**SP1 / SP1 ) MMIN_ALPHA(I,N) = M_ALPHA(I,LEVBOT,N) ENDIF 30 CONTINUE 40 CONTINUE C C Calculate quantities from the bottom upwards, C starting one level above bottom. C DO 150 L = LSTART,LEND,LINCR C C Level beneath present level. C LBELOW = L - LINCR C C Calculate N/m_M where m_M is maximum permissible value of the vertical C wavenumber (i.e., m > m_M are obliterated) and N is buoyancy frequency. C m_M is taken as the smaller of the instability-induced C wavenumber (M_SUB_M_TURB) and that imposed by molecular viscosity C (M_SUB_M_MOL). Since variance at this level is not yet known C use value at level below. C DO 50 I = IL1,IL2 IF (LORMS(I)) THEN c F2MFAC=SIGMATM(I,LBELOW)**2 F2MOD(I,LBELOW) =1.+ 2.*F2MFAC ^ / ( F2MFAC+SIGMA_T(I,LBELOW)**2 ) c VISC = AMAX1 ( VISC_MOL(I,L), VISC_MIN ) M_SUB_M_TURB = BVFREQ(I,L) ^ / ( F2 *F2MOD(I,LBELOW)*SIGMA_T(I,LBELOW)) M_SUB_M_MOL = (BVFREQ(I,L)*KSTAR(I)/VISC)**0.33333333/F3 IF (M_SUB_M_TURB .LT. M_SUB_M_MOL) THEN N_OVER_M(I) = F2 *F2MOD(I,LBELOW)*SIGMA_T(I,LBELOW) ELSE N_OVER_M(I) = BVFREQ(I,L) / M_SUB_M_MOL END IF ENDIF 50 CONTINUE C C Calculate cutoff wavenumber at this level. C DO 70 N = 1,NAZ DO 60 I = IL1,IL2 IF (LORMS(I)) THEN C C Calculate trial value (since variance at this level is not yet known C use value at level below). If trial value is negative or if it exceeds C minimum value (not permitted) then set it to minimum value. C M_TRIAL = BVFB(I) / ( F1 * ( SIGMA_ALPHA(I,LBELOW,N)+ ^ SIGALPMC(I,LBELOW,N)) + N_OVER_M(I) + V_ALPHA(I,L,N) ) IF (M_TRIAL.LE.0. .OR. M_TRIAL.GT.MMIN_ALPHA(I,N)) THEN M_TRIAL = MMIN_ALPHA(I,N) END IF M_ALPHA(I,L,N) = M_TRIAL C C Reset minimum value of cutoff wavenumber if necessary. C IF (M_ALPHA(I,L,N) .LT. MMIN_ALPHA(I,N)) THEN MMIN_ALPHA(I,N) = M_ALPHA(I,L,N) END IF C ENDIF 60 CONTINUE 70 CONTINUE C C Calculate the Hines integral at this level. C CALL HINES_INTGRL ( I_ALPHA, ^ V_ALPHA, M_ALPHA, BVFB, SLOPE, NAZ, ^ L, IL1, IL2, NLONS, NLEVS, NAZMTH, ^ LORMS ) C C Calculate the velocity variances at this level. C DO 80 I = IL1,IL2 SIGFAC(I) = DENSB(I) / DENSITY(I,L) ^ * BVFREQ(I,L) / BVFB(I) 80 CONTINUE DO 100 N = 1,NAZ DO 90 I = IL1,IL2 SIGSQH_ALPHA(I,L,N) = SIGFAC(I) * AK_ALPHA(I,N) ^ * I_ALPHA(I,N) 90 CONTINUE 100 CONTINUE CALL HINES_SIGMA ( SIGMA_T, SIGMA_ALPHA, ^ SIGSQH_ALPHA, NAZ, L, ^ IL1, IL2, NLONS, NLEVS, NAZMTH ) c CALL HINES_SIGMA ( SIGMATM, SIGALPMC, ^ SIGSQMCW, NAZ, L, ^ IL1, IL2, NLONS, NLEVS, NAZMTH ) C C End of level loop. C 150 CONTINUE C RETURN C----------------------------------------------------------------------- END SUBROUTINE HINES_WIND (V_ALPHA,VEL_U,VEL_V, 1 NAZ,IL1,IL2,LEV1,LEV2,NLONS,NLEVS,NAZMTH) C C This routine calculates the azimuthal horizontal background wind components C on a longitude by altitude grid for the case of 4 or 8 azimuths for C the Hines' Doppler spread GWD parameterization scheme. C C Aug. 7/95 - C. McLandress C C Output arguement: C C * V_ALPHA = background wind component at each azimuth (m/s). C * (note: first azimuth is in eastward direction C * and rotate in counterclockwise direction.) C C Input arguements: C C * VEL_U = background zonal wind component (m/s). C * VEL_V = background meridional wind component (m/s). C * NAZ = actual number of horizontal azimuths used (must be 4 or 8). C * IL1 = first longitudinal index to use (IL1 >= 1). C * IL2 = last longitudinal index to use (IL1 <= IL2 <= NLONS). C * LEV1 = first altitude level to use (LEV1 >=1). C * LEV2 = last altitude level to use (LEV1 < LEV2 <= NLEVS). C * NLONS = number of longitudes. C * NLEVS = number of vertical levels. C * NAZMTH = azimuthal array dimension (NAZMTH >= NAZ). C C Constants in DATA statements. C C * COS45 = cosine of 45 degrees. C * UMIN = minimum allowable value for zonal or meridional C * wind component (m/s). C C Subroutine arguements. C INTEGER NAZ, IL1, IL2, LEV1, LEV2 INTEGER NLONS, NLEVS, NAZMTH REAL V_ALPHA(NLONS,NLEVS,NAZMTH) REAL VEL_U(NLONS,NLEVS), VEL_V(NLONS,NLEVS) C C Internal variables. C INTEGER I, L REAL U, V, COS45, UMIN C DATA COS45 / 0.7071068 / DATA UMIN / 0.001 / C----------------------------------------------------------------------- C C Case with 4 azimuths. C C PRINT *,'IN HINES_WIND' IF (NAZ.EQ.4) THEN DO 20 L = LEV1,LEV2 DO 10 I = IL1,IL2 U = VEL_U(I,L) V = VEL_V(I,L) IF (ABS(U) .LT. UMIN) U = UMIN IF (ABS(V) .LT. UMIN) V = UMIN V_ALPHA(I,L,1) = U V_ALPHA(I,L,2) = V V_ALPHA(I,L,3) = - U V_ALPHA(I,L,4) = - V 10 CONTINUE 20 CONTINUE END IF C C Case with 8 azimuths. C IF (NAZ.EQ.8) THEN DO 40 L = LEV1,LEV2 DO 30 I = IL1,IL2 U = VEL_U(I,L) V = VEL_V(I,L) IF (ABS(U) .LT. UMIN) U = UMIN IF (ABS(V) .LT. UMIN) V = UMIN V_ALPHA(I,L,1) = U V_ALPHA(I,L,2) = COS45 * ( V + U ) V_ALPHA(I,L,3) = V V_ALPHA(I,L,4) = COS45 * ( V - U ) V_ALPHA(I,L,5) = - U V_ALPHA(I,L,6) = - V_ALPHA(I,L,2) V_ALPHA(I,L,7) = - V V_ALPHA(I,L,8) = - V_ALPHA(I,L,4) 30 CONTINUE 40 CONTINUE END IF C RETURN C----------------------------------------------------------------------- END SUBROUTINE HINES_FLUX (FLUX_U,FLUX_V,DRAG_U,DRAG_V,ALT,DENSITY, 1 DENSB,M_ALPHA,AK_ALPHA,K_ALPHA,SLOPE, 2 NAZ,IL1,IL2,LEV1,LEV2,NLONS,NLEVS,NAZMTH, 3 LORMS) C C Calculate zonal and meridional components of the vertical flux C of horizontal momentum and corresponding wave drag (force per unit mass) C on a longitude by altitude grid for the Hines' Doppler spread C GWD parameterization scheme. C NOTE: only 4 or 8 azimuths can be used. C C Aug. 6/95 - C. McLandress C C Output arguements: C C * FLUX_U = zonal component of vertical momentum flux (Pascals) C * FLUX_V = meridional component of vertical momentum flux (Pascals) C * DRAG_U = zonal component of drag (m/s^2). C * DRAG_V = meridional component of drag (m/s^2). C C Input arguements: C C * ALT = altitudes (m). C * DENSITY = background density (kg/m^3). C * DENSB = background density at bottom level (kg/m^3). C * M_ALPHA = cutoff vertical wavenumber (1/m). C * AK_ALPHA = spectral amplitude factor (i.e., {AjKj} in m^4/s^2). C * K_ALPHA = horizontal wavenumber (1/m). C * SLOPE = slope of incident vertical wavenumber spectrum. C * NAZ = actual number of horizontal azimuths used (must be 4 or 8). C * IL1 = first longitudinal index to use (IL1 >= 1). C * IL2 = last longitudinal index to use (IL1 <= IL2 <= NLONS). C * LEV1 = first altitude level to use (LEV1 >=1). C * LEV2 = last altitude level to use (LEV1 < LEV2 <= NLEVS). C * NLONS = number of longitudes. C * NLEVS = number of vertical levels. C * NAZMTH = azimuthal array dimension (NAZMTH >= NAZ). C C * LORMS = .TRUE. for drag computation C C Constant in DATA statement. C C * COS45 = cosine of 45 degrees. C C Subroutine arguements. C INTEGER NAZ, IL1, IL2, LEV1, LEV2 INTEGER NLONS, NLEVS, NAZMTH REAL SLOPE REAL FLUX_U(NLONS,NLEVS), FLUX_V(NLONS,NLEVS) REAL DRAG_U(NLONS,NLEVS), DRAG_V(NLONS,NLEVS) REAL ALT(NLONS,NLEVS), DENSITY(NLONS,NLEVS), DENSB(NLONS) REAL M_ALPHA(NLONS,NLEVS,NAZMTH) REAL AK_ALPHA(NLONS,NAZMTH), K_ALPHA(NLONS,NAZMTH) C LOGICAL LORMS(NLONS) C C Internal variables. C INTEGER I, L, LEV1P, LEV2M REAL COS45, PROD2, PROD4, PROD6, PROD8, DENDZ, DENDZ2 DATA COS45 / 0.7071068 / C----------------------------------------------------------------------- C LEV1P = LEV1 + 1 LEV2M = LEV2 - 1 LEV2P = LEV2 + 1 C C Sum over azimuths for case where SLOPE = 1. C IF (SLOPE.EQ.1.) THEN C C Case with 4 azimuths. C IF (NAZ.EQ.4) THEN DO 20 L = LEV1,LEV2 DO 10 I = IL1,IL2 FLUX_U(I,L) = AK_ALPHA(I,1)*K_ALPHA(I,1)*M_ALPHA(I,L,1) ^ - AK_ALPHA(I,3)*K_ALPHA(I,3)*M_ALPHA(I,L,3) FLUX_V(I,L) = AK_ALPHA(I,2)*K_ALPHA(I,2)*M_ALPHA(I,L,2) ^ - AK_ALPHA(I,4)*K_ALPHA(I,4)*M_ALPHA(I,L,4) 10 CONTINUE 20 CONTINUE END IF C C Case with 8 azimuths. C IF (NAZ.EQ.8) THEN DO 40 L = LEV1,LEV2 DO 30 I = IL1,IL2 PROD2 = AK_ALPHA(I,2)*K_ALPHA(I,2)*M_ALPHA(I,L,2) PROD4 = AK_ALPHA(I,4)*K_ALPHA(I,4)*M_ALPHA(I,L,4) PROD6 = AK_ALPHA(I,6)*K_ALPHA(I,6)*M_ALPHA(I,L,6) PROD8 = AK_ALPHA(I,8)*K_ALPHA(I,8)*M_ALPHA(I,L,8) FLUX_U(I,L) = ^ AK_ALPHA(I,1)*K_ALPHA(I,1)*M_ALPHA(I,L,1) ^ - AK_ALPHA(I,5)*K_ALPHA(I,5)*M_ALPHA(I,L,5) ^ + COS45 * ( PROD2 - PROD4 - PROD6 + PROD8 ) FLUX_V(I,L) = ^ AK_ALPHA(I,3)*K_ALPHA(I,3)*M_ALPHA(I,L,3) ^ - AK_ALPHA(I,7)*K_ALPHA(I,7)*M_ALPHA(I,L,7) ^ + COS45 * ( PROD2 + PROD4 - PROD6 - PROD8 ) 30 CONTINUE 40 CONTINUE END IF C END IF C C Sum over azimuths for case where SLOPE not equal to 1. C IF (SLOPE.NE.1.) THEN C C Case with 4 azimuths. C IF (NAZ.EQ.4) THEN DO 60 L = LEV1,LEV2 DO 50 I = IL1,IL2 FLUX_U(I,L) = ^ AK_ALPHA(I,1)*K_ALPHA(I,1)*M_ALPHA(I,L,1)**SLOPE ^ - AK_ALPHA(I,3)*K_ALPHA(I,3)*M_ALPHA(I,L,3)**SLOPE FLUX_V(I,L) = ^ AK_ALPHA(I,2)*K_ALPHA(I,2)*M_ALPHA(I,L,2)**SLOPE ^ - AK_ALPHA(I,4)*K_ALPHA(I,4)*M_ALPHA(I,L,4)**SLOPE 50 CONTINUE 60 CONTINUE END IF C C Case with 8 azimuths. C IF (NAZ.EQ.8) THEN DO 80 L = LEV1,LEV2 DO 70 I = IL1,IL2 PROD2 = AK_ALPHA(I,2)*K_ALPHA(I,2)*M_ALPHA(I,L,2)**SLOPE PROD4 = AK_ALPHA(I,4)*K_ALPHA(I,4)*M_ALPHA(I,L,4)**SLOPE PROD6 = AK_ALPHA(I,6)*K_ALPHA(I,6)*M_ALPHA(I,L,6)**SLOPE PROD8 = AK_ALPHA(I,8)*K_ALPHA(I,8)*M_ALPHA(I,L,8)**SLOPE FLUX_U(I,L) = ^ AK_ALPHA(I,1)*K_ALPHA(I,1)*M_ALPHA(I,L,1)**SLOPE ^ - AK_ALPHA(I,5)*K_ALPHA(I,5)*M_ALPHA(I,L,5)**SLOPE ^ + COS45 * ( PROD2 - PROD4 - PROD6 + PROD8 ) FLUX_V(I,L) = ^ AK_ALPHA(I,3)*K_ALPHA(I,3)*M_ALPHA(I,L,3)**SLOPE ^ - AK_ALPHA(I,7)*K_ALPHA(I,7)*M_ALPHA(I,L,7)**SLOPE ^ + COS45 * ( PROD2 + PROD4 - PROD6 - PROD8 ) 70 CONTINUE 80 CONTINUE END IF C END IF C C Calculate flux from sum. C DO 100 L = LEV1,LEV2 DO 90 I = IL1,IL2 FLUX_U(I,L) = FLUX_U(I,L) * DENSB(I) / SLOPE FLUX_V(I,L) = FLUX_V(I,L) * DENSB(I) / SLOPE 90 CONTINUE 100 CONTINUE C C Calculate drag at intermediate levels using centered differences C DO 120 L = LEV1P,LEV2M DO 110 I = IL1,IL2 IF (LORMS(I)) THEN ccc DENDZ2 = DENSITY(I,L) * ( ALT(I,L+1) - ALT(I,L-1) ) DENDZ2 = DENSITY(I,L) * ( ALT(I,L-1) - ALT(I,L) ) ccc DRAG_U(I,L) = - ( FLUX_U(I,L+1) - FLUX_U(I,L-1) ) / DENDZ2 DRAG_U(I,L) = - ( FLUX_U(I,L-1) - FLUX_U(I,L) ) / DENDZ2 ccc DRAG_V(I,L) = - ( FLUX_V(I,L+1) - FLUX_V(I,L-1) ) / DENDZ2 DRAG_V(I,L) = - ( FLUX_V(I,L-1) - FLUX_V(I,L) ) / DENDZ2 ENDIF 110 CONTINUE 120 CONTINUE C C Drag at first and last levels using one-side differences. C DO 130 I = IL1,IL2 IF (LORMS(I)) THEN DENDZ = DENSITY(I,LEV1) * ( ALT(I,LEV1) - ALT(I,LEV1P) ) DRAG_U(I,LEV1) = FLUX_U(I,LEV1) / DENDZ DRAG_V(I,LEV1) = FLUX_V(I,LEV1) / DENDZ ENDIF 130 CONTINUE DO 140 I = IL1,IL2 IF (LORMS(I)) THEN DENDZ = DENSITY(I,LEV2) * ( ALT(I,LEV2M) - ALT(I,LEV2) ) DRAG_U(I,LEV2) = - ( FLUX_U(I,LEV2M) - FLUX_U(I,LEV2) ) / DENDZ DRAG_V(I,LEV2) = - ( FLUX_V(I,LEV2M) - FLUX_V(I,LEV2) ) / DENDZ ENDIF 140 CONTINUE IF (NLEVS .GT. LEV2) THEN DO 150 I = IL1,IL2 IF (LORMS(I)) THEN DENDZ = DENSITY(I,LEV2P) * ( ALT(I,LEV2) - ALT(I,LEV2P) ) DRAG_U(I,LEV2P) = - FLUX_U(I,LEV2) / DENDZ DRAG_V(I,LEV2P) = - FLUX_V(I,LEV2) / DENDZ ENDIF 150 CONTINUE ENDIF C RETURN C----------------------------------------------------------------------- END SUBROUTINE HINES_HEAT (HEAT,DIFFCO,M_ALPHA,DMDZ_ALPHA, 1 AK_ALPHA,K_ALPHA,BVFREQ,DENSITY,DENSB, 2 SIGMA_T,VISC_MOL,KSTAR,SLOPE,F2,F3,F5,F6, 3 NAZ,IL1,IL2,LEV1,LEV2,NLONS,NLEVS,NAZMTH) C C This routine calculates the gravity wave induced heating and C diffusion coefficient on a longitude by altitude grid for C the Hines' Doppler spread gravity wave drag parameterization scheme. C C Aug. 6/95 - C. McLandress C C Output arguements: C C * HEAT = gravity wave heating (K/sec). C * DIFFCO = diffusion coefficient (m^2/sec) C C Input arguements: C C * M_ALPHA = cutoff vertical wavenumber (1/m). C * DMDZ_ALPHA = vertical derivative of cutoff wavenumber. C * AK_ALPHA = spectral amplitude factor of each azimuth C (i.e., {AjKj} in m^4/s^2). C * K_ALPHA = horizontal wavenumber of each azimuth (1/m). C * BVFREQ = background Brunt Vassala frequency (rad/sec). C * DENSITY = background density (kg/m^3). C * DENSB = background density at bottom level (kg/m^3). C * SIGMA_T = total rms horizontal wind (m/s). C * VISC_MOL = molecular viscosity (m^2/s). C * KSTAR = typical gravity wave horizontal wavenumber (1/m). C * SLOPE = slope of incident vertical wavenumber spectrum. C * F2,F3,F5,F6 = Hines's fudge factors. C * NAZ = actual number of horizontal azimuths used. C * IL1 = first longitudinal index to use (IL1 >= 1). C * IL2 = last longitudinal index to use (IL1 <= IL2 <= NLONS). C * LEV1 = first altitude level to use (LEV1 >=1). C * LEV2 = last altitude level to use (LEV1 < LEV2 <= NLEVS). C * NLONS = number of longitudes. C * NLEVS = number of vertical levels. C * NAZMTH = azimuthal array dimension (NAZMTH >= NAZ). C INTEGER NAZ, IL1, IL2, LEV1, LEV2, NLONS, NLEVS, NAZMTH REAL KSTAR(NLONS), SLOPE, F2, F3, F5, F6 REAL HEAT(NLONS,NLEVS), DIFFCO(NLONS,NLEVS) REAL M_ALPHA(NLONS,NLEVS,NAZMTH), DMDZ_ALPHA(NLONS,NLEVS,NAZMTH) REAL AK_ALPHA(NLONS,NAZMTH), K_ALPHA(NLONS,NAZMTH) REAL BVFREQ(NLONS,NLEVS), DENSITY(NLONS,NLEVS), DENSB(NLONS) REAL SIGMA_T(NLONS,NLEVS), VISC_MOL(NLONS,NLEVS) C C Internal variables. C INTEGER I, L, N REAL M_SUB_M_TURB, M_SUB_M_MOL, M_SUB_M, HEATNG REAL VISC, VISC_MIN, CPGAS, SM1 C C specific heat at constant pressure C DATA CPGAS / 1004. / C C minimum permissible viscosity C DATA VISC_MIN / 1.E-10 / C----------------------------------------------------------------------- C C Initialize heating array. C DO 20 L = 1,NLEVS DO 10 I = 1,NLONS HEAT(I,L) = 0. 10 CONTINUE 20 CONTINUE C C Perform sum over azimuths for case where SLOPE = 1. C IF (SLOPE.EQ.1.) THEN DO 50 N = 1,NAZ DO 40 L = LEV1,LEV2 DO 30 I = IL1,IL2 HEAT(I,L) = HEAT(I,L) + AK_ALPHA(I,N) * K_ALPHA(I,N) ^ * DMDZ_ALPHA(I,L,N) 30 CONTINUE 40 CONTINUE 50 CONTINUE END IF C C Perform sum over azimuths for case where SLOPE not 1. C IF (SLOPE.NE.1.) THEN SM1 = SLOPE - 1. DO 80 N = 1,NAZ DO 70 L = LEV1,LEV2 DO 60 I = IL1,IL2 HEAT(I,L) = HEAT(I,L) + AK_ALPHA(I,N) * K_ALPHA(I,N) ^ * M_ALPHA(I,L,N)**SM1 * DMDZ_ALPHA(I,L,N) 60 CONTINUE 70 CONTINUE 80 CONTINUE END IF C C Heating and diffusion. C DO 100 L = LEV1,LEV2 DO 90 I = IL1,IL2 C C Maximum permissible value of cutoff wavenumber is the smaller C of the instability-induced wavenumber (M_SUB_M_TURB) and C that imposed by molecular viscosity (M_SUB_M_MOL). C VISC = AMAX1 ( VISC_MOL(I,L), VISC_MIN ) M_SUB_M_TURB = BVFREQ(I,L) / ( F2 * SIGMA_T(I,L) ) M_SUB_M_MOL = (BVFREQ(I,L)*KSTAR(I)/VISC)**0.33333333/F3 M_SUB_M = AMIN1 ( M_SUB_M_TURB, M_SUB_M_MOL ) C HEATNG = - HEAT(I,L) * F5 * BVFREQ(I,L) / M_SUB_M ^ * DENSB(I) / DENSITY(I,L) DIFFCO(I,L) = F6 * HEATNG**0.33333333 / M_SUB_M**1.33333333 HEAT(I,L) = HEATNG / CPGAS C 90 CONTINUE 100 CONTINUE C RETURN C----------------------------------------------------------------------- END SUBROUTINE HINES_SIGMA (SIGMA_T,SIGMA_ALPHA,SIGSQH_ALPHA, 1 NAZ,LEV,IL1,IL2,NLONS,NLEVS,NAZMTH) C C This routine calculates the total rms and azimuthal rms horizontal C velocities at a given level on a longitude by altitude grid for C the Hines' Doppler spread GWD parameterization scheme. C NOTE: only four or eight azimuths can be used. C C Aug. 7/95 - C. McLandress C C Output arguements: C C * SIGMA_T = total rms horizontal wind (m/s). C * SIGMA_ALPHA = total rms wind in each azimuth (m/s). C C Input arguements: C C * SIGSQH_ALPHA = portion of wind variance from waves having wave C * normals in the alpha azimuth (m/s). C * NAZ = actual number of horizontal azimuths used (must be 4 or 8). C * LEV = altitude level to process. C * IL1 = first longitudinal index to use (IL1 >= 1). C * IL2 = last longitudinal index to use (IL1 <= IL2 <= NLONS). C * NLONS = number of longitudes. C * NLEVS = number of vertical levels. C * NAZMTH = azimuthal array dimension (NAZMTH >= NAZ). C C Subroutine arguements. C INTEGER LEV, NAZ, IL1, IL2 INTEGER NLONS, NLEVS, NAZMTH REAL SIGMA_T(NLONS,NLEVS) REAL SIGMA_ALPHA(NLONS,NLEVS,NAZMTH) REAL SIGSQH_ALPHA(NLONS,NLEVS,NAZMTH) C C Internal variables. C INTEGER I, N REAL SUM_EVEN, SUM_ODD C----------------------------------------------------------------------- C C Calculate azimuthal rms velocity for the 4 azimuth case. C IF (NAZ.EQ.4) THEN DO 10 I = IL1,IL2 SIGMA_ALPHA(I,LEV,1) = SQRT ( SIGSQH_ALPHA(I,LEV,1) ^ + SIGSQH_ALPHA(I,LEV,3) ) SIGMA_ALPHA(I,LEV,2) = SQRT ( SIGSQH_ALPHA(I,LEV,2) ^ + SIGSQH_ALPHA(I,LEV,4) ) SIGMA_ALPHA(I,LEV,3) = SIGMA_ALPHA(I,LEV,1) SIGMA_ALPHA(I,LEV,4) = SIGMA_ALPHA(I,LEV,2) 10 CONTINUE END IF C C Calculate azimuthal rms velocity for the 8 azimuth case. C IF (NAZ.EQ.8) THEN DO 20 I = IL1,IL2 SUM_ODD = ( SIGSQH_ALPHA(I,LEV,1) ^ + SIGSQH_ALPHA(I,LEV,3) ^ + SIGSQH_ALPHA(I,LEV,5) ^ + SIGSQH_ALPHA(I,LEV,7) ) / 2. SUM_EVEN = ( SIGSQH_ALPHA(I,LEV,2) ^ + SIGSQH_ALPHA(I,LEV,4) ^ + SIGSQH_ALPHA(I,LEV,6) ^ + SIGSQH_ALPHA(I,LEV,8) ) / 2. SIGMA_ALPHA(I,LEV,1) = SQRT ( SIGSQH_ALPHA(I,LEV,1) ^ + SIGSQH_ALPHA(I,LEV,5) + SUM_EVEN ) SIGMA_ALPHA(I,LEV,2) = SQRT ( SIGSQH_ALPHA(I,LEV,2) ^ + SIGSQH_ALPHA(I,LEV,6) + SUM_ODD ) SIGMA_ALPHA(I,LEV,3) = SQRT ( SIGSQH_ALPHA(I,LEV,3) ^ + SIGSQH_ALPHA(I,LEV,7) + SUM_EVEN ) SIGMA_ALPHA(I,LEV,4) = SQRT ( SIGSQH_ALPHA(I,LEV,4) ^ + SIGSQH_ALPHA(I,LEV,8) + SUM_ODD ) SIGMA_ALPHA(I,LEV,5) = SIGMA_ALPHA(I,LEV,1) SIGMA_ALPHA(I,LEV,6) = SIGMA_ALPHA(I,LEV,2) SIGMA_ALPHA(I,LEV,7) = SIGMA_ALPHA(I,LEV,3) SIGMA_ALPHA(I,LEV,8) = SIGMA_ALPHA(I,LEV,4) 20 CONTINUE END IF C C Calculate total rms velocity. C DO 50 I = IL1,IL2 SIGMA_T(I,LEV) = 0. 50 CONTINUE DO 70 N = 1,NAZ DO 60 I = IL1,IL2 SIGMA_T(I,LEV) = SIGMA_T(I,LEV) + SIGSQH_ALPHA(I,LEV,N) 60 CONTINUE 70 CONTINUE DO 80 I = IL1,IL2 SIGMA_T(I,LEV) = SQRT ( SIGMA_T(I,LEV) ) 80 CONTINUE C RETURN C----------------------------------------------------------------------- END SUBROUTINE HINES_INTGRL (I_ALPHA,V_ALPHA,M_ALPHA,BVFB,SLOPE, 1 NAZ,LEV,IL1,IL2,NLONS,NLEVS,NAZMTH, 2 LORMS) C C This routine calculates the vertical wavenumber integral C for a single vertical level at each azimuth on a longitude grid C for the Hines' Doppler spread GWD parameterization scheme. C NOTE: (1) only spectral slopes of 1, 1.5 or 2 are permitted. C (2) the integral is written in terms of the product QM C which by construction is always less than 1. Series C solutions are used for small |QM| and analytical solutions C for remaining values. C C Aug. 8/95 - C. McLandress C C Output arguement: C C * I_ALPHA = Hines' integral. C C Input arguements: C C * V_ALPHA = azimuthal wind component (m/s). C * M_ALPHA = azimuthal cutoff vertical wavenumber (1/m). C * BVFB = background Brunt Vassala frequency at model bottom. C * SLOPE = slope of initial vertical wavenumber spectrum C * (must use SLOPE = 1., 1.5 or 2.) C * NAZ = actual number of horizontal azimuths used. C * LEV = altitude level to process. C * IL1 = first longitudinal index to use (IL1 >= 1). C * IL2 = last longitudinal index to use (IL1 <= IL2 <= NLONS). C * NLONS = number of longitudes. C * NLEVS = number of vertical levels. C * NAZMTH = azimuthal array dimension (NAZMTH >= NAZ). C C * LORMS = .TRUE. for drag computation C C Constants in DATA statements: C C * QMIN = minimum value of Q_ALPHA (avoids indeterminant form of integral) C * QM_MIN = minimum value of Q_ALPHA * M_ALPHA (used to avoid numerical C * problems). C INTEGER LEV, NAZ, IL1, IL2, NLONS, NLEVS, NAZMTH REAL I_ALPHA(NLONS,NAZMTH) REAL V_ALPHA(NLONS,NLEVS,NAZMTH) REAL M_ALPHA(NLONS,NLEVS,NAZMTH) REAL BVFB(NLONS), SLOPE C LOGICAL LORMS(NLONS) C C Internal variables. C INTEGER I, N REAL Q_ALPHA, QM, SQRTQM, Q_MIN, QM_MIN C DATA Q_MIN / 1.0 /, QM_MIN / 0.01 / C----------------------------------------------------------------------- C C For integer value SLOPE = 1. C IF (SLOPE .EQ. 1.) THEN C DO 20 N = 1,NAZ DO 10 I = IL1,IL2 IF (LORMS(I)) THEN C Q_ALPHA = V_ALPHA(I,LEV,N) / BVFB(I) QM = Q_ALPHA * M_ALPHA(I,LEV,N) C C If |QM| is small then use first 4 terms series of Taylor series C expansion of integral in order to avoid indeterminate form of integral, C otherwise use analytical form of integral. C IF (ABS(Q_ALPHA).LT.Q_MIN .OR. ABS(QM).LT.QM_MIN) THEN IF (Q_ALPHA .EQ. 0.) THEN I_ALPHA(I,N) = M_ALPHA(I,LEV,N)**2 / 2. ELSE I_ALPHA(I,N) = ( QM**2/2. + QM**3/3. + QM**4/4. ^ + QM**5/5. ) / Q_ALPHA**2 END IF ELSE I_ALPHA(I,N) = - ( ALOG(1.-QM) + QM ) / Q_ALPHA**2 END IF C ENDIF 10 CONTINUE 20 CONTINUE C END IF C C For integer value SLOPE = 2. C IF (SLOPE .EQ. 2.) THEN C DO 40 N = 1,NAZ DO 30 I = IL1,IL2 IF (LORMS(I)) THEN C Q_ALPHA = V_ALPHA(I,LEV,N) / BVFB(I) QM = Q_ALPHA * M_ALPHA(I,LEV,N) C C If |QM| is small then use first 4 terms series of Taylor series C expansion of integral in order to avoid indeterminate form of integral, C otherwise use analytical form of integral. C IF (ABS(Q_ALPHA).LT.Q_MIN .OR. ABS(QM).LT.QM_MIN) THEN IF (Q_ALPHA .EQ. 0.) THEN I_ALPHA(I,N) = M_ALPHA(I,LEV,N)**3 / 3. ELSE I_ALPHA(I,N) = ( QM**3/3. + QM**4/4. + QM**5/5. ^ + QM**6/6. ) / Q_ALPHA**3 END IF ELSE I_ALPHA(I,N) = - ( ALOG(1.-QM) + QM + QM**2/2.) ^ / Q_ALPHA**3 END IF C ENDIF 30 CONTINUE 40 CONTINUE C END IF C C For real value SLOPE = 1.5 C IF (SLOPE .EQ. 1.5) THEN C DO 60 N = 1,NAZ DO 50 I = IL1,IL2 IF (LORMS(I)) THEN C Q_ALPHA = V_ALPHA(I,LEV,N) / BVFB(I) QM = Q_ALPHA * M_ALPHA(I,LEV,N) C C If |QM| is small then use first 4 terms series of Taylor series C expansion of integral in order to avoid indeterminate form of integral, C otherwise use analytical form of integral. C IF (ABS(Q_ALPHA).LT.Q_MIN .OR. ABS(QM).LT.QM_MIN) THEN IF (Q_ALPHA .EQ. 0.) THEN I_ALPHA(I,N) = M_ALPHA(I,LEV,N)**2.5 / 2.5 ELSE I_ALPHA(I,N) = ( QM/2.5 + QM**2/3.5 ^ + QM**3/4.5 + QM**4/5.5 ) ^ * M_ALPHA(I,LEV,N)**1.5 / Q_ALPHA END IF ELSE QM = ABS(QM) SQRTQM = SQRT(QM) IF (Q_ALPHA .GE. 0.) THEN I_ALPHA(I,N) = ( ALOG( (1.+SQRTQM)/(1.-SQRTQM) ) ^ -2.*SQRTQM*(1.+QM/3.) ) / Q_ALPHA**2.5 ELSE I_ALPHA(I,N) = 2. * ( ATAN(SQRTQM) + SQRTQM*(QM/3.-1.) ) ^ / ABS(Q_ALPHA)**2.5 END IF END IF C ENDIF 50 CONTINUE 60 CONTINUE C END IF C C If integral is negative (which in principal should not happen) then C print a message and some info since execution will abort when calculating C the variances. C c DO 80 N = 1,NAZ c DO 70 I = IL1,IL2 c IF (I_ALPHA(I,N).LT.0.) THEN c WRITE (6,*) c WRITE (6,*) '******************************' c WRITE (6,*) 'Hines integral I_ALPHA < 0 ' c WRITE (6,*) ' longitude I=',I c WRITE (6,*) ' azimuth N=',N c WRITE (6,*) ' level LEV=',LEV c WRITE (6,*) ' I_ALPHA =',I_ALPHA(I,N) c WRITE (6,*) ' V_ALPHA =',V_ALPHA(I,LEV,N) c WRITE (6,*) ' M_ALPHA =',M_ALPHA(I,LEV,N) c WRITE (6,*) ' Q_ALPHA =',V_ALPHA(I,LEV,N) / BVFB(I) c WRITE (6,*) ' QM =',V_ALPHA(I,LEV,N) / BVFB(I) c ^ * M_ALPHA(I,LEV,N) c WRITE (6,*) '******************************' c END IF c 70 CONTINUE c 80 CONTINUE C RETURN C----------------------------------------------------------------------- END SUBROUTINE HINES_SETUP (NAZ,SLOPE,F1,F2,F3,F5,F6,KSTAR, 1 ICUTOFF,ALT_CUTOFF,SMCO,NSMAX,IHEATCAL, 2 K_ALPHA,IERROR,NMESSG,NLONS,NAZMTH,COSLAT) C C This routine specifies various parameters needed for the C the Hines' Doppler spread gravity wave drag parameterization scheme. C C Aug. 8/95 - C. McLandress C C Output arguements: C C * NAZ = actual number of horizontal azimuths used C * (code set up presently for only NAZ = 4 or 8). C * SLOPE = slope of incident vertical wavenumber spectrum C * (code set up presently for SLOPE 1., 1.5 or 2.). C * F1 = "fudge factor" used in calculation of trial value of C * azimuthal cutoff wavenumber M_ALPHA (1.2 <= F1 <= 1.9). C * F2 = "fudge factor" used in calculation of maximum C * permissible instabiliy-induced cutoff wavenumber C * M_SUB_M_TURB (0.1 <= F2 <= 1.4). C * F3 = "fudge factor" used in calculation of maximum C * permissible molecular viscosity-induced cutoff wavenumber C * M_SUB_M_MOL (0.1 <= F2 <= 1.4). C * F5 = "fudge factor" used in calculation of heating rate C * (1 <= F5 <= 3). C * F6 = "fudge factor" used in calculation of turbulent C * diffusivity coefficient. C * KSTAR = typical gravity wave horizontal wavenumber (1/m) C * used in calculation of M_SUB_M_TURB. C * ICUTOFF = 1 to exponentially damp off GWD, heating and diffusion C * arrays above ALT_CUTOFF; otherwise arrays not modified. C * ALT_CUTOFF = altitude in meters above which exponential decay applied. C * SMCO = smoother used to smooth cutoff vertical wavenumbers C * and total rms winds before calculating drag or heating. C * (==> a 1:SMCO:1 stencil used; SMCO >= 1.). C * NSMAX = number of times smoother applied ( >= 1), C * = 0 means no smoothing performed. C * IHEATCAL = 1 to calculate heating rates and diffusion coefficient. C * = 0 means only drag and flux calculated. C * K_ALPHA = horizontal wavenumber of each azimuth (1/m) which C * is set here to KSTAR. C * IERROR = error flag. C * = 0 no errors. C * = 10 ==> NAZ > NAZMTH C * = 20 ==> invalid number of azimuths (NAZ must be 4 or 8). C * = 30 ==> invalid slope (SLOPE must be 1., 1.5 or 2.). C * = 40 ==> invalid smoother (SMCO must be >= 1.) C C Input arguements: C C * NMESSG = output unit number where messages to be printed. C * NLONS = number of longitudes. C * NAZMTH = azimuthal array dimension (NAZMTH >= NAZ). C INTEGER NAZ, NLONS, NAZMTH, IHEATCAL, ICUTOFF INTEGER NMESSG, NSMAX, IERROR REAL KSTAR(NLONS), SLOPE, F1, F2, F3, F5, F6, ALT_CUTOFF, SMCO REAL K_ALPHA(NLONS,NAZMTH),COSLAT(NLONS) REAL KSMIN, KSMAX C C Internal variables. C INTEGER I, N C----------------------------------------------------------------------- C C Specify constants. C NAZ = 8 SLOPE = 1. F1 = 1.5 F2 = 0.3 F3 = 1.0 F5 = 3.0 F6 = 1.0 KSMIN = 1.E-5 KSMAX = 1.E-4 DO I=1,NLONS KSTAR(I) = KSMIN/( COSLAT(I)+(KSMIN/KSMAX) ) ENDDO ICUTOFF = 1 ALT_CUTOFF = 105.E3 SMCO = 2.0 c SMCO = 1.0 NSMAX = 5 c NSMAX = 2 IHEATCAL = 0 C C Print information to output file. C c WRITE (NMESSG,6000) c 6000 FORMAT (/' Subroutine HINES_SETUP:') c WRITE (NMESSG,*) ' SLOPE = ', SLOPE c WRITE (NMESSG,*) ' NAZ = ', NAZ c WRITE (NMESSG,*) ' F1,F2,F3 = ', F1, F2, F3 c WRITE (NMESSG,*) ' F5,F6 = ', F5, F6 c WRITE (NMESSG,*) ' KSTAR = ', KSTAR c > ,' COSLAT = ', COSLAT c IF (ICUTOFF .EQ. 1) THEN c WRITE (NMESSG,*) ' Drag exponentially damped above ', c & ALT_CUTOFF/1.E3 c END IF c IF (NSMAX.LT.1 ) THEN c WRITE (NMESSG,*) ' No smoothing of cutoff wavenumbers, etc' c ELSE c WRITE (NMESSG,*) ' Cutoff wavenumbers and sig_t smoothed:' c WRITE (NMESSG,*) ' SMCO =', SMCO c WRITE (NMESSG,*) ' NSMAX =', NSMAX c END IF C C Check that things are setup correctly and log error if not C IERROR = 0 IF (NAZ .GT. NAZMTH) IERROR = 10 IF (NAZ.NE.4 .AND. NAZ.NE.8) IERROR = 20 IF (SLOPE.NE.1. .AND. SLOPE.NE.1.5 .AND. SLOPE.NE.2.) IERROR = 30 IF (SMCO .LT. 1.) IERROR = 40 C C Use single value for azimuthal-dependent horizontal wavenumber. C DO 20 N = 1,NAZ DO 10 I = 1,NLONS K_ALPHA(I,N) = KSTAR(I) 10 CONTINUE 20 CONTINUE C RETURN C----------------------------------------------------------------------- END SUBROUTINE HINES_PRINT (FLUX_U,FLUX_V,DRAG_U,DRAG_V,ALT,SIGMA_T, 1 SIGMA_ALPHA,V_ALPHA,M_ALPHA, 2 IU_PRINT,IV_PRINT,NMESSG, 3 ILPRT1,ILPRT2,LEVPRT1,LEVPRT2, 4 NAZ,NLONS,NLEVS,NAZMTH) C C Print out altitude profiles of various quantities from C Hines' Doppler spread gravity wave drag parameterization scheme. C (NOTE: only for NAZ = 4 or 8). C C Aug. 8/95 - C. McLandress C C Input arguements: C C * IU_PRINT = 1 to print out values in east-west direction. C * IV_PRINT = 1 to print out values in north-south direction. C * NMESSG = unit number for printed output. C * ILPRT1 = first longitudinal index to print. C * ILPRT2 = last longitudinal index to print. C * LEVPRT1 = first altitude level to print. C * LEVPRT2 = last altitude level to print. C INTEGER NAZ, ILPRT1, ILPRT2, LEVPRT1, LEVPRT2 INTEGER NLONS, NLEVS, NAZMTH INTEGER IU_PRINT, IV_PRINT, NMESSG REAL FLUX_U(NLONS,NLEVS), FLUX_V(NLONS,NLEVS) REAL DRAG_U(NLONS,NLEVS), DRAG_V(NLONS,NLEVS) REAL ALT(NLONS,NLEVS), SIGMA_T(NLONS,NLEVS) REAL SIGMA_ALPHA(NLONS,NLEVS,NAZMTH) REAL V_ALPHA(NLONS,NLEVS,NAZMTH), M_ALPHA(NLONS,NLEVS,NAZMTH) C C Internal variables. C INTEGER N_EAST, N_WEST, N_NORTH, N_SOUTH INTEGER I, L C----------------------------------------------------------------------- C C Azimuthal indices of cardinal directions. C N_EAST = 1 IF (NAZ.EQ.4) THEN N_WEST = 3 N_NORTH = 2 N_SOUTH = 4 ELSE IF (NAZ.EQ.8) THEN N_WEST = 5 N_NORTH = 3 N_SOUTH = 7 END IF C C Print out values for range of longitudes. C DO 100 I = ILPRT1,ILPRT2 C C Print east-west wind, sigmas, cutoff wavenumbers, flux and drag. C IF (IU_PRINT.EQ.1) THEN WRITE (NMESSG,*) WRITE (NMESSG,6001) I WRITE (NMESSG,6005) 6001 FORMAT ( 'Hines GW (east-west) at longitude I =',I3) 6005 FORMAT (15x,' U ',2x,'sig_E',2x,'sig_T',3x,'m_E', & 4x,'m_W',4x,'fluxU',5x,'gwdU') DO 10 L = LEVPRT1,LEVPRT2 WRITE (NMESSG,6701) ALT(I,L)/1.E3, V_ALPHA(I,L,N_EAST), & SIGMA_ALPHA(I,L,N_EAST), SIGMA_T(I,L), & M_ALPHA(I,L,N_EAST)*1.E3, & M_ALPHA(I,L,N_WEST)*1.E3, & FLUX_U(I,L)*1.E5, DRAG_U(I,L)*24.*3600. 10 CONTINUE 6701 FORMAT (' z=',f7.2,1x,3f7.1,2f7.3,f9.4,f9.3) END IF C C Print north-south winds, sigmas, cutoff wavenumbers, flux and drag. C IF (IV_PRINT.EQ.1) THEN WRITE(NMESSG,*) WRITE(NMESSG,6002) I 6002 FORMAT ( 'Hines GW (north-south) at longitude I =',I3) WRITE(NMESSG,6006) 6006 FORMAT (15x,' V ',2x,'sig_N',2x,'sig_T',3x,'m_N', & 4x,'m_S',4x,'fluxV',5x,'gwdV') DO 20 L = LEVPRT1,LEVPRT2 WRITE (NMESSG,6701) ALT(I,L)/1.E3, V_ALPHA(I,L,N_NORTH), & SIGMA_ALPHA(I,L,N_NORTH), SIGMA_T(I,L), & M_ALPHA(I,L,N_NORTH)*1.E3, & M_ALPHA(I,L,N_SOUTH)*1.E3, & FLUX_V(I,L)*1.E5, DRAG_V(I,L)*24.*3600. 20 CONTINUE END IF C 100 CONTINUE C RETURN C----------------------------------------------------------------------- END SUBROUTINE HINES_EXP (DATA,DATA_ZMAX,ALT,ALT_EXP,IORDER, 1 IL1,IL2,LEV1,LEV2,NLONS,NLEVS) C C This routine exponentially damps a longitude by altitude array C of data above a specified altitude. C C Aug. 13/95 - C. McLandress C C Output arguements: C C * DATA = modified data array. C C Input arguements: C C * DATA = original data array. C * ALT = altitudes. C * ALT_EXP = altitude above which exponential decay applied. C * IORDER = 1 means vertical levels are indexed from top down C * (i.e., highest level indexed 1 and lowest level NLEVS); C * .NE. 1 highest level is index NLEVS. C * IL1 = first longitudinal index to use (IL1 >= 1). C * IL2 = last longitudinal index to use (IL1 <= IL2 <= NLONS). C * LEV1 = first altitude level to use (LEV1 >=1). C * LEV2 = last altitude level to use (LEV1 < LEV2 <= NLEVS). C * NLONS = number of longitudes. C * NLEVS = number of vertical C C Input work arrays: C C * DATA_ZMAX = data values just above altitude ALT_EXP. C INTEGER IORDER, IL1, IL2, LEV1, LEV2, NLONS, NLEVS REAL ALT_EXP REAL DATA(NLONS,NLEVS), DATA_ZMAX(NLONS), ALT(NLONS,NLEVS) C C Internal variables. C INTEGER LEVBOT, LEVTOP, LINCR, I, L REAL HSCALE DATA HSCALE / 5.E3 / C----------------------------------------------------------------------- C C Index of lowest altitude level (bottom of drag calculation). C LEVBOT = LEV2 LEVTOP = LEV1 LINCR = 1 IF (IORDER.NE.1) THEN LEVBOT = LEV1 LEVTOP = LEV2 LINCR = -1 END IF C C Data values at first level above ALT_EXP. C DO 20 I = IL1,IL2 DO 10 L = LEVTOP,LEVBOT,LINCR IF (ALT(I,L) .GE. ALT_EXP) THEN DATA_ZMAX(I) = DATA(I,L) END IF 10 CONTINUE 20 CONTINUE C C Exponentially damp field above ALT_EXP to model top at L=1. C DO 40 L = 1,LEV2 DO 30 I = IL1,IL2 IF (ALT(I,L) .GE. ALT_EXP) THEN DATA(I,L) = DATA_ZMAX(I) * EXP( (ALT_EXP-ALT(I,L))/HSCALE ) END IF 30 CONTINUE 40 CONTINUE C RETURN C----------------------------------------------------------------------- END SUBROUTINE VERT_SMOOTH (DATA,WORK,COEFF,NSMOOTH, 1 IL1,IL2,LEV1,LEV2,NLONS,NLEVS) C C Smooth a longitude by altitude array in the vertical over a C specified number of levels using a three point smoother. C C NOTE: input array DATA is modified on output! C C Aug. 3/95 - C. McLandress C C Output arguement: C C * DATA = smoothed array (on output). C C Input arguements: C C * DATA = unsmoothed array of data (on input). C * WORK = work array of same dimension as DATA. C * COEFF = smoothing coefficient for a 1:COEFF:1 stencil. C * (e.g., COEFF = 2 will result in a smoother which C * weights the level L gridpoint by two and the two C * adjecent levels (L+1 and L-1) by one). C * NSMOOTH = number of times to smooth in vertical. C * (e.g., NSMOOTH=1 means smoothed only once, C * NSMOOTH=2 means smoothing repeated twice, etc.) C * IL1 = first longitudinal index to use (IL1 >= 1). C * IL2 = last longitudinal index to use (IL1 <= IL2 <= NLONS). C * LEV1 = first altitude level to use (LEV1 >=1). C * LEV2 = last altitude level to use (LEV1 < LEV2 <= NLEVS). C * NLONS = number of longitudes. C * NLEVS = number of vertical levels. C C Subroutine arguements. C INTEGER NSMOOTH, IL1, IL2, LEV1, LEV2, NLONS, NLEVS REAL COEFF REAL DATA(NLONS,NLEVS), WORK(NLONS,NLEVS) C C Internal variables. C INTEGER I, L, NS, LEV1P, LEV2M REAL SUM_WTS C----------------------------------------------------------------------- C C Calculate sum of weights. C SUM_WTS = COEFF + 2. C LEV1P = LEV1 + 1 LEV2M = LEV2 - 1 C C Smooth NSMOOTH times C DO 50 NS = 1,NSMOOTH C C Copy data into work array. C DO 20 L = LEV1,LEV2 DO 10 I = IL1,IL2 WORK(I,L) = DATA(I,L) 10 CONTINUE 20 CONTINUE C C Smooth array WORK in vertical direction and put into DATA. C DO 40 L = LEV1P,LEV2M DO 30 I = IL1,IL2 DATA(I,L) = ( WORK(I,L+1) + COEFF*WORK(I,L) + WORK(I,L-1) ) & / SUM_WTS 30 CONTINUE 40 CONTINUE C 50 CONTINUE C RETURN C----------------------------------------------------------------------- END