SUBROUTINE SRTM_TAUMOL28 & & ( KIDIA , KFDIA , KLEV,& & P_FAC00 , P_FAC01 , P_FAC10 , P_FAC11,& & K_JP , K_JT , K_JT1 , P_ONEMINUS,& & P_COLMOL , P_COLO2 , P_COLO3,& & K_LAYTROP,& & P_SFLUXZEN, P_TAUG , P_TAUR , PRMU0 & & ) ! Written by Eli J. Mlawer, Atmospheric & Environmental Research. ! BAND 28: 38000-50000 cm-1 (low - O3,O2; high - O3,O2) ! Modifications ! M.Hamrud 01-Oct-2003 CY28 Cleaning ! JJMorcrette 2003-02-24 adapted to ECMWF environment ! D.Salmond 31-Oct-2007 Vector version in the style of RRTM from Meteo France & NEC ! JJMorcrette 20010610 Flexible configuration for number of g-points USE PARKIND1 , ONLY : JPIM, JPRB USE YOMHOOK , ONLY : LHOOK, DR_HOOK, JPHOOK USE PARSRTM , ONLY : JPG USE YOESRTM , ONLY : NG28 USE YOESRTA28, ONLY : ABSA, ABSB, SFLUXREFC, RAYL, LAYREFFR, STRRAT USE YOESRTWN , ONLY : NSPA, NSPB IMPLICIT NONE !-- Output INTEGER(KIND=JPIM),INTENT(IN) :: KIDIA, KFDIA INTEGER(KIND=JPIM),INTENT(IN) :: KLEV REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC00(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC01(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC10(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC11(KIDIA:KFDIA,KLEV) INTEGER(KIND=JPIM),INTENT(IN) :: K_JP(KIDIA:KFDIA,KLEV) INTEGER(KIND=JPIM),INTENT(IN) :: K_JT(KIDIA:KFDIA,KLEV) INTEGER(KIND=JPIM),INTENT(IN) :: K_JT1(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_ONEMINUS(KIDIA:KFDIA) REAL(KIND=JPRB) ,INTENT(IN) :: P_COLMOL(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_COLO2(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_COLO3(KIDIA:KFDIA,KLEV) INTEGER(KIND=JPIM),INTENT(IN) :: K_LAYTROP(KIDIA:KFDIA) REAL(KIND=JPRB) ,INTENT(OUT) :: P_SFLUXZEN(KIDIA:KFDIA,JPG) REAL(KIND=JPRB) ,INTENT(OUT) :: P_TAUG(KIDIA:KFDIA,KLEV,JPG) REAL(KIND=JPRB) ,INTENT(OUT) :: P_TAUR(KIDIA:KFDIA,KLEV,JPG) REAL(KIND=JPRB) ,INTENT(IN) :: PRMU0(KIDIA:KFDIA) !- from INTFAC !- from INTIND !- from PRECISE !- from PROFDATA !- from SELF INTEGER(KIND=JPIM) :: IG, IND0, IND1, JS, I_LAY, I_LAYSOLFR(KIDIA:KFDIA), I_NLAYERS, IPLON REAL(KIND=JPRB) :: Z_FAC000, Z_FAC001, Z_FAC010, Z_FAC011, Z_FAC100, Z_FAC101,& & Z_FAC110, Z_FAC111, Z_FS, Z_SPECCOMB, Z_SPECMULT, Z_SPECPARM, & & Z_TAURAY REAL(KIND=JPHOOK) :: ZHOOK_HANDLE IF (LHOOK) CALL DR_HOOK('SRTM_TAUMOL28',0,ZHOOK_HANDLE) I_NLAYERS = KLEV ! Compute the optical depth by interpolating in ln(pressure), ! temperature, and appropriate species. Below LAYTROP, the water ! vapor self-continuum is interpolated (in temperature) separately. DO I_LAY = 1, I_NLAYERS DO IPLON = KIDIA, KFDIA IF (PRMU0(IPLON) > 0.0_JPRB) THEN IF (I_LAY <= K_LAYTROP(IPLON)) THEN Z_SPECCOMB = P_COLO3(IPLON,I_LAY) + STRRAT*P_COLO2(IPLON,I_LAY) Z_SPECPARM = P_COLO3(IPLON,I_LAY)/Z_SPECCOMB IF (Z_SPECPARM >= P_ONEMINUS(IPLON)) Z_SPECPARM = P_ONEMINUS(IPLON) Z_SPECMULT = 8.*(Z_SPECPARM) JS = 1 + INT(Z_SPECMULT) Z_FS = MOD(Z_SPECMULT, 1.0_JPRB ) ! Z_FAC000 = (1. - Z_FS) * P_FAC00(I_LAY) ! Z_FAC010 = (1. - Z_FS) * P_FAC10(I_LAY) ! Z_FAC100 = Z_FS * P_FAC00(I_LAY) ! Z_FAC110 = Z_FS * P_FAC10(I_LAY) ! Z_FAC001 = (1. - Z_FS) * P_FAC01(I_LAY) ! Z_FAC011 = (1. - Z_FS) * P_FAC11(I_LAY) ! Z_FAC101 = Z_FS * P_FAC01(I_LAY) ! Z_FAC111 = Z_FS * P_FAC11(I_LAY) IND0 = ((K_JP(IPLON,I_LAY)-1)*5+(K_JT(IPLON,I_LAY)-1))*NSPA(28) + JS IND1 = (K_JP(IPLON,I_LAY)*5+(K_JT1(IPLON,I_LAY)-1))*NSPA(28) + JS Z_TAURAY = P_COLMOL(IPLON,I_LAY) * RAYL ! DO IG = 1, NG(28) !CDIR UNROLL=NG28 DO IG = 1 , NG28 P_TAUG(IPLON,I_LAY,IG) = Z_SPECCOMB * & ! & (Z_FAC000 * ABSA(IND0,IG) + & ! & Z_FAC100 * ABSA(IND0+1,IG) + & ! & Z_FAC010 * ABSA(IND0+9,IG) + & ! & Z_FAC110 * ABSA(IND0+10,IG) + & ! & Z_FAC001 * ABSA(IND1,IG) + & ! & Z_FAC101 * ABSA(IND1+1,IG) + & ! & Z_FAC011 * ABSA(IND1+9,IG) + & ! & Z_FAC111 * ABSA(IND1+10,IG)) & (& & (1. - Z_FS) * ( ABSA(IND0,IG) * P_FAC00(IPLON,I_LAY) + & & ABSA(IND0+9,IG) * P_FAC10(IPLON,I_LAY) + & & ABSA(IND1,IG) * P_FAC01(IPLON,I_LAY) + & & ABSA(IND1+9,IG) * P_FAC11(IPLON,I_LAY) ) + & & Z_FS * ( ABSA(IND0+1,IG) * P_FAC00(IPLON,I_LAY) + & & ABSA(IND0+10,IG) * P_FAC10(IPLON,I_LAY) + & & ABSA(IND1+1,IG) * P_FAC01(IPLON,I_LAY) + & & ABSA(IND1+10,IG) * P_FAC11(IPLON,I_LAY) ) & & ) ! & + TAURAY ! SSA(LAY,IG) = TAURAY/TAUG(LAY,IG) P_TAUR(IPLON,I_LAY,IG) = Z_TAURAY ENDDO ENDIF ENDIF ENDDO ENDDO I_LAYSOLFR(:) = I_NLAYERS DO I_LAY = 1, I_NLAYERS DO IPLON = KIDIA, KFDIA IF (PRMU0(IPLON) > 0.0_JPRB) THEN IF (I_LAY >= K_LAYTROP(IPLON)+1) THEN IF (K_JP(IPLON,I_LAY-1) < LAYREFFR .AND. K_JP(IPLON,I_LAY) >= LAYREFFR) & & I_LAYSOLFR(IPLON) = I_LAY Z_SPECCOMB = P_COLO3(IPLON,I_LAY) + STRRAT*P_COLO2(IPLON,I_LAY) Z_SPECPARM = P_COLO3(IPLON,I_LAY)/Z_SPECCOMB IF (Z_SPECPARM >= P_ONEMINUS(IPLON)) Z_SPECPARM = P_ONEMINUS(IPLON) Z_SPECMULT = 4.*(Z_SPECPARM) JS = 1 + INT(Z_SPECMULT) Z_FS = MOD(Z_SPECMULT, 1.0_JPRB ) ! Z_FAC000 = (1. - Z_FS) * P_FAC00(I_LAY) ! Z_FAC010 = (1. - Z_FS) * P_FAC10(I_LAY) ! Z_FAC100 = Z_FS * P_FAC00(I_LAY) ! Z_FAC110 = Z_FS * P_FAC10(I_LAY) ! Z_FAC001 = (1. - Z_FS) * P_FAC01(I_LAY) ! Z_FAC011 = (1. - Z_FS) * P_FAC11(I_LAY) ! Z_FAC101 = Z_FS * P_FAC01(I_LAY) ! Z_FAC111 = Z_FS * P_FAC11(I_LAY) IND0 = ((K_JP(IPLON,I_LAY)-13)*5+(K_JT(IPLON,I_LAY)-1))*NSPB(28) + JS IND1 = ((K_JP(IPLON,I_LAY)-12)*5+(K_JT1(IPLON,I_LAY)-1))*NSPB(28) + JS Z_TAURAY = P_COLMOL(IPLON,I_LAY) * RAYL ! DO IG = 1, NG(28) !CDIR UNROLL=NG28 DO IG = 1 , NG28 P_TAUG(IPLON,I_LAY,IG) = Z_SPECCOMB * & ! & (Z_FAC000 * ABSB(IND0,IG) + & ! & Z_FAC100 * ABSB(IND0+1,IG) + & ! & Z_FAC010 * ABSB(IND0+5,IG) + & ! & Z_FAC110 * ABSB(IND0+6,IG) + & ! & Z_FAC001 * ABSB(IND1,IG) + & ! & Z_FAC101 * ABSB(IND1+1,IG) + & ! & Z_FAC011 * ABSB(IND1+5,IG) + & ! & Z_FAC111 * ABSB(IND1+6,IG)) & (& & (1. - Z_FS) * ( ABSB(IND0,IG) * P_FAC00(IPLON,I_LAY) + & & ABSB(IND0+5,IG) * P_FAC10(IPLON,I_LAY) + & & ABSB(IND1,IG) * P_FAC01(IPLON,I_LAY) + & & ABSB(IND1+5,IG) * P_FAC11(IPLON,I_LAY) ) + & & Z_FS * ( ABSB(IND0+1,IG) * P_FAC00(IPLON,I_LAY) + & & ABSB(IND0+6,IG) * P_FAC10(IPLON,I_LAY) + & & ABSB(IND1+1,IG) * P_FAC01(IPLON,I_LAY) + & & ABSB(IND1+6,IG) * P_FAC11(IPLON,I_LAY) ) & & ) ! & + TAURAY ! SSA(LAY,IG) = TAURAY/TAUG(LAY,IG) IF (I_LAY == I_LAYSOLFR(IPLON)) P_SFLUXZEN(IPLON,IG) = SFLUXREFC(IG,JS) & & + Z_FS * (SFLUXREFC(IG,JS+1) - SFLUXREFC(IG,JS)) ! The following actually improves this band by setting the solar ! spectrum at each g point equal to what would be computed if ! molecular oxygen was set to zero. But it is worse overall due to a ! compensating error with the previous band 27. ! IF (I_LAY == I_LAYSOLFR) P_SFLUXZEN(IPLON,IG) = SFLUXREFC(IG,5) P_TAUR(IPLON,I_LAY,IG) = Z_TAURAY ENDDO ENDIF ENDIF ENDDO ENDDO !----------------------------------------------------------------------- IF (LHOOK) CALL DR_HOOK('SRTM_TAUMOL28',1,ZHOOK_HANDLE) END SUBROUTINE SRTM_TAUMOL28