!---------------------------------------------------------------------------- SUBROUTINE RRTM_TAUMOL3 (KIDIA,KFDIA,KLEV,P_TAU,& & P_TAUAERL,P_FAC00,P_FAC01,P_FAC10,P_FAC11,P_FORFAC,P_FORFRAC,K_INDFOR,K_JP,K_JT,K_JT1,P_ONEMINUS,& & P_COLH2O,P_COLCO2,P_COLN2O,P_COLDRY,K_LAYTROP,P_SELFFAC,P_SELFFRAC,K_INDSELF,PFRAC, & & PRAT_H2OCO2, PRAT_H2OCO2_1,PMINORFRAC,KINDMINOR) ! BAND 3: 500-630 cm-1 (low - H2O,CO2; high - H2O,CO2) ! AUTHOR. ! ------- ! JJMorcrette, ECMWF ! MODIFICATIONS. ! -------------- ! M.Hamrud 01-Oct-2003 CY28 Cleaning ! NEC 25-Oct-2007 Optimisations ! JJMorcrette 20110613 flexible number of g-points ! ABozzo 20130517 updated to rrtmg_lw_v4.85: ! band 3: 500-630 cm-1 (low key - h2o,co2; low minor - n2o) ! (high key - h2o,co2; high minor - n2o) ! --------------------------------------------------------------------------- USE PARKIND1 ,ONLY : JPIM ,JPRB USE YOMHOOK ,ONLY : LHOOK, DR_HOOK, JPHOOK USE PARRRTM , ONLY : JPBAND USE YOERRTM , ONLY : JPGPT ,NG3 ,NGS2 USE YOERRTWN , ONLY : NSPA ,NSPB USE YOERRTA3 , ONLY : ABSA ,ABSB ,FRACREFA, FRACREFB,& & FORREF ,SELFREF , KA_MN2O , KB_MN2O USE YOERRTRF, ONLY : CHI_MLS IMPLICIT NONE INTEGER(KIND=JPIM),INTENT(IN) :: KIDIA INTEGER(KIND=JPIM),INTENT(IN) :: KFDIA INTEGER(KIND=JPIM),INTENT(IN) :: KLEV REAL(KIND=JPRB) ,INTENT(OUT) :: P_TAU(KIDIA:KFDIA,JPGPT,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_TAUAERL(KIDIA:KFDIA,KLEV,JPBAND) REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC00(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC01(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC10(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC11(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_FORFAC(KIDIA:KFDIA,KLEV) INTEGER(KIND=JPIM),INTENT(IN) :: K_JP(KIDIA:KFDIA,KLEV) INTEGER(KIND=JPIM),INTENT(IN) :: K_JT(KIDIA:KFDIA,KLEV) INTEGER(KIND=JPIM),INTENT(IN) :: K_JT1(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_ONEMINUS REAL(KIND=JPRB) ,INTENT(IN) :: P_COLH2O(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_COLCO2(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_COLN2O(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_COLDRY(KIDIA:KFDIA,KLEV) INTEGER(KIND=JPIM),INTENT(IN) :: K_LAYTROP(KIDIA:KFDIA) REAL(KIND=JPRB) ,INTENT(IN) :: P_SELFFAC(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_SELFFRAC(KIDIA:KFDIA,KLEV) INTEGER(KIND=JPIM),INTENT(IN) :: K_INDSELF(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(OUT) :: PFRAC(KIDIA:KFDIA,JPGPT,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: PRAT_H2OCO2(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: PRAT_H2OCO2_1(KIDIA:KFDIA,KLEV) INTEGER(KIND=JPIM),INTENT(IN) :: K_INDFOR(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_FORFRAC(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: PMINORFRAC(KIDIA:KFDIA,KLEV) INTEGER(KIND=JPIM),INTENT(IN) :: KINDMINOR(KIDIA:KFDIA,KLEV) ! --------------------------------------------------------------------------- REAL(KIND=JPRB) :: Z_SPECCOMB(KLEV),Z_SPECCOMB1(KLEV),Z_SPECCOMB_MN2O(KLEV), & & Z_SPECCOMB_PLANCK(KLEV) REAL(KIND=JPRB) :: ZREFRAT_PLANCK_A, ZREFRAT_PLANCK_B, ZREFRAT_M_A, ZREFRAT_M_B INTEGER(KIND=JPIM) :: IND0(KLEV),IND1(KLEV),INDS(KLEV),INDF(KLEV),INDM(KLEV) INTEGER(KIND=JPIM) :: IG, JS, JLAY, JS1,JMN2O,JPL INTEGER(KIND=JPIM) :: JLON REAL(KIND=JPRB) :: Z_FS, Z_SPECMULT, Z_SPECPARM, & & Z_FS1, Z_SPECMULT1, Z_SPECPARM1, & & Z_FMN2O, Z_FMN2OMF, Z_SPECMULT_MN2O, Z_SPECPARM_MN2O, & & Z_FPL, Z_SPECMULT_PLANCK, Z_SPECPARM_PLANCK REAL(KIND=JPRB) :: ZADJFAC,ZADJCOLN2O(KIDIA:KFDIA,KLEV),ZRATN2O,Z_CHI_N2O REAL(KIND=JPRB) :: Z_FAC000, Z_FAC100, Z_FAC200,& & Z_FAC010, Z_FAC110, Z_FAC210, & & Z_FAC001, Z_FAC101, Z_FAC201, & & Z_FAC011, Z_FAC111, Z_FAC211 REAL(KIND=JPRB) :: ZP, ZP4, ZFK0, ZFK1, ZFK2 REAL(KIND=JPRB) :: ZTAUFOR,ZTAUSELF,ZN2OM1,ZN2OM2,ZABSN2O,ZTAU_MAJOR,ZTAU_MAJOR1 REAL(KIND=JPHOOK) :: ZHOOK_HANDLE IF (LHOOK) CALL DR_HOOK('RRTM_TAUMOL3',0,ZHOOK_HANDLE) ! Compute the optical depth by interpolating in ln(pressure), ! temperature, and appropriate species. Below LAYTROP, the water ! vapor self-continuum is interpolated (in temperature) separately. ! Minor gas mapping levels: ! lower - n2o, p = 706.272 mbar, t = 278.94 k ! upper - n2o, p = 95.58 mbar, t = 215.7 k ! P = 212.725 mb ZREFRAT_PLANCK_A = CHI_MLS(1,9)/CHI_MLS(2,9) ! P = 95.58 mb ZREFRAT_PLANCK_B = CHI_MLS(1,13)/CHI_MLS(2,13) ! P = 706.270mb ZREFRAT_M_A = CHI_MLS(1,3)/CHI_MLS(2,3) ! P = 95.58 mb ZREFRAT_M_B = CHI_MLS(1,13)/CHI_MLS(2,13) ASSOCIATE(NFLEVG=>KLEV) DO JLAY = 1, KLEV DO JLON = KIDIA, KFDIA IF (JLAY <= K_LAYTROP(JLON)) THEN Z_SPECCOMB(JLAY) = P_COLH2O(JLON,JLAY) + PRAT_H2OCO2(JLON,JLAY)*P_COLCO2(JLON,JLAY) Z_SPECPARM = P_COLH2O(JLON,JLAY)/Z_SPECCOMB(JLAY) Z_SPECPARM=MIN(P_ONEMINUS,Z_SPECPARM) Z_SPECMULT = 8._JPRB*(Z_SPECPARM) JS = 1 + INT(Z_SPECMULT) Z_FS = MOD(Z_SPECMULT,1.0_JPRB) Z_SPECCOMB1(JLAY) = P_COLH2O(JLON,JLAY) + PRAT_H2OCO2_1(JLON,JLAY)*P_COLCO2(JLON,JLAY) Z_SPECPARM1 = P_COLH2O(JLON,JLAY)/Z_SPECCOMB1(JLAY) IF (Z_SPECPARM1 >= P_ONEMINUS) Z_SPECPARM1 = P_ONEMINUS Z_SPECMULT1 = 8._JPRB*(Z_SPECPARM1) JS1 = 1 + INT(Z_SPECMULT1) Z_FS1 = MOD(Z_SPECMULT1,1.0_JPRB) Z_SPECCOMB_MN2O(JLAY) = P_COLH2O(JLON,JLAY) + ZREFRAT_M_A*P_COLCO2(JLON,JLAY) Z_SPECPARM_MN2O = P_COLH2O(JLON,JLAY)/Z_SPECCOMB_MN2O(JLAY) IF (Z_SPECPARM_MN2O >= P_ONEMINUS) Z_SPECPARM_MN2O = P_ONEMINUS Z_SPECMULT_MN2O = 8._JPRB*Z_SPECPARM_MN2O JMN2O = 1 + INT(Z_SPECMULT_MN2O) Z_FMN2O = MOD(Z_SPECMULT_MN2O,1.0_JPRB) Z_FMN2OMF = PMINORFRAC(JLON,JLAY)*Z_FMN2O ! In atmospheres where the amount of N2O is too great to be considered ! a minor species, adjust the column amount of N2O by an empirical factor ! to obtain the proper contribution. Z_CHI_N2O = P_COLN2O(JLON,JLAY)/P_COLDRY(JLON,JLAY) ZRATN2O = 1.E20_JPRB*Z_CHI_N2O/CHI_MLS(4,K_JP(JLON,JLAY)+1) IF (ZRATN2O > 1.5_JPRB) THEN ZADJFAC = 0.5_JPRB+(ZRATN2O-0.5_JPRB)**0.65_JPRB ZADJCOLN2O(JLON,JLAY) = ZADJFAC*CHI_MLS(4,K_JP(JLON,JLAY)+1)*P_COLDRY(JLON,JLAY)*1.E-20_JPRB ELSE ZADJCOLN2O(JLON,JLAY) = P_COLN2O(JLON,JLAY) ENDIF Z_SPECCOMB_PLANCK(JLAY) = P_COLH2O(JLON,JLAY)+ZREFRAT_PLANCK_A*P_COLCO2(JLON,JLAY) Z_SPECPARM_PLANCK = P_COLH2O(JLON,JLAY)/Z_SPECCOMB_PLANCK(JLAY) IF (Z_SPECPARM_PLANCK >= P_ONEMINUS) Z_SPECPARM_PLANCK=P_ONEMINUS Z_SPECMULT_PLANCK = 8._JPRB*Z_SPECPARM_PLANCK JPL= 1 + INT(Z_SPECMULT_PLANCK) Z_FPL = MOD(Z_SPECMULT_PLANCK,1.0_JPRB) IND0(JLAY) = ((K_JP(JLON,JLAY)-1)*5+(K_JT(JLON,JLAY)-1))*NSPA(3) + JS IND1(JLAY) = (K_JP(JLON,JLAY)*5+(K_JT1(JLON,JLAY)-1))*NSPA(3) + JS1 INDS(JLAY) = K_INDSELF(JLON,JLAY) INDF(JLAY) = K_INDFOR(JLON,JLAY) INDM(JLAY) = KINDMINOR(JLON,JLAY) IF (Z_SPECPARM < 0.125_JPRB) THEN ZP = Z_FS - 1 ZP4 = ZP**4 ZFK0 = ZP4 ZFK1 = 1 - ZP - 2.0_JPRB*ZP4 ZFK2 = ZP + ZP4 Z_FAC000 = ZFK0*P_FAC00(JLON,JLAY) Z_FAC100 = ZFK1*P_FAC00(JLON,JLAY) Z_FAC200 = ZFK2*P_FAC00(JLON,JLAY) Z_FAC010 = ZFK0*P_FAC10(JLON,JLAY) Z_FAC110 = ZFK1*P_FAC10(JLON,JLAY) Z_FAC210 = ZFK2*P_FAC10(JLON,JLAY) ELSEIF (Z_SPECPARM > 0.875_JPRB) THEN ZP = -Z_FS ZP4 = ZP**4 ZFK0 = ZP4 ZFK1 = 1 - ZP - 2.0_JPRB*ZP4 ZFK2 = ZP + ZP4 Z_FAC000 = ZFK0*P_FAC00(JLON,JLAY) Z_FAC100 = ZFK1*P_FAC00(JLON,JLAY) Z_FAC200 = ZFK2*P_FAC00(JLON,JLAY) Z_FAC010 = ZFK0*P_FAC10(JLON,JLAY) Z_FAC110 = ZFK1*P_FAC10(JLON,JLAY) Z_FAC210 = ZFK2*P_FAC10(JLON,JLAY) ELSE Z_FAC000 = (1._JPRB - Z_FS) * P_FAC00(JLON,JLAY) Z_FAC010 = (1._JPRB - Z_FS) * P_FAC10(JLON,JLAY) Z_FAC100 = Z_FS * P_FAC00(JLON,JLAY) Z_FAC110 = Z_FS * P_FAC10(JLON,JLAY) ENDIF IF (Z_SPECPARM1 < 0.125_JPRB) THEN ZP = Z_FS1 - 1 ZP4 = ZP**4 ZFK0 = ZP4 ZFK1 = 1 - ZP - 2.0_JPRB*ZP4 ZFK2 = ZP + ZP4 Z_FAC001 = ZFK0*P_FAC01(JLON,JLAY) Z_FAC101 = ZFK1*P_FAC01(JLON,JLAY) Z_FAC201 = ZFK2*P_FAC01(JLON,JLAY) Z_FAC011 = ZFK0*P_FAC11(JLON,JLAY) Z_FAC111 = ZFK1*P_FAC11(JLON,JLAY) Z_FAC211 = ZFK2*P_FAC11(JLON,JLAY) ELSEIF (Z_SPECPARM1 > 0.875_JPRB) THEN ZP = -Z_FS1 ZP4 = ZP**4 ZFK0 = ZP4 ZFK1 = 1 - ZP - 2.0_JPRB*ZP4 ZFK2 = ZP + ZP4 Z_FAC001 = ZFK0*P_FAC01(JLON,JLAY) Z_FAC101 = ZFK1*P_FAC01(JLON,JLAY) Z_FAC201 = ZFK2*P_FAC01(JLON,JLAY) Z_FAC011 = ZFK0*P_FAC11(JLON,JLAY) Z_FAC111 = ZFK1*P_FAC11(JLON,JLAY) Z_FAC211 = ZFK2*P_FAC11(JLON,JLAY) ELSE Z_FAC001 = (1._JPRB - Z_FS1) * P_FAC01(JLON,JLAY) Z_FAC011 = (1._JPRB - Z_FS1) * P_FAC11(JLON,JLAY) Z_FAC101 = Z_FS1 * P_FAC01(JLON,JLAY) Z_FAC111 = Z_FS1 * P_FAC11(JLON,JLAY) ENDIF !-- DS_000515 !CDIR UNROLL=NG3 DO IG = 1, NG3 !-- DS_000515 ZTAUSELF = P_SELFFAC(JLON,JLAY)* (SELFREF(INDS(JLAY),IG) + P_SELFFRAC(JLON,JLAY) * & & (SELFREF(INDS(JLAY)+1,IG) - SELFREF(INDS(JLAY),IG))) ZTAUFOR = P_FORFAC(JLON,JLAY) * (FORREF(INDF(JLAY),IG) + P_FORFRAC(JLON,JLAY) * & & (FORREF(INDF(JLAY)+1,IG) - FORREF(INDF(JLAY),IG))) ZN2OM1 = KA_MN2O(JMN2O,INDM(JLAY),IG) + Z_FMN2O * & & (KA_MN2O(JMN2O+1,INDM(JLAY),IG) - KA_MN2O(JMN2O,INDM(JLAY),IG)) ZN2OM2 = KA_MN2O(JMN2O,INDM(JLAY)+1,IG) + Z_FMN2O * & & (KA_MN2O(JMN2O+1,INDM(JLAY)+1,IG) - KA_MN2O(JMN2O,INDM(JLAY)+1,IG)) ZABSN2O = ZN2OM1 + PMINORFRAC(JLON,JLAY) * (ZN2OM2 - ZN2OM1) IF (Z_SPECPARM < 0.125_JPRB) THEN ZTAU_MAJOR = Z_SPECCOMB(JLAY) * & & (Z_FAC000 * ABSA(IND0(JLAY),IG) + & & Z_FAC100 * ABSA(IND0(JLAY)+1,IG) + & & Z_FAC200 * ABSA(IND0(JLAY)+2,IG) + & & Z_FAC010 * ABSA(IND0(JLAY)+9,IG) + & & Z_FAC110 * ABSA(IND0(JLAY)+10,IG) + & & Z_FAC210 * ABSA(IND0(JLAY)+11,IG)) ELSEIF (Z_SPECPARM > 0.875_JPRB) THEN ZTAU_MAJOR = Z_SPECCOMB(JLAY) * & & (Z_FAC200 * ABSA(IND0(JLAY)-1,IG) + & & Z_FAC100 * ABSA(IND0(JLAY),IG) + & & Z_FAC000 * ABSA(IND0(JLAY)+1,IG) + & & Z_FAC210 * ABSA(IND0(JLAY)+8,IG) + & & Z_FAC110 * ABSA(IND0(JLAY)+9,IG) + & & Z_FAC010 * ABSA(IND0(JLAY)+10,IG)) ELSE ZTAU_MAJOR = Z_SPECCOMB(JLAY) * & & (Z_FAC000 * ABSA(IND0(JLAY),IG) + & & Z_FAC100 * ABSA(IND0(JLAY)+1,IG) + & & Z_FAC010 * ABSA(IND0(JLAY)+9,IG) + & & Z_FAC110 * ABSA(IND0(JLAY)+10,IG)) ENDIF IF (Z_SPECPARM1 < 0.125_JPRB) THEN ZTAU_MAJOR1 = Z_SPECCOMB1(JLAY) * & & (Z_FAC001 * ABSA(IND1(JLAY),IG) + & & Z_FAC101 * ABSA(IND1(JLAY)+1,IG) + & & Z_FAC201 * ABSA(IND1(JLAY)+2,IG) + & & Z_FAC011 * ABSA(IND1(JLAY)+9,IG) + & & Z_FAC111 * ABSA(IND1(JLAY)+10,IG) + & & Z_FAC211 * ABSA(IND1(JLAY)+11,IG)) ELSEIF (Z_SPECPARM1 > 0.875_JPRB) THEN ZTAU_MAJOR1 = Z_SPECCOMB1(JLAY) * & & (Z_FAC201 * ABSA(IND1(JLAY)-1,IG) + & & Z_FAC101 * ABSA(IND1(JLAY),IG) + & & Z_FAC001 * ABSA(IND1(JLAY)+1,IG) + & & Z_FAC211 * ABSA(IND1(JLAY)+8,IG) + & & Z_FAC111 * ABSA(IND1(JLAY)+9,IG) + & & Z_FAC011 * ABSA(IND1(JLAY)+10,IG)) ELSE ZTAU_MAJOR1 = Z_SPECCOMB1(JLAY) * & & (Z_FAC001 * ABSA(IND1(JLAY),IG) + & & Z_FAC101 * ABSA(IND1(JLAY)+1,IG) + & & Z_FAC011 * ABSA(IND1(JLAY)+9,IG) + & & Z_FAC111 * ABSA(IND1(JLAY)+10,IG)) ENDIF P_TAU(JLON,NGS2+IG,JLAY) = ZTAU_MAJOR + ZTAU_MAJOR1 & & + ZTAUSELF + ZTAUFOR & & + ZADJCOLN2O(JLON,JLAY)*ZABSN2O & & + P_TAUAERL(JLON,JLAY,3) !if (JPL < 1) call abort PFRAC(JLON,NGS2+IG,JLAY) = FRACREFA(IG,JPL) + Z_FPL *& & (FRACREFA(IG,JPL+1) - FRACREFA(IG,JPL)) ENDDO ENDIF IF (JLAY > K_LAYTROP(JLON)) THEN Z_SPECCOMB(JLAY) = P_COLH2O(JLON,JLAY) + PRAT_H2OCO2(JLON,JLAY)*P_COLCO2(JLON,JLAY) Z_SPECPARM = P_COLH2O(JLON,JLAY)/Z_SPECCOMB(JLAY) Z_SPECPARM=MIN(P_ONEMINUS,Z_SPECPARM) Z_SPECMULT = 4._JPRB*(Z_SPECPARM) JS = 1 + INT(Z_SPECMULT) Z_FS = MOD(Z_SPECMULT,1.0_JPRB) Z_SPECCOMB1(JLAY) = P_COLH2O(JLON,JLAY) + PRAT_H2OCO2_1(JLON,JLAY)*P_COLCO2(JLON,JLAY) Z_SPECPARM1 = P_COLH2O(JLON,JLAY)/Z_SPECCOMB1(JLAY) IF (Z_SPECPARM1 >= P_ONEMINUS) Z_SPECPARM1 = P_ONEMINUS Z_SPECMULT1 = 4._JPRB*(Z_SPECPARM1) JS1 = 1 + INT(Z_SPECMULT1) Z_FS1 = MOD(Z_SPECMULT1,1.0_JPRB) Z_FAC000 = (1._JPRB - Z_FS) * P_FAC00(JLON,JLAY) Z_FAC010 = (1._JPRB - Z_FS) * P_FAC10(JLON,JLAY) Z_FAC100 = Z_FS * P_FAC00(JLON,JLAY) Z_FAC110 = Z_FS * P_FAC10(JLON,JLAY) Z_FAC001 = (1._JPRB - Z_FS1) * P_FAC01(JLON,JLAY) Z_FAC011 = (1._JPRB - Z_FS1) * P_FAC11(JLON,JLAY) Z_FAC101 = Z_FS1 * P_FAC01(JLON,JLAY) Z_FAC111 = Z_FS1 * P_FAC11(JLON,JLAY) Z_SPECCOMB_MN2O(JLAY) = P_COLH2O(JLON,JLAY) + ZREFRAT_M_B*P_COLCO2(JLON,JLAY) Z_SPECPARM_MN2O = P_COLH2O(JLON,JLAY)/Z_SPECCOMB_MN2O(JLAY) IF (Z_SPECPARM_MN2O >= P_ONEMINUS) Z_SPECPARM_MN2O = P_ONEMINUS Z_SPECMULT_MN2O = 4._JPRB*Z_SPECPARM_MN2O JMN2O = 1 + INT(Z_SPECMULT_MN2O) Z_FMN2O = MOD(Z_SPECMULT_MN2O,1.0_JPRB) Z_FMN2OMF = PMINORFRAC(JLON,JLAY)*Z_FMN2O ! In atmospheres where the amount of N2O is too great to be considered ! a minor species, adjust the column amount of N2O by an empirical factor ! to obtain the proper contribution. Z_CHI_N2O = P_COLN2O(JLON,JLAY)/P_COLDRY(JLON,JLAY) ZRATN2O = 1.E20_JPRB*Z_CHI_N2O/CHI_MLS(4,K_JP(JLON,JLAY)+1) IF (ZRATN2O > 1.5_JPRB) THEN ZADJFAC = 0.5_JPRB+(ZRATN2O-0.5_JPRB)**0.65_JPRB ZADJCOLN2O(JLON,JLAY) = ZADJFAC*CHI_MLS(4,K_JP(JLON,JLAY)+1)*P_COLDRY(JLON,JLAY)*1.E-20_JPRB ELSE ZADJCOLN2O(JLON,JLAY) = P_COLN2O(JLON,JLAY) ENDIF Z_SPECCOMB_PLANCK(JLAY) = P_COLH2O(JLON,JLAY)+ZREFRAT_PLANCK_B*P_COLCO2(JLON,JLAY) Z_SPECPARM_PLANCK = P_COLH2O(JLON,JLAY)/Z_SPECCOMB_PLANCK(JLAY) IF (Z_SPECPARM_PLANCK >= P_ONEMINUS) Z_SPECPARM_PLANCK=P_ONEMINUS Z_SPECMULT_PLANCK = 4._JPRB*Z_SPECPARM_PLANCK JPL= 1 + INT(Z_SPECMULT_PLANCK) Z_FPL = MOD(Z_SPECMULT_PLANCK,1.0_JPRB) IND0(JLAY) = ((K_JP(JLON,JLAY)-13)*5+(K_JT(JLON,JLAY)-1))*NSPB(3) + JS IND1(JLAY) = ((K_JP(JLON,JLAY)-12)*5+(K_JT1(JLON,JLAY)-1))*NSPB(3) + JS1 INDF(JLAY) = K_INDFOR(JLON,JLAY) INDM(JLAY) = KINDMINOR(JLON,JLAY) !CDIR UNROLL=NG3 DO IG = 1, NG3 ZTAUFOR = P_FORFAC(JLON,JLAY) * (FORREF(INDF(JLAY),IG) + P_FORFRAC(JLON,JLAY) * & & (FORREF(INDF(JLAY)+1,IG) - FORREF(INDF(JLAY),IG))) ZN2OM1 = KB_MN2O(JMN2O,INDM(JLAY),IG) + Z_FMN2O * & & (KB_MN2O(JMN2O+1,INDM(JLAY),IG) - KB_MN2O(JMN2O,INDM(JLAY),IG)) ZN2OM2 = KB_MN2O(JMN2O,INDM(JLAY)+1,IG) + Z_FMN2O * & & (KB_MN2O(JMN2O+1,INDM(JLAY)+1,IG) - KB_MN2O(JMN2O,INDM(JLAY)+1,IG)) ZABSN2O = ZN2OM1 + PMINORFRAC(JLON,JLAY) * (ZN2OM2 - ZN2OM1) P_TAU(JLON,NGS2+IG,JLAY) = Z_SPECCOMB(JLAY) * & &(Z_FAC000 * ABSB(IND0(JLAY) ,IG) +& & Z_FAC100 * ABSB(IND0(JLAY)+1,IG) +& & Z_FAC010 * ABSB(IND0(JLAY)+5,IG) +& & Z_FAC110 * ABSB(IND0(JLAY)+6,IG)) +& & Z_SPECCOMB1(JLAY) * & & (Z_FAC001 * ABSB(IND1(JLAY) ,IG) +& & Z_FAC101 * ABSB(IND1(JLAY)+1,IG) +& & Z_FAC011 * ABSB(IND1(JLAY)+5,IG) +& & Z_FAC111 * ABSB(IND1(JLAY)+6,IG))+& & ZTAUFOR + ZADJCOLN2O(JLON,JLAY)*ZABSN2O & & + P_TAUAERL(JLON,JLAY,3) PFRAC(JLON,NGS2+IG,JLAY) = FRACREFB(IG,JPL) + Z_FPL *& & (FRACREFB(IG,JPL+1) - FRACREFB(IG,JPL)) ENDDO ENDIF ENDDO ENDDO IF (LHOOK) CALL DR_HOOK('RRTM_TAUMOL3',1,ZHOOK_HANDLE) END ASSOCIATE END SUBROUTINE RRTM_TAUMOL3