! ! $Id: add_phys_tend_mod.F90 4523 2023-05-03 16:21:08Z nfevrier $ ! ! MODULE add_phys_tend_mod IMPLICIT NONE ! flag to compute diagnostics to check energy conservation. If fl_ebil==0, no check INTEGER, SAVE :: fl_ebil !$OMP THREADPRIVATE(fl_ebil) ! flag to include modifcations to ensure energy conservation. If fl_cor_ebil==0, no corrections ! Note that with time, all these modifications should be included by default INTEGER, SAVE :: fl_cor_ebil !$OMP THREADPRIVATE(fl_cor_ebil) CONTAINS SUBROUTINE add_pbl_tend(zdu, zdv, zdt, zdq, zdql, zdqi, zdqbs, paprs, text,abortphy,flag_inhib_tend, itap & #ifdef ISO ,zdxt,zdxtl,zdxti & #endif ) ! ====================================================================== ! Ajoute les tendances de couche limite, soit determinees par la ! parametrisation ! physique, soit forcees, aux variables d etat de la dynamique t_seri, ! q_seri ... ! ====================================================================== ! ====================================================================== ! Declarations ! ====================================================================== USE dimphy, ONLY: klon, klev ! USE dimphy USE phys_local_var_mod USE phys_state_var_mod USE mod_grid_phy_lmdz, ONLY: nbp_lev #ifdef ISO USE infotrac_phy, ONLY: ntraciso=>ntiso USE isotopes_mod, ONLY: iso_eau #endif IMPLICIT NONE REAL,SAVE,ALLOCATABLE :: hthturb_gcssold(:) REAL,SAVE,ALLOCATABLE :: hqturb_gcssold(:) !$OMP THREADPRIVATE(hthturb_gcssold,hqturb_gcssold) REAL,SAVE :: dtime_frcg LOGICAL,SAVE :: turb_fcg_gcssold LOGICAL,SAVE :: firstcall=.true. !$OMP THREADPRIVATE(firstcall,turb_fcg_gcssold,dtime_frcg) INTEGER abortphy ! COMMON /turb_forcing/dtime_frcg, hthturb_gcssold, hqturb_gcssold, & ! turb_fcg_gcssold #ifdef ISO REAL,SAVE,ALLOCATABLE :: hxtturb_gcssold(:,:) !$OMP THREADPRIVATE(hxtturb_gcssold) ! variable à définir dans le 1D #endif ! Arguments : ! ------------ REAL zdu(klon, klev), zdv(klon, klev) REAL zdt(klon, klev), zdq(klon, klev), zdql(klon, klev), zdqi(klon, klev), zdqbs(klon,klev) CHARACTER *(*) text REAL paprs(klon,klev+1) INTEGER flag_inhib_tend ! if flag_inhib_tend != 0, tendencies are not added INTEGER itap ! time step number #ifdef ISO REAL zdxt(ntraciso,klon, klev), zdxtl(ntraciso,klon, klev), zdxti(ntraciso,klon, klev) #endif ! Local : ! -------- REAL zzdt(klon, klev), zzdq(klon, klev) INTEGER i, k #ifdef ISO REAL zzdxt(ntraciso,klon, klev) INTEGER ixt #endif IF (firstcall) THEN ALLOCATE(hthturb_gcssold(nbp_lev)) ALLOCATE(hqturb_gcssold(nbp_lev)) #ifdef ISO ALLOCATE(hxtturb_gcssold(ntraciso,nbp_lev)) #endif firstcall=.false. ENDIF IF (turb_fcg_gcssold) THEN DO k = 1, klev DO i = 1, klon zzdt(i, k) = hthturb_gcssold(k)*dtime_frcg zzdq(i, k) = hqturb_gcssold(k)*dtime_frcg #ifdef ISO do ixt=1,ntraciso zzdxt(ixt,i, k) = hxtturb_gcssold(ixt,k)*dtime_frcg enddo #endif END DO END DO PRINT *, ' add_pbl_tend, dtime_frcg ', dtime_frcg PRINT *, ' add_pbl_tend, zzdt ', zzdt PRINT *, ' add_pbl_tend, zzdq ', zzdq CALL add_phys_tend(zdu, zdv, zzdt, zzdq, zdql, zdqi, zdqbs, paprs, text,abortphy,flag_inhib_tend, itap, 0 & #ifdef ISO ,zzdxt,zdxtl,zdxti & #endif ) ELSE CALL add_phys_tend(zdu, zdv, zdt, zdq, zdql, zdqi, zdqbs, paprs, text,abortphy,flag_inhib_tend, itap, 0 & #ifdef ISO ,zdxt,zdxtl,zdxti & #endif ) END IF RETURN END SUBROUTINE add_pbl_tend ! ! $Id: add_phys_tend_mod.F90 4523 2023-05-03 16:21:08Z nfevrier $ ! SUBROUTINE add_phys_tend (zdu,zdv,zdt,zdq,zdql,zdqi,zdqbs,paprs,text, & abortphy,flag_inhib_tend, itap, diag_mode & #ifdef ISO ,zdxt,zdxtl,zdxti & #endif ) !====================================================================== ! Ajoute les tendances des variables physiques aux variables ! d'etat de la dynamique t_seri, q_seri ... ! On en profite pour faire des tests sur les tendances en question. !====================================================================== !====================================================================== ! Declarations !====================================================================== USE dimphy, ONLY: klon, klev USE phys_state_var_mod, ONLY : phys_tstep USE phys_local_var_mod, ONLY: u_seri, v_seri, ql_seri, qs_seri, qbs_seri, q_seri, t_seri #ifdef ISO USE phys_local_var_mod, ONLY: xtl_seri, xts_seri, xt_seri #endif USE phys_state_var_mod, ONLY: ftsol USE geometry_mod, ONLY: longitude_deg, latitude_deg USE print_control_mod, ONLY: prt_level USE cmp_seri_mod USE phys_output_var_mod, ONLY : d_qw_col, d_ql_col, d_qs_col, d_qbs_col, d_qt_col, d_ek_col, d_h_dair_col & & , d_h_qw_col, d_h_ql_col, d_h_qs_col, d_h_qbs_col, d_h_col #ifdef ISO USE infotrac_phy, ONLY: ntraciso=>ntiso #ifdef ISOVERIF USE isotopes_mod, ONLY: iso_eau USE isotopes_verif_mod #endif #endif IMPLICIT none include "YOMCST.h" include "clesphys.h" ! Arguments : !------------ REAL, DIMENSION(klon,klev), INTENT(IN) :: zdu, zdv REAL, DIMENSION(klon,klev), INTENT(IN) :: zdt, zdql, zdqi, zdqbs REAL, DIMENSION(klon,klev+1), INTENT(IN) :: paprs CHARACTER*(*), INTENT(IN) :: text INTEGER, INTENT(IN) :: abortphy INTEGER, INTENT(IN) :: flag_inhib_tend ! if not 0, tendencies are not added INTEGER, INTENT(IN) :: itap ! time step number INTEGER, INTENT(IN) :: diag_mode ! 0 -> normal effective mode ! 1 -> only conservation stats are computed ! REAL, DIMENSION(klon,klev), INTENT(INOUT) :: zdq #ifdef ISO REAL zdxt(ntraciso,klon,klev),zdxtl(ntraciso,klon,klev) & ,zdxti(ntraciso,klon,klev) integer ixt #endif ! Local : !-------- REAL zt,zq #ifdef ISO REAL zxt(ntraciso) real qprec(klon,klev) REAL zxt_int(ntraciso), zxtp_int(ntraciso), zxtp(ntraciso,klev),zxt_new #endif REAL zq_int, zqp_int, zq_new REAL zqp(klev) ! Save variables, used in diagnostic mode (diag_mode=1). REAL, DIMENSION(klon,klev) :: sav_u_seri, sav_v_seri REAL, DIMENSION(klon,klev) :: sav_ql_seri, sav_qs_seri, sav_qbs_seri, sav_q_seri REAL, DIMENSION(klon,klev) :: sav_t_seri REAL, DIMENSION(klon,klev) :: sav_zdq #ifdef ISO REAL, DIMENSION(ntraciso,klon,klev) :: sav_zdxt REAL, DIMENSION(ntraciso,klon,klev) :: sav_xtl_seri, sav_xts_seri, sav_xt_seri #endif ! INTEGER i, k,j, n INTEGER jadrs(klon*klev), jbad INTEGER jqadrs(klon*klev), jqbad INTEGER kadrs(klon*klev) INTEGER kqadrs(klon*klev) LOGICAL done(klon) integer debug_level logical, save :: first=.true. !$OMP THREADPRIVATE(first) ! !====================================================================== ! Variables for energy conservation tests !====================================================================== ! ! zh_col------- total enthalpy of vertical air column ! (air with watter vapour, liquid and solid) (J/m2) ! zh_dair_col--- total enthalpy of dry air (J/m2) ! zh_qw_col---- total enthalpy of watter vapour (J/m2) ! zh_ql_col---- total enthalpy of liquid watter (J/m2) ! zh_qs_col---- total enthalpy of solid watter (J/m2) ! zh_qbs_col---- total enthalpy of blowing snow (J/m2) ! zqw_col------ total mass of watter vapour (kg/m2) ! zql_col------ total mass of liquid watter (kg/m2) ! zqs_col------ total mass of cloud ice (kg/m2) ! zqbs_col------ total mass of blowing snow (kg/m2) ! zek_col------ total kinetic energy (kg/m2) ! REAL zairm(klon, klev) ! layer air mass (kg/m2) REAL zqw_col(klon,2) REAL zql_col(klon,2) REAL zqs_col(klon,2) REAL zqbs_col(klon,2) REAL zek_col(klon,2) REAL zh_dair_col(klon,2) REAL zh_qw_col(klon,2), zh_ql_col(klon,2), zh_qs_col(klon,2), zh_qbs_col(klon,2) REAL zh_col(klon,2) REAL zcpvap, zcwat, zcice !====================================================================== ! Initialisations IF (prt_level >= 5) then write (*,*) "In add_phys_tend, after ",text call flush end if ! if flag_inhib_tend != 0, tendencies are not added IF (flag_inhib_tend /= 0) then ! If requiered, diagnostics are shown IF (flag_inhib_tend > 0) then ! print some diagnostics if xxx_seri have changed call cmp_seri(flag_inhib_tend,text) END IF RETURN ! on n ajoute pas les tendance END IF IF (abortphy==1) RETURN ! on n ajoute pas les tendance si le modele ! a deja plante. debug_level=10 if (first) then print *,"TestJLD rcpv, rcw, rcs",rcpv, rcw, rcs first=.false. endif ! ! print *,'add_phys_tend: paprs ',paprs ! When in diagnostic mode, save initial values of out variables IF (diag_mode == 1) THEN sav_u_seri(:,:) = u_seri(:,:) sav_v_seri(:,:) = v_seri(:,:) sav_ql_seri(:,:) = ql_seri(:,:) sav_qs_seri(:,:) = qs_seri(:,:) sav_qbs_seri(:,:) = qbs_seri(:,:) sav_q_seri(:,:) = q_seri(:,:) sav_t_seri(:,:) = t_seri(:,:) sav_zdq(:,:) = zdq(:,:) #ifdef ISO sav_zdxt(:,:,:) = zdxt(:,:,:) #endif ENDIF ! (diag_mode == 1) !====================================================================== ! Diagnostics for energy conservation tests !====================================================================== DO k = 1, klev ! layer air mass zairm(:, k) = (paprs(:,k)-paprs(:,k+1))/rg END DO if (fl_ebil .GT. 0) then ! ------------------------------------------------ ! Compute vertical sum for each atmospheric column ! ------------------------------------------------ n=1 ! begining of time step zcpvap = rcpv zcwat = rcw zcice = rcs CALL integr_v(klon, klev, zcpvap, & t_seri, q_seri, ql_seri, qs_seri, qbs_seri, u_seri, v_seri, zairm, & zqw_col(:,n), zql_col(:,n), zqs_col(:,n), zqbs_col(:,n), zek_col(:,n), zh_dair_col(:,n), & zh_qw_col(:,n), zh_ql_col(:,n), zh_qs_col(:,n), zh_qbs_col(:,n), zh_col(:,n)) end if ! end if (fl_ebil .GT. 0) !====================================================================== ! Ajout des tendances sur le vent et l'eau liquide !====================================================================== #ifdef ISO #ifdef ISOVERIF if (iso_eau.gt.0) then call iso_verif_egalite_vect2D( & xt_seri,q_seri, & 'add_phys_tend 321a: '//text,ntraciso,klon,klev) call iso_verif_egalite_vect2D( & xtl_seri,ql_seri, & 'add_phys_tend 321b: '//text,ntraciso,klon,klev) endif !if (iso_eau.gt.0) then #ifdef ISOTRAC call iso_verif_traceur_vect(xt_seri,klon,klev, & & 'add_phys_tend 328a: '//text) call iso_verif_traceur_vect(xtl_seri,klon,klev, & & 'add_phys_tend 328b: '//text) #endif #endif #endif u_seri(:,:)=u_seri(:,:)+zdu(:,:) v_seri(:,:)=v_seri(:,:)+zdv(:,:) ql_seri(:,:)=ql_seri(:,:)+zdql(:,:) qs_seri(:,:)=qs_seri(:,:)+zdqi(:,:) qbs_seri(:,:)=qbs_seri(:,:)+zdqbs(:,:) #ifdef ISO xtl_seri(:,:,:)=xtl_seri(:,:,:)+zdxtl(:,:,:) xts_seri(:,:,:)=xts_seri(:,:,:)+zdxti(:,:,:) #endif !====================================================================== ! On ajoute les tendances de la temperature et de la vapeur d'eau ! en verifiant que ca ne part pas dans les choux !====================================================================== jbad=0 jqbad=0 DO k = 1, klev DO i = 1, klon zt=t_seri(i,k)+zdt(i,k) zq=q_seri(i,k)+zdq(i,k) #ifdef ISO do ixt=1,ntraciso zxt(ixt)=xt_seri(ixt,i,k)+zdxt(ixt,i,k) enddo !do ixt=1,ntraciso qprec(i,k)=q_seri(i,k) #endif IF ( zt>370. .or. zt<130. .or. abs(zdt(i,k))>50. ) then jbad = jbad + 1 jadrs(jbad) = i kadrs(jbad) = k ENDIF IF ( zq<0. .or. zq>0.1 .or. abs(zdq(i,k))>1.e-2 ) then jqbad = jqbad + 1 jqadrs(jqbad) = i kqadrs(jqbad) = k ENDIF t_seri(i,k)=zt q_seri(i,k)=zq #ifdef ISO do ixt=1,ntraciso xt_seri(ixt,i,k)=zxt(ixt) enddo !do ixt=1,ntraciso #endif ENDDO ENDDO #ifdef ISO #ifdef ISOVERIF if (iso_eau.gt.0) then call iso_verif_egalite_vect2D( & xt_seri,q_seri, & 'add_phys_tend 122: '//text,ntraciso,klon,klev) call iso_verif_egalite_vect2D( & xtl_seri,ql_seri, & 'add_phys_tend 138: '//text,ntraciso,klon,klev) endif !if (iso_eau.gt.0) then #ifdef ISOTRAC call iso_verif_traceur_vect(xt_seri,klon,klev, & & 'add_phys_tend 374a: '//text) call iso_verif_traceur_vect(xtl_seri,klon,klev, & & 'add_phys_tend 374b: '//text) #endif #endif #endif !===================================================================================== ! Impression et stop en cas de probleme important !===================================================================================== IF (jbad .GT. 0) THEN DO j = 1, jbad i=jadrs(j) if(prt_level.ge.debug_level) THEN print*,'PLANTAGE POUR LE POINT i lon lat =',& i,longitude_deg(i),latitude_deg(i),text print*,'l T dT Q dQ ' DO k = 1, klev write(*,'(i3,2f14.4,2e14.2)') k,t_seri(i,k),zdt(i,k),q_seri(i,k),zdq(i,k) ENDDO call print_debug_phys(i,debug_level,text) endif ENDDO ENDIF ! !===================================================================================== ! Impression, warning et correction en cas de probleme moins important !===================================================================================== IF (jqbad .GT. 0) THEN done(:) = .false. !jyg DO j = 1, jqbad i=jqadrs(j) if(prt_level.ge.debug_level) THEN print*,'WARNING : EAU POUR LE POINT i lon lat =',& i,longitude_deg(i),latitude_deg(i),text print*,'l T dT Q dQ ' DO k = 1, klev write(*,'(i3,2f14.4,2e14.2)') k,t_seri(i,k),zdt(i,k),q_seri(i,k),zdq(i,k) ENDDO endif IF (ok_conserv_q) THEN !jyg<20140228 Corrections pour conservation de l'eau IF (.NOT.done(i)) THEN !jyg DO k = 1, klev zqp(k) = max(q_seri(i,k),1.e-15) #ifdef ISO do ixt=1,ntraciso zxtp(ixt,k)=xt_seri(ixt,i,k)*max(1.0,1.e-15/qprec(i,k)) enddo #endif ENDDO zq_int = 0. zqp_int = 0. DO k = 1, klev zq_int = zq_int + q_seri(i,k)*(paprs(i,k)-paprs(i,k+1))/Rg zqp_int = zqp_int + zqp(k) *(paprs(i,k)-paprs(i,k+1))/Rg ENDDO #ifdef ISO do ixt=1,ntraciso zxt_int(ixt) = 0. zxtp_int(ixt) = 0. DO k = 1, klev zxt_int(ixt) = zxt_int(ixt) + xt_seri(ixt,i,k)*(paprs(i,k)-paprs(i,k+1))/Rg zxtp_int(ixt) = zxtp_int(ixt) + zxtp(ixt,k) *(paprs(i,k)-paprs(i,k+1))/Rg ENDDO enddo #endif if(prt_level.ge.debug_level) THEN print*,' cas q_seri<1.e-15 i k zq_int zqp_int zq_int/zqp_int :', & i, kqadrs(j), zq_int, zqp_int, zq_int/zqp_int endif DO k = 1, klev zq_new = zqp(k)*zq_int/zqp_int zdq(i,k) = zdq(i,k) + zq_new - q_seri(i,k) q_seri(i,k) = zq_new #ifdef ISO do ixt=1,ntraciso zxt_new = zxtp(ixt,k)*zxt_int(ixt)/zxtp_int(ixt) zdxt(ixt,i,k) = zdxt(ixt,i,k) + zxt_new - xt_seri(ixt,i,k) xt_seri(ixt,i,k) = zxt_new enddo !ixt=1,ntraciso #endif ENDDO done(i) = .true. ENDIF !(.NOT.done(i)) ELSE !jyg> DO k = 1, klev zq=q_seri(i,k)+zdq(i,k) if (zq.lt.1.e-15) then if (q_seri(i,k).lt.1.e-15) then if(prt_level.ge.debug_level) THEN print*,' cas q_seri<1.e-15 i k q_seri zq zdq :',i,k,q_seri(i,k),zq,zdq(i,k) endif q_seri(i,k)=1.e-15 zdq(i,k)=(1.e-15-q_seri(i,k)) #ifdef ISO do ixt=1,ntraciso xt_seri(ixt,i,k)=1.e-15*(xt_seri(ixt,i,k)/qprec(i,k)) ! xt_seri(ixt,i,k)=1.e-15*(Rdefault(index_iso(ixt))) ! zdxt(ixt,i,k)=0.0 zdxt(ixt,i,k)=xt_seri(ixt,i,k)*(1.e-15/qprec(i,k)-1) enddo !do ixt=1,ntraciso #endif endif endif ! zq=q_seri(i,k)+zdq(i,k) ! if (zq.lt.1.e-15) then ! zdq(i,k)=(1.e-15-q_seri(i,k)) ! endif ENDDO !jyg<20140228 ENDIF ! (ok_conserv_q) !jyg> ENDDO ! j = 1, jqbad ENDIF #ifdef ISO #ifdef ISOVERIF if (iso_eau.gt.0) then call iso_verif_egalite_vect2D( & xt_seri,q_seri, & 'add_phys_tend 173'//text,ntraciso,klon,klev) call iso_verif_egalite_vect2D( & zdxt,zdq, & 'add_phys_tend 175'//text,ntraciso,klon,klev) endif !if (iso_eau.gt.0) then #ifdef ISOTRAC call iso_verif_traceur_vect(xt_seri,klon,klev, & & 'add_phys_tend 499'//text) #endif #endif #endif ! !IM ajout memes tests pour reverifier les jbad, jqbad beg jbad=0 jqbad=0 DO k = 1, klev DO i = 1, klon IF ( t_seri(i,k)>370. .or. t_seri(i,k)<130. .or. abs(zdt(i,k))>50. ) then jbad = jbad + 1 jadrs(jbad) = i ! if(prt_level.ge.debug_level) THEN ! print*,'cas2 i k t_seri zdt',i,k,t_seri(i,k),zdt(i,k) ! endif ENDIF IF ( q_seri(i,k)<0. .or. q_seri(i,k)>0.1 .or. abs(zdq(i,k))>1.e-2 ) then jqbad = jqbad + 1 jqadrs(jqbad) = i kqadrs(jqbad) = k ! if(prt_level.ge.debug_level) THEN ! print*,'cas2 i k q_seri zdq',i,k,q_seri(i,k),zdq(i,k) ! endif ENDIF ENDDO ENDDO IF (jbad .GT. 0) THEN DO j = 1, jbad i=jadrs(j) k=kadrs(j) if(prt_level.ge.debug_level) THEN print*,'PLANTAGE2 POUR LE POINT i itap lon lat txt jbad zdt t',& i,itap,longitude_deg(i),latitude_deg(i),text,jbad, & & zdt(i,k),t_seri(i,k)-zdt(i,k) !!! if(prt_level.ge.10.and.itap.GE.229.and.i.EQ.3027) THEN print*,'l T dT Q dQ ' DO k = 1, klev write(*,'(i3,2f14.4,2e14.2)') k,t_seri(i,k),zdt(i,k),q_seri(i,k),zdq(i,k) ENDDO call print_debug_phys(i,debug_level,text) endif ENDDO ENDIF ! IF (jqbad .GT. 0) THEN DO j = 1, jqbad i=jqadrs(j) k=kqadrs(j) if(prt_level.ge.debug_level) THEN print*,'WARNING : EAU2 POUR LE POINT i itap lon lat txt jqbad zdq q zdql ql',& i,itap,longitude_deg(i),latitude_deg(i),text,jqbad,& & zdq(i,k), q_seri(i,k)-zdq(i,k), zdql(i,k), ql_seri(i,k)-zdql(i,k) !!! if(prt_level.ge.10.and.itap.GE.229.and.i.EQ.3027) THEN print*,'l T dT Q dQ ' DO k = 1, klev write(*,'(i3,2f14.4,2e14.2)') k,t_seri(i,k),zdt(i,k),q_seri(i,k),zdq(i,k) ENDDO call print_debug_phys(i,debug_level,text) endif ENDDO ENDIF !====================================================================== ! Contrôle des min/max pour arrêt du modèle ! Si le modele est en mode abortphy, on retire les tendances qu'on ! vient d'ajouter. Pas exactement parce qu'on ne tient pas compte des ! seuils. !====================================================================== CALL hgardfou(t_seri,ftsol,text,abortphy) IF (abortphy==1) THEN Print*,'ERROR ABORT hgardfou dans ',text ! JLD pourquoi on ne modifie pas de meme t_seri et q_seri ? u_seri(:,:)=u_seri(:,:)-zdu(:,:) v_seri(:,:)=v_seri(:,:)-zdv(:,:) ql_seri(:,:)=ql_seri(:,:)-zdql(:,:) qs_seri(:,:)=qs_seri(:,:)-zdqi(:,:) qbs_seri(:,:)=qbs_seri(:,:)-zdqbs(:,:) ENDIF !====================================================================== ! Diagnostics for energy conservation tests !====================================================================== if (fl_ebil .GT. 0) then ! ------------------------------------------------ ! Compute vertical sum for each atmospheric column ! ------------------------------------------------ n=2 ! end of time step CALL integr_v(klon, klev, zcpvap, & t_seri, q_seri, ql_seri, qs_seri, qbs_seri, u_seri, v_seri, zairm, & zqw_col(:,n), zql_col(:,n), zqs_col(:,n), zqbs_col(:,n), zek_col(:,n), zh_dair_col(:,n), & zh_qw_col(:,n), zh_ql_col(:,n), zh_qs_col(:,n), zh_qbs_col(:,n), zh_col(:,n)) ! ------------------------------------------------ ! Compute the changes by unit of time ! ------------------------------------------------ d_qw_col(:) = (zqw_col(:,2)-zqw_col(:,1))/phys_tstep d_ql_col(:) = (zql_col(:,2)-zql_col(:,1))/phys_tstep d_qs_col(:) = (zqs_col(:,2)-zqs_col(:,1))/phys_tstep d_qbs_col(:) = (zqbs_col(:,2)-zqbs_col(:,1))/phys_tstep d_qt_col(:) = d_qw_col(:) + d_ql_col(:) + d_qs_col(:) + d_qbs_col(:) d_ek_col(:) = (zek_col(:,2)-zek_col(:,1))/phys_tstep d_h_dair_col(:) = (zh_dair_col(:,2)-zh_dair_col(:,1))/phys_tstep d_h_qw_col(:) = (zh_qw_col(:,2)-zh_qw_col(:,1))/phys_tstep d_h_ql_col(:) = (zh_ql_col(:,2)-zh_ql_col(:,1))/phys_tstep d_h_qs_col(:) = (zh_qs_col(:,2)-zh_qs_col(:,1))/phys_tstep d_h_qbs_col(:) = (zh_qbs_col(:,2)-zh_qbs_col(:,1))/phys_tstep d_h_col = (zh_col(:,2)-zh_col(:,1))/phys_tstep end if ! end if (fl_ebil .GT. 0) ! ! When in diagnostic mode, restore "out" variables to initial values. IF (diag_mode == 1) THEN u_seri(:,:) = sav_u_seri(:,:) v_seri(:,:) = sav_v_seri(:,:) ql_seri(:,:) = sav_ql_seri(:,:) qs_seri(:,:) = sav_qs_seri(:,:) qbs_seri(:,:) = sav_qbs_seri(:,:) q_seri(:,:) = sav_q_seri(:,:) t_seri(:,:) = sav_t_seri(:,:) zdq(:,:) = sav_zdq(:,:) #ifdef ISO xtl_seri(:,:,:) = sav_xtl_seri(:,:,:) xts_seri(:,:,:) = sav_xts_seri(:,:,:) xt_seri(:,:,:) = sav_xt_seri(:,:,:) zdxt(:,:,:) = sav_zdxt(:,:,:) #endif ENDIF ! (mode == 1) RETURN END SUBROUTINE add_phys_tend SUBROUTINE diag_phys_tend (nlon, nlev, uu, vv, temp, qv, ql, qs, qbs, & zdu,zdv,zdt,zdq,zdql,zdqs,zdqbs,paprs,text) !====================================================================== ! Ajoute les tendances des variables physiques aux variables ! d'etat de la dynamique t_seri, q_seri ... ! On en profite pour faire des tests sur les tendances en question. !====================================================================== ! C Risi: on ne met pas les isos dedans car elle n'est jamais apelée. !====================================================================== ! Declarations !====================================================================== USE phys_state_var_mod, ONLY : phys_tstep, ftsol USE geometry_mod, ONLY: longitude_deg, latitude_deg USE print_control_mod, ONLY: prt_level USE cmp_seri_mod USE phys_output_var_mod, ONLY : d_qw_col, d_ql_col, d_qs_col, d_qbs_col, d_qt_col, d_ek_col, d_h_dair_col & & , d_h_qw_col, d_h_ql_col, d_h_qs_col, d_h_qbs_col, d_h_col IMPLICIT none include "YOMCST.h" include "clesphys.h" ! Arguments : !------------ INTEGER, INTENT(IN) :: nlon, nlev REAL, DIMENSION(nlon,nlev), INTENT(IN) :: uu, vv REAL, DIMENSION(nlon,nlev), INTENT(IN) :: temp, qv, ql, qs, qbs REAL, DIMENSION(nlon,nlev), INTENT(IN) :: zdu, zdv REAL, DIMENSION(nlon,nlev), INTENT(IN) :: zdt, zdq, zdql, zdqs, zdqbs REAL, DIMENSION(nlon,nlev+1), INTENT(IN) :: paprs CHARACTER*(*), INTENT(IN) :: text ! Local : !-------- REAL, DIMENSION(nlon,nlev) :: uu_n, vv_n REAL, DIMENSION(nlon,nlev) :: temp_n, qv_n, ql_n, qs_n, qbs_n ! INTEGER k, n integer debug_level logical, save :: first=.true. !$OMP THREADPRIVATE(first) ! !====================================================================== ! Variables for energy conservation tests !====================================================================== ! ! zh_col------- total enthalpy of vertical air column ! (air with watter vapour, liquid and solid) (J/m2) ! zh_dair_col--- total enthalpy of dry air (J/m2) ! zh_qw_col---- total enthalpy of watter vapour (J/m2) ! zh_ql_col---- total enthalpy of liquid watter (J/m2) ! zh_qs_col---- total enthalpy of solid watter (J/m2) ! zqw_col------ total mass of watter vapour (kg/m2) ! zql_col------ total mass of liquid watter (kg/m2) ! zqs_col------ total mass of cloud ice (kg/m2) ! zqbs_col------ total mass of blowing snow (kg/m2) ! zek_col------ total kinetic energy (kg/m2) ! REAL zairm(nlon, nlev) ! layer air mass (kg/m2) REAL zqw_col(nlon,2) REAL zql_col(nlon,2) REAL zqs_col(nlon,2) REAL zqbs_col(nlon,2) REAL zek_col(nlon,2) REAL zh_dair_col(nlon,2) REAL zh_qw_col(nlon,2), zh_ql_col(nlon,2), zh_qs_col(nlon,2), zh_qbs_col(nlon,2) REAL zh_col(nlon,2) !====================================================================== ! Initialisations IF (prt_level >= 5) then write (*,*) "In diag_phys_tend, after ",text call flush end if debug_level=10 if (first) then print *,"TestJLD rcpv, rcw, rcs",rcpv, rcw, rcs first=.false. endif ! ! print *,'add_phys_tend: paprs ',paprs !====================================================================== ! Diagnostics for energy conservation tests !====================================================================== DO k = 1, nlev ! layer air mass zairm(:, k) = (paprs(:,k)-paprs(:,k+1))/rg END DO if (fl_ebil .GT. 0) then ! ------------------------------------------------ ! Compute vertical sum for each atmospheric column ! ------------------------------------------------ n=1 ! begining of time step CALL integr_v(nlon, nlev, rcpv, & temp, qv, ql, qs, qbs, uu, vv, zairm, & zqw_col(:,n), zql_col(:,n), zqs_col(:,n), zqbs_col(:,n), zek_col(:,n), zh_dair_col(:,n), & zh_qw_col(:,n), zh_ql_col(:,n), zh_qs_col(:,n), zh_qbs_col(:,n), zh_col(:,n)) end if ! end if (fl_ebil .GT. 0) !====================================================================== ! Ajout des tendances sur le vent, la temperature et les diverses phases de l'eau !====================================================================== uu_n(:,:)=uu(:,:)+zdu(:,:) vv_n(:,:)=vv(:,:)+zdv(:,:) qv_n(:,:)=qv(:,:)+zdq(:,:) ql_n(:,:)=ql(:,:)+zdql(:,:) qs_n(:,:)=qs(:,:)+zdqs(:,:) qbs_n(:,:)=qbs(:,:)+zdqbs(:,:) temp_n(:,:)=temp(:,:)+zdt(:,:) !====================================================================== ! Diagnostics for energy conservation tests !====================================================================== if (fl_ebil .GT. 0) then ! ------------------------------------------------ ! Compute vertical sum for each atmospheric column ! ------------------------------------------------ n=2 ! end of time step CALL integr_v(nlon, nlev, rcpv, & temp_n, qv_n, ql_n, qs_n, qbs_n, uu_n, vv_n, zairm, & zqw_col(:,n), zql_col(:,n), zqs_col(:,n), zqbs_col(:,n), zek_col(:,n), zh_dair_col(:,n), & zh_qw_col(:,n), zh_ql_col(:,n), zh_qs_col(:,n), zh_qbs_col(:,n), zh_col(:,n)) ! ------------------------------------------------ ! Compute the changes by unit of time ! ------------------------------------------------ d_qw_col(:) = (zqw_col(:,2)-zqw_col(:,1))/phys_tstep d_ql_col(:) = (zql_col(:,2)-zql_col(:,1))/phys_tstep d_qs_col(:) = (zqs_col(:,2)-zqs_col(:,1))/phys_tstep d_qbs_col(:) = (zqbs_col(:,2)-zqbs_col(:,1))/phys_tstep d_qt_col(:) = d_qw_col(:) + d_ql_col(:) + d_qs_col(:) + d_qbs_col(:) d_ek_col(:) = (zek_col(:,2)-zek_col(:,1))/phys_tstep print *,'zdu ', zdu print *,'zdv ', zdv print *,'d_ek_col, zek_col(2), zek_col(1) ',d_ek_col(1), zek_col(1,2), zek_col(1,1) d_h_dair_col(:) = (zh_dair_col(:,2)-zh_dair_col(:,1))/phys_tstep d_h_qw_col(:) = (zh_qw_col(:,2)-zh_qw_col(:,1))/phys_tstep d_h_ql_col(:) = (zh_ql_col(:,2)-zh_ql_col(:,1))/phys_tstep d_h_qs_col(:) = (zh_qs_col(:,2)-zh_qs_col(:,1))/phys_tstep d_h_qbs_col(:) = (zh_qbs_col(:,2)-zh_qbs_col(:,1))/phys_tstep d_h_col = (zh_col(:,2)-zh_col(:,1))/phys_tstep end if ! end if (fl_ebil .GT. 0) ! RETURN END SUBROUTINE diag_phys_tend SUBROUTINE integr_v(nlon, nlev, zcpvap, & temp, qv, ql, qs, qbs, uu, vv, zairm, & zqw_col, zql_col, zqs_col, zqbs_col, zek_col, zh_dair_col, & zh_qw_col, zh_ql_col, zh_qs_col, zh_qbs_col, zh_col) IMPLICIT none include "YOMCST.h" INTEGER, INTENT(IN) :: nlon,nlev REAL, INTENT(IN) :: zcpvap REAL, DIMENSION(nlon,nlev), INTENT(IN) :: temp, qv, ql, qs, qbs, uu, vv REAL, DIMENSION(nlon,nlev), INTENT(IN) :: zairm REAL, DIMENSION(nlon), INTENT(OUT) :: zqw_col REAL, DIMENSION(nlon), INTENT(OUT) :: zql_col REAL, DIMENSION(nlon), INTENT(OUT) :: zqs_col, zqbs_col REAL, DIMENSION(nlon), INTENT(OUT) :: zek_col REAL, DIMENSION(nlon), INTENT(OUT) :: zh_dair_col REAL, DIMENSION(nlon), INTENT(OUT) :: zh_qw_col REAL, DIMENSION(nlon), INTENT(OUT) :: zh_ql_col REAL, DIMENSION(nlon), INTENT(OUT) :: zh_qs_col, zh_qbs_col REAL, DIMENSION(nlon), INTENT(OUT) :: zh_col INTEGER :: i, k ! Reset variables zqw_col(:) = 0. zql_col(:) = 0. zqs_col(:) = 0. zqbs_col(:) = 0. zek_col(:) = 0. zh_dair_col(:) = 0. zh_qw_col(:) = 0. zh_ql_col(:) = 0. zh_qs_col(:) = 0. zh_qbs_col(:) = 0. !JLD write (*,*) "rcpd, zcpvap, zcwat, zcice ",rcpd, zcpvap, zcwat, zcice ! ------------------------------------------------ ! Compute vertical sum for each atmospheric column ! ------------------------------------------------ DO k = 1, nlev DO i = 1, nlon ! Watter mass zqw_col(i) = zqw_col(i) + qv(i, k)*zairm(i, k) zql_col(i) = zql_col(i) + ql(i, k)*zairm(i, k) zqs_col(i) = zqs_col(i) + qs(i, k)*zairm(i, k) zqbs_col(i)= zqbs_col(i) + qbs(i,k)*zairm(i,k) ! Kinetic Energy zek_col(i) = zek_col(i) + 0.5*(uu(i,k)**2+vv(i,k)**2)*zairm(i, k) ! Air enthalpy : dry air, water vapour, liquid, solid zh_dair_col(i) = zh_dair_col(i) + rcpd*(1.-qv(i,k)-ql(i,k)-qs(i,k))* & zairm(i, k)*temp(i, k) zh_qw_col(i) = zh_qw_col(i) + zcpvap*temp(i, k) *qv(i, k)*zairm(i, k) !jyg zh_ql_col(i) = zh_ql_col(i) + (zcpvap*temp(i, k) - rlvtt)*ql(i, k)*zairm(i, k) !jyg zh_qs_col(i) = zh_qs_col(i) + (zcpvap*temp(i, k) - rlstt)*qs(i, k)*zairm(i, k) !jyg zh_qbs_col(i) = zh_qbs_col(i) + (zcpvap*temp(i, k) - rlstt)*qbs(i, k)*zairm(i, k) !jyg END DO END DO ! compute total air enthalpy zh_col(:) = zh_dair_col(:) + zh_qw_col(:) + zh_ql_col(:) + zh_qs_col(:) + zh_qbs_col(:) END SUBROUTINE integr_v SUBROUTINE prt_enerbil (text, itap) !====================================================================== ! Print enenrgy budget diagnotics for the 1D case !====================================================================== !====================================================================== ! Declarations !====================================================================== USE dimphy, ONLY: klon, klev USE phys_state_var_mod, ONLY : phys_tstep USE phys_state_var_mod, ONLY : topsw, toplw, solsw, sollw, rain_con, snow_con, bs_fall USE geometry_mod, ONLY: longitude_deg, latitude_deg USE print_control_mod, ONLY: prt_level USE cmp_seri_mod USE phys_output_var_mod, ONLY : d_qw_col, d_ql_col, d_qs_col, d_qbs_col, d_qt_col, d_ek_col, d_h_dair_col & & , d_h_qw_col, d_h_ql_col, d_h_qs_col, d_h_qbs_col, d_h_col USE phys_local_var_mod, ONLY: evap, sens USE phys_local_var_mod, ONLY: u_seri, v_seri, ql_seri, qs_seri, qbs_seri, q_seri, t_seri & & , rain_lsc, snow_lsc USE climb_hq_mod, ONLY : d_h_col_vdf, f_h_bnd IMPLICIT none include "YOMCST.h" ! Arguments : !------------ CHARACTER*(*) text ! text specifing the involved parametrization integer itap ! time step number ! local variables ! --------------- real bilq_seuil, bilh_seuil ! thresold on error in Q and H budget real bilq_error, bilh_error ! erros in Q and H budget real bilq_bnd, bilh_bnd ! Q and H budget due to exchange with boundaries integer bilq_ok, bilh_ok CHARACTER*(12) status bilq_seuil = 1.E-10 bilh_seuil = 1.E-1 bilq_ok=0 bilh_ok=0 !!print *,'prt_level:',prt_level,' fl_ebil:',fl_ebil,' fl_cor_ebil:',fl_cor_ebil if ( (fl_ebil .GT. 0) .and. (klon .EQ. 1)) then bilq_bnd = 0. bilh_bnd = 0. param: SELECT CASE (text) CASE("vdf") param bilq_bnd = evap(1) bilh_bnd = sens(1)+(rcpv-rcpd)*evap(1)*t_seri(1,1) CASE("lsc") param bilq_bnd = - rain_lsc(1) - snow_lsc(1) bilh_bnd = (-(rcw-rcpd)*t_seri(1,1) + rlvtt) * rain_lsc(1) & & + (-(rcs-rcpd)*t_seri(1,1) + rlstt) * snow_lsc(1) CASE("bs") param bilq_bnd = - bs_fall(1) bilh_bnd = (-(rcs-rcpd)*t_seri(1,1) + rlstt) * bs_fall(1) CASE("convection") param bilq_bnd = - rain_con(1) - snow_con(1) bilh_bnd = (-(rcw-rcpd)*t_seri(1,1) + rlvtt) * rain_con(1) & & + (-(rcs-rcpd)*t_seri(1,1) + rlstt) * snow_con(1) CASE("SW") param bilh_bnd = topsw(1) - solsw(1) CASE("LW") param bilh_bnd = -(toplw(1) + sollw(1)) CASE DEFAULT param bilq_bnd = 0. bilh_bnd = 0. END SELECT param bilq_error = d_qt_col(1) - bilq_bnd bilh_error = d_h_col(1) - bilh_bnd ! are the errors too large? if ( abs(bilq_error) .gt. bilq_seuil) bilq_ok=1 if ( abs(bilh_error) .gt. bilh_seuil) bilh_ok=1 ! ! Print diagnostics ! ================= if ( (bilq_ok .eq. 0).and.(bilh_ok .eq. 0) ) then status="enerbil-OK" else status="enerbil-PB" end if if ( prt_level .GE. 3) then write(*,9010) text,status," itap:",itap,"enerbilERROR: Q", bilq_error," H", bilh_error 9010 format (1x,A8,2x,A12,A6,I4,A18,E15.6,A5,E15.6) end if if ( prt_level .GE. 3) then write(*,9000) text,"enerbil: Q,H,KE budget", d_qt_col(1), d_h_col(1),d_ek_col(1) end if if ( prt_level .GE. 5) then write(*,9000) text,"enerbil at boundaries: Q, H",bilq_bnd, bilh_bnd write(*,9000) text,"enerbil: water budget",d_qt_col(1),d_qw_col(1),d_ql_col(1),d_qs_col(1), d_qbs_col(1) write(*,9000) text,"enerbil: enthalpy budget",d_h_col(1),d_h_dair_col(1),d_h_qw_col(1),d_h_ql_col(1),d_h_qs_col(1),d_h_qbs_col(1) end if specific_diag: SELECT CASE (text) CASE("vdf") specific_diag if ( prt_level .GE. 5) then write(*,9000) text,"enerbil: d_h, bilh, sens,t_seri", d_h_col(1), bilh_bnd, sens(1), t_seri(1,1) write(*,9000) text,"enerbil: d_h_col_vdf, f_h, diff",d_h_col_vdf, f_h_bnd, bilh_bnd-sens(1) end if CASE("lsc") specific_diag if ( prt_level .GE. 5) then write(*,9000) text,"enerbil: rain, bil_lat, bil_sens", rain_lsc(1), rlvtt * rain_lsc(1), -(rcw-rcpd)*t_seri(1,1) * rain_lsc(1) write(*,9000) text,"enerbil: snow, bil_lat, bil_sens", snow_lsc(1), rlstt * snow_lsc(1), -(rcs-rcpd)*t_seri(1,1) * snow_lsc(1) end if CASE("convection") specific_diag if ( prt_level .GE. 5) then write(*,9000) text,"enerbil: rain, bil_lat, bil_sens", rain_con(1), rlvtt * rain_con(1), -(rcw-rcpd)*t_seri(1,1) * rain_con(1) write(*,9000) text,"enerbil: snow, bil_lat, bil_sens", snow_con(1), rlstt * snow_con(1), -(rcs-rcpd)*t_seri(1,1) * snow_con(1) end if END SELECT specific_diag 9000 format (1x,A8,2x,A35,10E15.6) end if ! end if (fl_ebil .GT. 0) END SUBROUTINE prt_enerbil END MODULE add_phys_tend_mod