! radiation_cloud_generator.F90 - Generate water-content or optical-depth scalings for McICA ! ! (C) Copyright 2015- ECMWF. ! ! This software is licensed under the terms of the Apache Licence Version 2.0 ! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. ! ! In applying this licence, ECMWF does not waive the privileges and immunities ! granted to it by virtue of its status as an intergovernmental organisation ! nor does it submit to any jurisdiction. ! ! Author: Robin Hogan ! Email: r.j.hogan@ecmwf.int ! ! Generate clouds for McICA using a method modified from Raisanen et ! al. (2002) ! ! Modifications ! 2018-02-22 R. Hogan Call masked version of PDF sampler for speed ! 2020-03-31 R. Hogan More vectorizable version of Exp-Ran module radiation_cloud_generator public contains !--------------------------------------------------------------------- ! Generate scaling factors for the cloud optical depth to represent ! cloud overlap, the overlap of internal cloud inhomogeneities and ! the fractional standard deviation of these inhomogeneities, for ! use in a Monte Carlo Independent Column Approximation radiation ! scheme. All returned profiles contain cloud, and the total cloud ! cover is also returned, so the calling function can then do a ! weighted average of clear and cloudy skies; this is a way to ! reduce the Monte Carlo noise in profiles with low cloud cover. subroutine cloud_generator(ng, nlev, i_overlap_scheme, & & iseed, frac_threshold, & & frac, overlap_param, decorrelation_scaling, & & fractional_std, pdf_sampler, & & od_scaling, total_cloud_cover, & & use_beta_overlap, use_vectorizable_generator) use parkind1, only : jprb use yomhook, only : lhook, dr_hook, jphook use radiation_io, only : nulerr, radiation_abort use random_numbers_mix, only : randomnumberstream, & initialize_random_numbers, uniform_distribution use radiation_pdf_sampler, only : pdf_sampler_type use radiation_cloud_cover, only : cum_cloud_cover_exp_ran, & & cum_cloud_cover_max_ran, cum_cloud_cover_exp_exp, & & IOverlapMaximumRandom, IOverlapExponentialRandom, & & IOverlapExponential implicit none ! Inputs integer, intent(in) :: ng ! number of g points integer, intent(in) :: nlev ! number of model levels integer, intent(in) :: i_overlap_scheme integer, intent(in) :: iseed ! seed for random number generator ! Only cloud fractions above this threshold are considered to be ! clouds real(jprb), intent(in) :: frac_threshold ! Cloud fraction on full levels real(jprb), intent(in) :: frac(nlev) ! Cloud overlap parameter for interfaces between model layers, ! where 0 indicates random overlap and 1 indicates maximum-random ! overlap real(jprb), intent(in) :: overlap_param(nlev-1) ! Overlap parameter for internal inhomogeneities real(jprb), intent(in) :: decorrelation_scaling ! Fractional standard deviation at each layer real(jprb), intent(in) :: fractional_std(nlev) ! Object for sampling from a lognormal or gamma distribution type(pdf_sampler_type), intent(in) :: pdf_sampler ! This routine has been coded using the "alpha" overlap parameter ! of Hogan and Illingworth (2000). If the following logical is ! present and true then the input is interpretted to be the "beta" ! overlap parameter of Shonk et al. (2010), and needs to be ! converted to alpha. logical, intent(in), optional :: use_beta_overlap ! Do we use the more vectorizable cloud generator, at the expense ! of more random numbers being needed? logical, intent(in), optional :: use_vectorizable_generator ! Outputs ! Cloud optical depth scaling factor, with 0 indicating clear sky real(jprb), intent(out) :: od_scaling(ng,nlev) ! Total cloud cover using cloud fraction and overlap parameter real(jprb), intent(out) :: total_cloud_cover ! Local variables ! Cumulative cloud cover from TOA to the base of each layer real(jprb) :: cum_cloud_cover(nlev) ! Scaled random number for finding cloud real(jprb) :: trigger ! Uniform deviates between 0 and 1 real(jprb) :: rand_top(ng) ! Overlap parameter of inhomogeneities real(jprb) :: overlap_param_inhom(nlev-1) ! Seed for random number generator and stream for producing random ! numbers type(randomnumberstream) :: random_stream ! First and last cloudy layers integer :: ibegin, iend integer :: itrigger ! Loop index for model level and g-point integer :: jlev, jg ! Cloud cover of a pair of layers, and amount by which cloud at ! next level increases total cloud cover as seen from above real(jprb), dimension(nlev-1) :: pair_cloud_cover, overhang logical :: use_vec_gen real(jphook) :: hook_handle if (lhook) call dr_hook('radiation_cloud_generator:cloud_generator',0,hook_handle) if (i_overlap_scheme == IOverlapExponentialRandom) then call cum_cloud_cover_exp_ran(nlev, frac, overlap_param, & & cum_cloud_cover, pair_cloud_cover, use_beta_overlap) else if (i_overlap_scheme == IOverlapMaximumRandom) then call cum_cloud_cover_max_ran(nlev, frac, & & cum_cloud_cover, pair_cloud_cover) else if (i_overlap_scheme == IOverlapExponential) then call cum_cloud_cover_exp_exp(nlev, frac, overlap_param, & & cum_cloud_cover, pair_cloud_cover, use_beta_overlap) else write(nulerr,'(a)') '*** Error: cloud overlap scheme not recognised' call radiation_abort() end if total_cloud_cover = cum_cloud_cover(nlev); do jlev = 1,nlev-1 overhang(jlev) = cum_cloud_cover(jlev+1)-cum_cloud_cover(jlev) end do if (total_cloud_cover < frac_threshold) then ! Treat column as clear sky: calling function therefore will not ! use od_scaling so we don't need to calculate it total_cloud_cover = 0.0_jprb else ! Cloud is present: need to calculate od_scaling ! Find range of cloudy layers jlev = 1 do while (frac(jlev) <= 0.0_jprb) jlev = jlev + 1 end do ibegin = jlev iend = jlev do jlev = jlev+1,nlev if (frac(jlev) > 0.0_jprb) then iend = jlev end if end do ! Set overlap parameter of inhomogeneities overlap_param_inhom = overlap_param do jlev = ibegin,iend-1 if (overlap_param(jlev) > 0.0_jprb) then overlap_param_inhom(jlev) & & = overlap_param(jlev)**(1.0_jprb/decorrelation_scaling) end if end do ! Reset optical depth scaling to clear skies od_scaling = 0.0_jprb if (present(use_vectorizable_generator)) then use_vec_gen = use_vectorizable_generator else use_vec_gen = .false. end if if (.not. use_vec_gen) then ! Original generator that minimizes the number of random ! numbers used, but is not vectorizable ! Expensive operation: initialize random number generator for ! this column call initialize_random_numbers(iseed, random_stream) ! Compute ng random numbers to use to locate cloud top call uniform_distribution(rand_top, random_stream) ! Loop over ng columns do jg = 1,ng ! Find the cloud top height corresponding to the current ! random number, and store in itrigger trigger = rand_top(jg) * total_cloud_cover jlev = ibegin do while (trigger > cum_cloud_cover(jlev) .and. jlev < iend) jlev = jlev + 1 end do itrigger = jlev if (i_overlap_scheme /= IOverlapExponential) then call generate_column_exp_ran(ng, nlev, jg, random_stream, pdf_sampler, & & frac, pair_cloud_cover, & & cum_cloud_cover, overhang, fractional_std, overlap_param_inhom, & & itrigger, iend, od_scaling) else call generate_column_exp_exp(ng, nlev, jg, random_stream, pdf_sampler, & & frac, pair_cloud_cover, & & cum_cloud_cover, overhang, fractional_std, overlap_param_inhom, & & itrigger, iend, od_scaling) end if end do else ! Alternative generator (only for Exp-Ran overlap so far) that ! should be vectorizable but generates more random numbers, ! some of which are not used if (i_overlap_scheme == IOverlapExponential) then write(nulerr,'(a)') '*** Error: vectorizable cloud generator is not available with Exp-Exp overlap' call radiation_abort() end if call generate_columns_exp_ran(ng, nlev, iseed, pdf_sampler, & & total_cloud_cover, frac_threshold, frac, pair_cloud_cover, & & cum_cloud_cover, overhang, fractional_std, overlap_param_inhom, & & ibegin, iend, od_scaling) end if end if if (lhook) call dr_hook('radiation_cloud_generator:cloud_generator',1,hook_handle) end subroutine cloud_generator !--------------------------------------------------------------------- ! Generate a column of optical depth scalings using ! exponential-random overlap (which includes maximum-random overlap ! as a limiting case) subroutine generate_column_exp_ran(ng, nlev, ig, random_stream, pdf_sampler, & & frac, pair_cloud_cover, & & cum_cloud_cover, overhang, fractional_std, overlap_param_inhom, & & itrigger, iend, od_scaling) use parkind1, only : jprb use radiation_pdf_sampler, only : pdf_sampler_type use random_numbers_mix, only : randomnumberstream, & initialize_random_numbers, uniform_distribution implicit none ! Number of g points / columns, and number of current column integer, intent(in) :: ng, ig ! Number of levels integer, intent(in) :: nlev ! Stream for producing random numbers type(randomnumberstream), intent(inout) :: random_stream ! Object for sampling from a lognormal or gamma distribution type(pdf_sampler_type), intent(in) :: pdf_sampler ! Cloud fraction, cumulative cloud cover and fractional standard ! deviation in each layer real(jprb), intent(in), dimension(nlev) :: frac, cum_cloud_cover, fractional_std ! Cloud cover of a pair of layers, and amount by which cloud at ! next level increases total cloud cover as seen from above real(jprb), intent(in), dimension(nlev-1) :: pair_cloud_cover, overhang ! Overlap parameter of inhomogeneities real(jprb), intent(in), dimension(nlev-1) :: overlap_param_inhom ! Top of highest cloudy layer (in this subcolumn) and base of ! lowest integer, intent(in) :: itrigger, iend ! Optical depth scaling to output real(jprb), intent(inout), dimension(ng,nlev) :: od_scaling ! Height indices integer :: jlev, jcloud ! Number of contiguous cloudy layers for which to compute optical ! depth scaling integer :: n_layers_to_scale integer :: iy ! Is it time to fill the od_scaling variable? logical :: do_fill_od_scaling real(jprb) :: rand_cloud(nlev) real(jprb) :: rand_inhom1(nlev), rand_inhom2(nlev) ! So far our vertically contiguous cloud contains only one layer n_layers_to_scale = 1 iy = 0 ! Locate the clouds below this layer: first generate some more ! random numbers call uniform_distribution(rand_cloud(1:(iend+1-itrigger)),random_stream) ! Loop from the layer below the local cloud top down to the ! bottom-most cloudy layer do jlev = itrigger+1,iend+1 do_fill_od_scaling = .false. if (jlev <= iend) then iy = iy+1 if (n_layers_to_scale > 0) then ! There is a cloud above, in which case the probability ! of cloud in the layer below is as follows if (rand_cloud(iy)*frac(jlev-1) & & < frac(jlev) + frac(jlev-1) - pair_cloud_cover(jlev-1)) then ! Add another cloudy layer n_layers_to_scale = n_layers_to_scale + 1 else ! Reached the end of a contiguous set of cloudy layers and ! will compute the optical depth scaling immediately. do_fill_od_scaling = .true. end if else ! There is clear-sky above, in which case the ! probability of cloud in the layer below is as follows if (rand_cloud(iy)*(cum_cloud_cover(jlev-1) - frac(jlev-1)) & & < pair_cloud_cover(jlev-1) - overhang(jlev-1) - frac(jlev-1)) then ! A new cloud top n_layers_to_scale = 1 end if end if else ! We are at the bottom of the cloudy layers in the model, ! so in a moment need to populate the od_scaling array do_fill_od_scaling = .true. end if if (do_fill_od_scaling) then ! We have a contiguous range of layers for which we ! compute the od_scaling elements using some random ! numbers call uniform_distribution(rand_inhom1(1:n_layers_to_scale),random_stream) call uniform_distribution(rand_inhom2(1:n_layers_to_scale),random_stream) ! Loop through the sequence of cloudy layers do jcloud = 2,n_layers_to_scale ! Use second random number, and inhomogeneity overlap ! parameter, to decide whether the first random number ! should be repeated (corresponding to maximum overlap) ! or not (corresponding to random overlap) if (rand_inhom2(jcloud) & & < overlap_param_inhom(jlev-n_layers_to_scale+jcloud-2)) then rand_inhom1(jcloud) = rand_inhom1(jcloud-1) end if end do ! Sample from a lognormal or gamma distribution to obtain ! the optical depth scalings call pdf_sampler%sample(fractional_std(jlev-n_layers_to_scale:jlev-1), & & rand_inhom1(1:n_layers_to_scale), od_scaling(ig,jlev-n_layers_to_scale:jlev-1)) n_layers_to_scale = 0 end if end do end subroutine generate_column_exp_ran !--------------------------------------------------------------------- ! Generate a column of optical depth scalings using ! exponential-exponential overlap subroutine generate_column_exp_exp(ng, nlev, ig, random_stream, pdf_sampler, & & frac, pair_cloud_cover, & & cum_cloud_cover, overhang, fractional_std, overlap_param_inhom, & & itrigger, iend, od_scaling) use parkind1, only : jprb use radiation_pdf_sampler, only : pdf_sampler_type use random_numbers_mix, only : randomnumberstream, & initialize_random_numbers, uniform_distribution implicit none ! Number of g points / columns, and number of current column integer, intent(in) :: ng, ig ! Number of levels integer, intent(in) :: nlev ! Stream for producing random numbers type(randomnumberstream), intent(inout) :: random_stream ! Object for sampling from a lognormal or gamma distribution type(pdf_sampler_type), intent(in) :: pdf_sampler ! Cloud fraction, cumulative cloud cover and fractional standard ! deviation in each layer real(jprb), intent(in), dimension(nlev) :: frac, cum_cloud_cover, fractional_std ! Cloud cover of a pair of layers, and amount by which cloud at ! next level increases total cloud cover as seen from above real(jprb), intent(in), dimension(nlev-1) :: pair_cloud_cover, overhang ! Overlap parameter of inhomogeneities real(jprb), intent(in), dimension(nlev-1) :: overlap_param_inhom ! Top of highest cloudy layer (in this subcolumn) and base of ! lowest integer, intent(in) :: itrigger, iend ! Optical depth scaling to output real(jprb), intent(inout), dimension(ng,nlev) :: od_scaling ! Height indices integer :: jlev, jcloud integer :: iy real(jprb) :: rand_cloud(nlev) real(jprb) :: rand_inhom1(nlev), rand_inhom2(nlev) ! For each column analysed, this vector locates the clouds. It is ! only actually used for Exp-Exp overlap logical :: is_cloudy(nlev) ! Number of contiguous cloudy layers for which to compute optical ! depth scaling integer :: n_layers_to_scale iy = 0 is_cloudy = .false. is_cloudy(itrigger) = .true. ! Locate the clouds below this layer: first generate some more ! random numbers call uniform_distribution(rand_cloud(1:(iend+1-itrigger)),random_stream) ! Loop from the layer below the local cloud top down to the ! bottom-most cloudy layer do jlev = itrigger+1,iend iy = iy+1 if (is_cloudy(jlev-1)) then ! There is a cloud above, in which case the probability ! of cloud in the layer below is as follows if (rand_cloud(iy)*frac(jlev-1) & & < frac(jlev) + frac(jlev-1) - pair_cloud_cover(jlev-1)) then ! Add another cloudy layer is_cloudy(jlev) = .true. end if else ! There is clear-sky above, in which case the ! probability of cloud in the layer below is as follows if (rand_cloud(iy)*(cum_cloud_cover(jlev-1) - frac(jlev-1)) & & < pair_cloud_cover(jlev-1) - overhang(jlev-1) - frac(jlev-1)) then ! A new cloud top is_cloudy(jlev) = .true. end if end if end do ! We have a contiguous range of layers for which we compute the ! od_scaling elements using some random numbers ! In the Exp-Exp overlap scheme we do all layers at once n_layers_to_scale = iend+1 - itrigger call uniform_distribution(rand_inhom1(1:n_layers_to_scale),random_stream) call uniform_distribution(rand_inhom2(1:n_layers_to_scale),random_stream) ! Loop through the sequence of cloudy layers do jcloud = 2,n_layers_to_scale ! Use second random number, and inhomogeneity overlap ! parameter, to decide whether the first random number ! should be repeated (corresponding to maximum overlap) ! or not (corresponding to random overlap) if (rand_inhom2(jcloud) & & < overlap_param_inhom(iend-n_layers_to_scale+jcloud-1)) then rand_inhom1(jcloud) = rand_inhom1(jcloud-1) end if end do ! Sample from a lognormal or gamma distribution to obtain the ! optical depth scalings ! Masked version assuming values outside the range itrigger:iend ! are already zero: call pdf_sampler%masked_sample(n_layers_to_scale, & & fractional_std(itrigger:iend), & & rand_inhom1(1:n_layers_to_scale), od_scaling(ig,itrigger:iend), & & is_cloudy(itrigger:iend)) ! ! IFS version: ! !$omp simd ! do jlev=itrigger,iend ! if (.not. is_cloudy(jlev)) then ! od_scaling(ig,jlev) = 0.0_jprb ! else ! call sample_from_pdf_simd(& ! pdf_sampler,fractional_std(jlev),& ! rand_inhom1(jlev-itrigger+1), & ! od_scaling(ig,jlev)) ! end if ! end do end subroutine generate_column_exp_exp !--------------------------------------------------------------------- ! Extract the value of a lognormal distribution with fractional ! standard deviation "fsd" corresponding to the cumulative ! distribution function value "cdf", and return it in x. Since this ! is an elemental subroutine, fsd, cdf and x may be arrays. SIMD version. subroutine sample_from_pdf_simd(this, fsd, cdf, x) use parkind1, only : jprb use radiation_pdf_sampler, only : pdf_sampler_type implicit none !#if defined(__GFORTRAN__) || defined(__PGI) || defined(__NEC__) !#else ! !$omp declare simd(sample_from_pdf_simd) uniform(this) & ! !$omp linear(ref(fsd)) linear(ref(cdf)) !#endif type(pdf_sampler_type), intent(in) :: this ! Fractional standard deviation (0 to 4) and cumulative ! distribution function (0 to 1) real(jprb), intent(in) :: fsd, cdf ! Sample from distribution real(jprb), intent(out) :: x ! Index to look-up table integer :: ifsd, icdf ! Weights in bilinear interpolation real(jprb) :: wfsd, wcdf ! Bilinear interpolation with bounds wcdf = cdf * (this%ncdf-1) + 1.0_jprb icdf = max(1, min(int(wcdf), this%ncdf-1)) wcdf = max(0.0_jprb, min(wcdf - icdf, 1.0_jprb)) wfsd = (fsd-this%fsd1) * this%inv_fsd_interval + 1.0_jprb ifsd = max(1, min(int(wfsd), this%nfsd-1)) wfsd = max(0.0_jprb, min(wfsd - ifsd, 1.0_jprb)) x = (1.0_jprb-wcdf)*(1.0_jprb-wfsd) * this%val(icdf ,ifsd) & & + (1.0_jprb-wcdf)* wfsd * this%val(icdf ,ifsd+1) & & + wcdf *(1.0_jprb-wfsd) * this%val(icdf+1,ifsd) & & + wcdf * wfsd * this%val(icdf+1,ifsd+1) end subroutine sample_from_pdf_simd !--------------------------------------------------------------------- ! Generate columns of optical depth scalings using ! exponential-random overlap (which includes maximum-random overlap ! as a limiting case). This version is intended to work better on ! hardware with long vector lengths. As with all calculations in ! this file, we zoom into the fraction of the column with cloud at ! any height, so that all spectral intervals see a cloud somewhere. ! In the McICA solver, this is combined appropriately with the ! clear-sky calculation. subroutine generate_columns_exp_ran(ng, nlev, iseed, pdf_sampler, & & total_cloud_cover, frac_threshold, frac, pair_cloud_cover, & & cum_cloud_cover, overhang, fractional_std, overlap_param_inhom, & & ibegin, iend, od_scaling) use parkind1, only : jprb use radiation_pdf_sampler, only : pdf_sampler_type use radiation_random_numbers, only : rng_type, IRngMinstdVector, IRngNative implicit none ! Number of g points / columns integer, intent(in) :: ng ! Number of levels integer, intent(in) :: nlev integer, intent(in) :: iseed ! seed for random number generator ! Stream for producing random numbers !type(randomnumberstream) :: random_stream type(rng_type) :: random_number_generator ! Object for sampling from a lognormal or gamma distribution type(pdf_sampler_type), intent(in) :: pdf_sampler ! Total cloud cover using cloud fraction and overlap parameter real(jprb), intent(in) :: total_cloud_cover real(jprb), intent(in) :: frac_threshold ! Cloud fraction, cumulative cloud cover and fractional standard ! deviation in each layer real(jprb), intent(in), dimension(nlev) :: frac, cum_cloud_cover, fractional_std ! Cloud cover of a pair of layers, and amount by which cloud at ! next level increases total cloud cover as seen from above real(jprb), intent(in), dimension(nlev-1) :: pair_cloud_cover, overhang ! Overlap parameter of inhomogeneities real(jprb), intent(in), dimension(nlev-1) :: overlap_param_inhom ! Top of highest cloudy layer and base of lowest integer, intent(inout) :: ibegin, iend ! Optical depth scaling to output real(jprb), intent(inout), dimension(ng,nlev) :: od_scaling ! Loop indices integer :: jlev, jg real(jprb) :: rand_cloud(ng,ibegin:iend) real(jprb) :: rand_inhom(ng,ibegin-1:iend), rand_inhom2(ng,ibegin:iend) ! Is the cloud fraction above the minimum threshold at each level logical :: is_any_cloud(ibegin:iend) ! Scaled random number for finding cloud real(jprb) :: trigger(ng) logical :: is_cloud(ng) ! Is there cloud at this level and spectral interval? logical :: prev_cloud(ng) ! Was there cloud at level above? logical :: first_cloud(ng) ! At level of first cloud counting down from top? logical :: found_cloud(ng) ! Cloud found in this column counting down from top? is_any_cloud = (frac(ibegin:iend) >= frac_threshold) ! Initialize random number generator for this column, and state ! that random numbers will be requested in blocks of length the ! number of spectral intervals ng. call random_number_generator%initialize(IRngMinstdVector, iseed=iseed, & & nmaxstreams=ng) ! Random numbers to use to locate cloud top call random_number_generator%uniform_distribution(trigger) ! Random numbers to work out whether to transition vertically from ! clear to cloudy, cloudy to clear, clear to clear or cloudy to ! cloudy call random_number_generator%uniform_distribution(rand_cloud, is_any_cloud) ! Random numbers to generate sub-grid cloud structure call random_number_generator%uniform_distribution(rand_inhom) call random_number_generator%uniform_distribution(rand_inhom2, is_any_cloud) trigger = trigger * total_cloud_cover ! Initialize logicals for clear-sky above first cloudy layer found_cloud = .false. is_cloud = .false. first_cloud = .false. ! Loop down through layers starting at the first cloudy layer do jlev = ibegin,iend if (is_any_cloud(jlev)) then ! Added for DWD (2020) !NEC$ shortloop do jg = 1,ng ! The intention is that all these operations are vectorizable, ! since all are vector operations on vectors of length ng... ! Copy the cloud mask between levels prev_cloud(jg) = is_cloud(jg) ! For each spectral interval, has the first cloud appeared at this level? first_cloud(jg) = (trigger(jg) <= cum_cloud_cover(jlev) .and. .not. found_cloud(jg)) ! ...if so, add to found_cloud found_cloud(jg) = found_cloud(jg) .or. first_cloud(jg) ! There is cloud at this level either if a first cloud has ! appeared, or using separate probability calculations ! depending on whether there is a cloud above (given by ! prev_cloud) is_cloud(jg) = first_cloud(jg) & & .or. found_cloud(jg) .and. merge(rand_cloud(jg,jlev)*frac(jlev-1) & & < frac(jlev)+frac(jlev-1)-pair_cloud_cover(jlev-1), & & rand_cloud(jg,jlev)*(cum_cloud_cover(jlev-1) - frac(jlev-1)) & & < pair_cloud_cover(jlev-1) - overhang(jlev-1) - frac(jlev-1), & & prev_cloud(jg)) ! The random number determining cloud structure decorrelates ! with the one above it according to the overlap parameter, ! but always decorrelates if there is clear-sky above. If ! there is clear-sky in the present level, the random number ! is set to zero to ensure that the optical depth scaling is ! also zero. rand_inhom(jg,jlev) = merge(merge(rand_inhom(jg,jlev-1), rand_inhom(jg,jlev), & & rand_inhom2(jg,jlev) < overlap_param_inhom(jlev-1) & & .and. prev_cloud(jg)), & & 0.0_jprb, is_cloud(jg)) end do else ! No cloud at this level is_cloud = .false. end if end do ! Sample from a lognormal or gamma distribution to obtain the ! optical depth scalings, calling the faster masked version and ! assuming values outside the range ibegin:iend are already zero call pdf_sampler%masked_block_sample(iend-ibegin+1, ng, & & fractional_std(ibegin:iend), & & rand_inhom(:,ibegin:iend), od_scaling(:,ibegin:iend), & & is_any_cloud) end subroutine generate_columns_exp_ran end module radiation_cloud_generator