! $Id: newmicro.F90 4562 2023-06-07 13:33:57Z acozic $ SUBROUTINE newmicro(flag_aerosol, ok_cdnc, bl95_b0, bl95_b1, paprs, pplay, t, pqlwp, picefra, pclc, & pcltau, pclemi, pch, pcl, pcm, pct, pctlwp, xflwp, xfiwp, xflwc, xfiwc, & mass_solu_aero, mass_solu_aero_pi, pcldtaupi, latitude_deg,distcltop, re, fl, reliq, reice, & reliq_pi, reice_pi) USE dimphy USE phys_local_var_mod, ONLY: scdnc, cldncl, reffclwtop, lcc, reffclws, & reffclwc, cldnvi, lcc3d, lcc3dcon, lcc3dstra, icc3dcon, icc3dstra, & zfice, dNovrN, ptconv USE phys_state_var_mod, ONLY: rnebcon, clwcon USE icefrac_lsc_mod ! computes ice fraction (JBM 3/14) USE lscp_ini_mod, only: iflag_t_glace USE ioipsl_getin_p_mod, ONLY : getin_p USE print_control_mod, ONLY: lunout USE lscp_tools_mod, only: icefrac_lscp IMPLICIT NONE ! ====================================================================== ! Auteur(s): Z.X. Li (LMD/CNRS) date: 19930910 ! O. Boucher (LMD/CNRS) mise a jour en 201212 ! I. Musat (LMD/CNRS) : prise en compte de la meme hypothese de recouvrement ! pour les nuages que pour le rayonnement rrtm via ! le parametre novlp de radopt.h : 20160721 ! Objet: Calculer epaisseur optique et emmissivite des nuages ! ====================================================================== ! Arguments: ! ok_cdnc-input-L-flag pour calculer les rayons a partir des aerosols ! t-------input-R-temperature ! pqlwp---input-R-eau liquide nuageuse dans l'atmosphere dans la maille (kg/kg) ! picefra--input-R-fraction de glace dans les nuages ! pclc----input-R-couverture nuageuse pour le rayonnement (0 a 1) ! mass_solu_aero-----input-R-total mass concentration for all soluble ! aerosols[ug/m^3] ! mass_solu_aero_pi--input-R-ditto, pre-industrial value ! bl95_b0-input-R-a PARAMETER, may be varied for tests (s-sea, l-land) ! bl95_b1-input-R-a PARAMETER, may be varied for tests ( -"- ) ! latitude_deg-input latitude in degrees ! distcltop ---input- distance from cloud top ! re------output-R-Cloud droplet effective radius multiplied by fl [um] ! fl------output-R-Denominator to re, introduced to avoid problems in ! the averaging of the output. fl is the fraction of liquid ! water clouds within a grid cell ! pcltau--output-R-epaisseur optique des nuages ! pclemi--output-R-emissivite des nuages (0 a 1) ! pcldtaupi-output-R-pre-industrial value of cloud optical thickness, ! pcl-output-R-2D low-level cloud cover ! pcm-output-R-2D mid-level cloud cover ! pch-output-R-2D high-level cloud cover ! pct-output-R-2D total cloud cover ! ====================================================================== include "YOMCST.h" include "nuage.h" include "radepsi.h" include "radopt.h" include "clesphys.h" ! choix de l'hypothese de recouvrement nuageuse via radopt.h (IM, 19.07.2016) ! !novlp=1: max-random ! !novlp=2: maximum ! !novlp=3: random ! LOGICAL random, maximum_random, maximum ! PARAMETER (random=.FALSE., maximum_random=.TRUE., maximum=.FALSE.) LOGICAL, SAVE :: first = .TRUE. !$OMP THREADPRIVATE(FIRST) INTEGER flag_max ! threshold PARAMETERs REAL thres_tau, thres_neb PARAMETER (thres_tau=0.3, thres_neb=0.001) REAL phase3d(klon, klev) REAL tcc(klon), ftmp(klon), lcc_integrat(klon), height(klon) REAL paprs(klon, klev+1) REAL pplay(klon, klev) REAL t(klon, klev) REAL pclc(klon, klev) REAL pqlwp(klon, klev), picefra(klon,klev) REAL pcltau(klon, klev) REAL pclemi(klon, klev) REAL pcldtaupi(klon, klev) REAL latitude_deg(klon) REAL pct(klon) REAL pcl(klon) REAL pcm(klon) REAL pch(klon) REAL pctlwp(klon) REAL distcltop(klon,klev) LOGICAL lo ! !Abderr modif JL mail du 19.01.2011 18:31 ! REAL cetahb, cetamb ! PARAMETER (cetahb = 0.45, cetamb = 0.80) ! Remplacer ! cetahb*paprs(i,1) par prmhc ! cetamb*paprs(i,1) par prlmc REAL prmhc ! Pressure between medium and high level cloud in Pa REAL prlmc ! Pressure between low and medium level cloud in Pa PARAMETER (prmhc=440.*100., prlmc=680.*100.) INTEGER i, k REAL xflwp(klon), xfiwp(klon) REAL xflwc(klon, klev), xfiwc(klon, klev) REAL radius REAL coef_froi, coef_chau PARAMETER (coef_chau=0.13, coef_froi=0.09) REAL seuil_neb PARAMETER (seuil_neb=0.001) ! JBM (3/14) nexpo is replaced by exposant_glace ! INTEGER nexpo ! exponentiel pour glace/eau ! PARAMETER (nexpo=6) ! PARAMETER (nexpo=1) ! if iflag_t_glace=0, the old values are used: REAL, PARAMETER :: t_glace_min_old = 258. REAL, PARAMETER :: t_glace_max_old = 273.13 REAL rel, tc, rei, iwc, dei, deimin, deimax REAL k_ice0, k_ice, df PARAMETER (k_ice0=0.005) ! units=m2/g PARAMETER (df=1.66) ! diffusivity factor ! jq for the aerosol indirect effect ! jq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003 ! jq REAL mass_solu_aero(klon, klev) ! total mass concentration for all soluble aerosols [ug m-3] REAL mass_solu_aero_pi(klon, klev) ! - " - (pre-industrial value) REAL cdnc(klon, klev) ! cloud droplet number concentration [m-3] REAL re(klon, klev) ! cloud droplet effective radius [um] REAL cdnc_pi(klon, klev) ! cloud droplet number concentration [m-3] (pi value) REAL re_pi(klon, klev) ! cloud droplet effective radius [um] (pi value) REAL fl(klon, klev) ! xliq * rneb (denominator to re; fraction of liquid water clouds ! within the grid cell) INTEGER flag_aerosol LOGICAL ok_cdnc REAL bl95_b0, bl95_b1 ! Parameter in B&L 95-Formula ! jq-end ! IM cf. CR:parametres supplementaires REAL dzfice(klon,klev) REAL zclear(klon) REAL zcloud(klon) REAL zcloudh(klon) REAL zcloudm(klon) REAL zcloudl(klon) REAL rhodz(klon, klev) !--rho*dz pour la couche REAL zrho(klon, klev) !--rho pour la couche REAL dh(klon, klev) !--dz pour la couche REAL rad_chaud(klon, klev) !--rayon pour les nuages chauds REAL rad_chaud_pi(klon, klev) !--rayon pour les nuages chauds pre-industriels REAL zflwp_var, zfiwp_var REAL d_rei_dt ! Abderrahmane oct 2009 REAL reliq(klon, klev), reice(klon, klev) REAL reliq_pi(klon, klev), reice_pi(klon, klev) REAL,SAVE :: cdnc_min=-1. REAL,SAVE :: cdnc_min_m3 !$OMP THREADPRIVATE(cdnc_min,cdnc_min_m3) REAL,SAVE :: cdnc_max=-1. REAL,SAVE :: cdnc_max_m3 !$OMP THREADPRIVATE(cdnc_max,cdnc_max_m3) ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! FH : 2011/05/24 ! rei = ( rei_max - rei_min ) * T(°C) / 81.4 + rei_max ! to be used for a temperature in celcius T(°C) < 0 ! rei=rei_min for T(°C) < -81.4 ! Calcul de la pente de la relation entre rayon effective des cristaux ! et la température. ! Pour retrouver les résultats numériques de la version d'origine, ! on impose 0.71 quand on est proche de 0.71 if (first) THEN call getin_p('cdnc_min',cdnc_min) cdnc_min_m3=cdnc_min*1.E6 IF (cdnc_min_m3<0.) cdnc_min_m3=20.E6 ! astuce pour retrocompatibilite write(lunout,*)'cdnc_min=', cdnc_min_m3/1.E6 call getin_p('cdnc_max',cdnc_max) cdnc_max_m3=cdnc_max*1.E6 IF (cdnc_max_m3<0.) cdnc_max_m3=1000.E6 ! astuce pour retrocompatibilite write(lunout,*)'cdnc_max=', cdnc_max_m3/1.E6 ENDIF d_rei_dt = (rei_max-rei_min)/81.4 IF (abs(d_rei_dt-0.71)<1.E-4) d_rei_dt = 0.71 ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! Calculer l'epaisseur optique et l'emmissivite des nuages ! IM inversion des DO xflwp = 0.D0 xfiwp = 0.D0 xflwc = 0.D0 xfiwc = 0.D0 reliq = 0. reice = 0. reliq_pi = 0. reice_pi = 0. IF (iflag_t_glace.EQ.0) THEN DO k = 1, klev DO i = 1, klon ! -layer calculation rhodz(i, k) = (paprs(i,k)-paprs(i,k+1))/rg ! kg/m2 zrho(i, k) = pplay(i, k)/t(i, k)/rd ! kg/m3 dh(i, k) = rhodz(i, k)/zrho(i, k) ! m ! -Fraction of ice in cloud using a linear transition zfice(i, k) = 1.0 - (t(i,k)-t_glace_min_old)/(t_glace_max_old-t_glace_min_old) zfice(i, k) = min(max(zfice(i,k),0.0), 1.0) ! -IM Total Liquid/Ice water content xflwc(i, k) = (1.-zfice(i,k))*pqlwp(i, k) xfiwc(i, k) = zfice(i, k)*pqlwp(i, k) ENDDO ENDDO ELSE ! of IF (iflag_t_glace.EQ.0) DO k = 1, klev ! JBM: icefrac_lsc is now contained icefrac_lsc_mod ! zfice(i, k) = icefrac_lsc(t(i,k), t_glace_min, & ! t_glace_max, exposant_glace) IF (ok_new_lscp) THEN CALL icefrac_lscp(klon,t(:,k),iflag_ice_thermo,distcltop(:,k),zfice(:,k),dzfice(:,k)) ELSE CALL icefrac_lsc(klon,t(:,k),pplay(:,k)/paprs(:,1),zfice(:,k)) ENDIF DO i = 1, klon IF ((.NOT. ptconv(i,k)) .AND. ok_new_lscp .AND. ok_icefra_lscp) THEN ! EV: take the ice fraction directly from the lscp code ! consistent only for non convective grid points ! critical for mixed phase clouds zfice(i,k)=picefra(i,k) ENDIF ! -layer calculation rhodz(i, k) = (paprs(i,k)-paprs(i,k+1))/rg ! kg/m2 zrho(i, k) = pplay(i, k)/t(i, k)/rd ! kg/m3 dh(i, k) = rhodz(i, k)/zrho(i, k) ! m ! -IM Total Liquid/Ice water content xflwc(i, k) = (1.-zfice(i,k))*pqlwp(i, k) xfiwc(i, k) = zfice(i, k)*pqlwp(i, k) ENDDO ENDDO ENDIF IF (ok_cdnc) THEN ! --we compute cloud properties as a function of the aerosol load DO k = 1, klev DO i = 1, klon ! Formula "D" of Boucher and Lohmann, Tellus, 1995 ! Cloud droplet number concentration (CDNC) is restricted ! to be within [20, 1000 cm^3] ! --pre-industrial case cdnc_pi(i, k) = 10.**(bl95_b0+bl95_b1*log(max(mass_solu_aero_pi(i,k), & 1.E-4))/log(10.))*1.E6 !-m-3 cdnc_pi(i, k) = min(cdnc_max_m3, max(cdnc_min_m3,cdnc_pi(i,k))) ENDDO ENDDO !--flag_aerosol=7 => MACv2SP climatology !--in this case there is an enhancement factor IF (flag_aerosol .EQ. 7) THEN !--present-day DO k = 1, klev DO i = 1, klon cdnc(i, k) = cdnc_pi(i,k)*dNovrN(i) ENDDO ENDDO !--standard case ELSE DO k = 1, klev DO i = 1, klon ! Formula "D" of Boucher and Lohmann, Tellus, 1995 ! Cloud droplet number concentration (CDNC) is restricted ! to be within [20, 1000 cm^3] ! --present-day case cdnc(i, k) = 10.**(bl95_b0+bl95_b1*log(max(mass_solu_aero(i,k), & 1.E-4))/log(10.))*1.E6 !-m-3 cdnc(i, k) = min(cdnc_max_m3, max(cdnc_min_m3,cdnc(i,k))) ENDDO ENDDO ENDIF !--flag_aerosol !--computing cloud droplet size DO k = 1, klev DO i = 1, klon ! --present-day case rad_chaud(i, k) = 1.1*((pqlwp(i,k)*pplay(i, & k)/(rd*t(i,k)))/(4./3*rpi*1000.*cdnc(i,k)))**(1./3.) rad_chaud(i, k) = max(rad_chaud(i,k)*1.E6, 5.) ! --pre-industrial case rad_chaud_pi(i, k) = 1.1*((pqlwp(i,k)*pplay(i, & k)/(rd*t(i,k)))/(4./3.*rpi*1000.*cdnc_pi(i,k)))**(1./3.) rad_chaud_pi(i, k) = max(rad_chaud_pi(i,k)*1.E6, 5.) ! --pre-industrial case ! --liquid/ice cloud water paths: IF (pclc(i,k)<=seuil_neb) THEN pcldtaupi(i, k) = 0.0 ELSE zflwp_var = 1000.*(1.-zfice(i,k))*pqlwp(i, k)/pclc(i, k)* & rhodz(i, k) zfiwp_var = 1000.*zfice(i, k)*pqlwp(i, k)/pclc(i, k)*rhodz(i, k) ! Calculation of ice cloud effective radius in micron IF (iflag_rei .EQ. 1) THEN ! when we account for precipitation in the radiation scheme, ! It is recommended to use the rei formula from Sun and Rikkus 1999 with a revision ! from Sun 2001 (as in the IFS model) iwc=zfice(i, k)*pqlwp(i, k)/pclc(i,k)*zrho(i,k)*1000. !in cloud ice water content in g/m3 dei=(1.2351+0.0105*(t(i,k)-273.15))*(45.8966*(iwc**0.2214) + & & 0.7957*(iwc**0.2535)*(t(i,k)-83.15)) !deimax=155.0 !deimin=20.+40*cos(abs(latitude_deg(i))/180.*RPI) !Etienne: deimax and deimin controled by rei_max and rei_min in physiq.def deimax=rei_max*2.0 deimin=2.0*rei_min+40*cos(abs(latitude_deg(i))/180.*RPI) dei=min(dei,deimax) dei=max(dei,deimin) rei=3.*sqrt(3.)/8.*dei ELSE ! Default ! for ice clouds: as a function of the ambiant temperature ! [formula used by Iacobellis and Somerville (2000), with an ! asymptotical value of 3.5 microns at T<-81.4 C added to be ! consistent with observations of Heymsfield et al. 1986]: ! 2011/05/24 : rei_min = 3.5 becomes a free PARAMETER as well as ! rei_max=61.29 tc = t(i, k) - 273.15 rei = d_rei_dt*tc + rei_max IF (tc<=-81.4) rei = rei_min ENDIF ! -- cloud optical thickness : ! [for liquid clouds, traditional formula, ! for ice clouds, Ebert & Curry (1992)] IF (zfiwp_var==0. .OR. rei<=0.) rei = 1. pcldtaupi(i, k) = 3.0/2.0*zflwp_var/rad_chaud_pi(i, k) + & zfiwp_var*(3.448E-03+2.431/rei) ENDIF ENDDO ENDDO ELSE !--not ok_cdnc ! -prescribed cloud droplet radius DO k = 1, min(3, klev) DO i = 1, klon rad_chaud(i, k) = rad_chau2 rad_chaud_pi(i, k) = rad_chau2 ENDDO ENDDO DO k = min(3, klev) + 1, klev DO i = 1, klon rad_chaud(i, k) = rad_chau1 rad_chaud_pi(i, k) = rad_chau1 ENDDO ENDDO ENDIF !--ok_cdnc ! --computation of cloud optical depth and emissivity ! --in the general case DO k = 1, klev DO i = 1, klon IF (pclc(i,k)<=seuil_neb) THEN ! effective cloud droplet radius (microns) for liquid water clouds: ! For output diagnostics cloud droplet effective radius [um] ! we multiply here with f * xl (fraction of liquid water ! clouds in the grid cell) to avoid problems in the averaging of the ! output. ! In the output of IOIPSL, derive the REAL cloud droplet ! effective radius as re/fl fl(i, k) = seuil_neb*(1.-zfice(i,k)) re(i, k) = rad_chaud(i, k)*fl(i, k) rel = 0. rei = 0. pclc(i, k) = 0.0 pcltau(i, k) = 0.0 pclemi(i, k) = 0.0 ELSE ! -- liquid/ice cloud water paths: zflwp_var = 1000.*(1.-zfice(i,k))*pqlwp(i, k)/pclc(i, k)*rhodz(i, k) zfiwp_var = 1000.*zfice(i, k)*pqlwp(i, k)/pclc(i, k)*rhodz(i, k) ! effective cloud droplet radius (microns) for liquid water clouds: ! For output diagnostics cloud droplet effective radius [um] ! we multiply here with f * xl (fraction of liquid water ! clouds in the grid cell) to avoid problems in the averaging of the ! output. ! In the output of IOIPSL, derive the REAL cloud droplet ! effective radius as re/fl fl(i, k) = pclc(i, k)*(1.-zfice(i,k)) re(i, k) = rad_chaud(i, k)*fl(i, k) rel = rad_chaud(i, k) ! Calculation of ice cloud effective radius in micron IF (iflag_rei .GT. 0) THEN ! when we account for precipitation in the radiation scheme, ! we use the rei formula from Sun and Rikkus 1999 with a revision ! from Sun 2001 (as in the IFS model) iwc=zfice(i, k)*pqlwp(i, k)/pclc(i,k)*zrho(i,k)*1000. !in cloud ice water content in g/m3 dei=(1.2351+0.0105*(t(i,k)-273.15))*(45.8966*(iwc**0.2214) + & &0.7957*(iwc**0.2535)*(t(i,k)-83.15)) !deimax=155.0 !deimin=20.+40*cos(abs(latitude_deg(i))/180.*RPI) !Etienne: deimax and deimin controled by rei_max and rei_min in physiq.def deimax=rei_max*2.0 deimin=2.0*rei_min+40*cos(abs(latitude_deg(i))/180.*RPI) dei=min(dei,deimax) dei=max(dei,deimin) rei=3.*sqrt(3.)/8.*dei ELSE ! Default ! for ice clouds: as a function of the ambiant temperature ! [formula used by Iacobellis and Somerville (2000), with an ! asymptotical value of 3.5 microns at T<-81.4 C added to be ! consistent with observations of Heymsfield et al. 1986]: ! 2011/05/24 : rei_min = 3.5 becomes a free PARAMETER as well as ! rei_max=61.29 tc = t(i, k) - 273.15 rei = d_rei_dt*tc + rei_max IF (tc<=-81.4) rei = rei_min ENDIF ! -- cloud optical thickness : ! [for liquid clouds, traditional formula, ! for ice clouds, Ebert & Curry (1992)] IF (zflwp_var==0.) rel = 1. IF (zfiwp_var==0. .OR. rei<=0.) rei = 1. pcltau(i, k) = 3.0/2.0*(zflwp_var/rel) + zfiwp_var*(3.448E-03+2.431/ & rei) ! -- cloud infrared emissivity: ! [the broadband infrared absorption coefficient is PARAMETERized ! as a function of the effective cld droplet radius] ! Ebert and Curry (1992) formula as used by Kiehl & Zender (1995): k_ice = k_ice0 + 1.0/rei pclemi(i, k) = 1.0 - exp(-coef_chau*zflwp_var-df*k_ice*zfiwp_var) ENDIF reice(i, k) = rei xflwp(i) = xflwp(i) + xflwc(i, k)*rhodz(i, k) xfiwp(i) = xfiwp(i) + xfiwc(i, k)*rhodz(i, k) ENDDO ENDDO ! --if cloud droplet radius is fixed, then pcldtaupi=pcltau IF (.NOT. ok_cdnc) THEN DO k = 1, klev DO i = 1, klon pcldtaupi(i, k) = pcltau(i, k) reice_pi(i, k) = reice(i, k) ENDDO ENDDO ENDIF DO k = 1, klev DO i = 1, klon reliq(i, k) = rad_chaud(i, k) reliq_pi(i, k) = rad_chaud_pi(i, k) reice_pi(i, k) = reice(i, k) ENDDO ENDDO ! COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS ! IM cf. CR:test: calcul prenant ou non en compte le recouvrement ! initialisations DO i = 1, klon zclear(i) = 1. zcloud(i) = 0. zcloudh(i) = 0. zcloudm(i) = 0. zcloudl(i) = 0. pch(i) = 1.0 pcm(i) = 1.0 pcl(i) = 1.0 pctlwp(i) = 0.0 ENDDO ! --calculation of liquid water path DO k = klev, 1, -1 DO i = 1, klon pctlwp(i) = pctlwp(i) + pqlwp(i, k)*rhodz(i, k) ENDDO ENDDO ! --calculation of cloud properties with cloud overlap IF (novlp==1) THEN DO k = klev, 1, -1 DO i = 1, klon zclear(i) = zclear(i)*(1.-max(pclc(i,k),zcloud(i)))/(1.-min(real( & zcloud(i),kind=8),1.-zepsec)) pct(i) = 1. - zclear(i) IF (paprs(i,k)=prmhc .AND. paprs(i,k)=prlmc) THEN pcl(i) = pcl(i)*(1.-max(pclc(i,k),zcloudl(i)))/(1.-min(real(zcloudl & (i),kind=8),1.-zepsec)) zcloudl(i) = pclc(i, k) ENDIF zcloud(i) = pclc(i, k) ENDDO ENDDO ELSE IF (novlp==2) THEN DO k = klev, 1, -1 DO i = 1, klon zcloud(i) = max(pclc(i,k), zcloud(i)) pct(i) = zcloud(i) IF (paprs(i,k)=prmhc .AND. paprs(i,k)=prlmc) THEN pcl(i) = min(pclc(i,k), pcl(i)) ENDIF ENDDO ENDDO ELSE IF (novlp==3) THEN DO k = klev, 1, -1 DO i = 1, klon zclear(i) = zclear(i)*(1.-pclc(i,k)) pct(i) = 1 - zclear(i) IF (paprs(i,k)=prmhc .AND. paprs(i,k)=prlmc) THEN pcl(i) = pcl(i)*(1.0-pclc(i,k)) ENDIF ENDDO ENDDO ENDIF DO i = 1, klon pch(i) = 1. - pch(i) pcm(i) = 1. - pcm(i) pcl(i) = 1. - pcl(i) ENDDO ! ======================================================== ! DIAGNOSTICS CALCULATION FOR CMIP5 PROTOCOL ! ======================================================== ! change by Nicolas Yan (LSCE) ! Cloud Droplet Number Concentration (CDNC) : 3D variable ! Fractionnal cover by liquid water cloud (LCC3D) : 3D variable ! Cloud Droplet Number Concentration at top of cloud (CLDNCL) : 2D variable ! Droplet effective radius at top of cloud (REFFCLWTOP) : 2D variable ! Fractionnal cover by liquid water at top of clouds (LCC) : 2D variable IF (ok_cdnc) THEN DO k = 1, klev DO i = 1, klon phase3d(i, k) = 1 - zfice(i, k) IF (pclc(i,k)<=seuil_neb) THEN lcc3d(i, k) = seuil_neb*phase3d(i, k) ELSE lcc3d(i, k) = pclc(i, k)*phase3d(i, k) ENDIF scdnc(i, k) = lcc3d(i, k)*cdnc(i, k) ! m-3 ENDDO ENDDO DO i = 1, klon lcc(i) = 0. reffclwtop(i) = 0. cldncl(i) = 0. IF (novlp.EQ.3 .OR. novlp.EQ.1) tcc(i) = 1. IF (novlp.EQ.2) tcc(i) = 0. ENDDO DO i = 1, klon DO k = klev - 1, 1, -1 !From TOA down ! Test, if the cloud optical depth exceeds the necessary ! threshold: IF (pcltau(i,k)>thres_tau .AND. pclc(i,k)>thres_neb) THEN IF (novlp.EQ.2) THEN IF (first) THEN WRITE (*, *) 'Hypothese de recouvrement: MAXIMUM' first = .FALSE. ENDIF flag_max = -1. ftmp(i) = max(tcc(i), pclc(i,k)) ENDIF IF (novlp.EQ.3) THEN IF (first) THEN WRITE (*, *) 'Hypothese de recouvrement: RANDOM' first = .FALSE. ENDIF flag_max = 1. ftmp(i) = tcc(i)*(1-pclc(i,k)) ENDIF IF (novlp.EQ.1) THEN IF (first) THEN WRITE (*, *) 'Hypothese de recouvrement: MAXIMUM_ & & & & RANDOM' first = .FALSE. ENDIF flag_max = 1. ftmp(i) = tcc(i)*(1.-max(pclc(i,k),pclc(i,k+1)))/(1.-min(pclc(i, & k+1),1.-thres_neb)) ENDIF ! Effective radius of cloud droplet at top of cloud (m) reffclwtop(i) = reffclwtop(i) + rad_chaud(i, k)*1.0E-06*phase3d(i, & k)*(tcc(i)-ftmp(i))*flag_max ! CDNC at top of cloud (m-3) cldncl(i) = cldncl(i) + cdnc(i, k)*phase3d(i, k)*(tcc(i)-ftmp(i))* & flag_max ! Liquid Cloud Content at top of cloud lcc(i) = lcc(i) + phase3d(i, k)*(tcc(i)-ftmp(i))*flag_max ! Total Cloud Content at top of cloud tcc(i) = ftmp(i) ENDIF ! is there a visible, not-too-small cloud? ENDDO ! loop over k IF (novlp.EQ.3 .OR. novlp.EQ.1) tcc(i) = 1. - tcc(i) ENDDO ! loop over i ! ! Convective and Stratiform Cloud Droplet Effective Radius (REFFCLWC ! REFFCLWS) DO i = 1, klon DO k = 1, klev ! Weight to be used for outputs: eau_liquide*couverture nuageuse lcc3dcon(i, k) = rnebcon(i, k)*phase3d(i, k)*clwcon(i, k) ! eau liquide convective lcc3dstra(i, k) = pclc(i, k)*pqlwp(i, k)*phase3d(i, k) lcc3dstra(i, k) = lcc3dstra(i, k) - lcc3dcon(i, k) ! eau liquide stratiforme lcc3dstra(i, k) = max(lcc3dstra(i,k), 0.0) !FC pour la glace (CAUSES) icc3dcon(i, k) = rnebcon(i, k)*(1-phase3d(i, k))*clwcon(i, k) ! glace convective icc3dstra(i, k)= pclc(i, k)*pqlwp(i, k)*(1-phase3d(i, k)) icc3dstra(i, k) = icc3dstra(i, k) - icc3dcon(i, k) ! glace stratiforme icc3dstra(i, k) = max( icc3dstra(i, k), 0.0) !FC (CAUSES) ! Compute cloud droplet radius as above in meter radius = 1.1*((pqlwp(i,k)*pplay(i,k)/(rd*t(i,k)))/(4./3*rpi*1000.* & cdnc(i,k)))**(1./3.) radius = max(radius, 5.E-6) ! Convective Cloud Droplet Effective Radius (REFFCLWC) : variable 3D reffclwc(i, k) = radius reffclwc(i, k) = reffclwc(i, k)*lcc3dcon(i, k) ! Stratiform Cloud Droplet Effective Radius (REFFCLWS) : variable 3D reffclws(i, k) = radius reffclws(i, k) = reffclws(i, k)*lcc3dstra(i, k) ENDDO !klev ENDDO !klon ! Column Integrated Cloud Droplet Number (CLDNVI) : variable 2D DO i = 1, klon cldnvi(i) = 0. lcc_integrat(i) = 0. height(i) = 0. DO k = 1, klev cldnvi(i) = cldnvi(i) + cdnc(i, k)*lcc3d(i, k)*dh(i, k) lcc_integrat(i) = lcc_integrat(i) + lcc3d(i, k)*dh(i, k) height(i) = height(i) + dh(i, k) ENDDO ! klev lcc_integrat(i) = lcc_integrat(i)/height(i) IF (lcc_integrat(i)<=1.0E-03) THEN cldnvi(i) = cldnvi(i)*lcc(i)/seuil_neb ELSE cldnvi(i) = cldnvi(i)*lcc(i)/lcc_integrat(i) ENDIF ENDDO ! klon DO i = 1, klon DO k = 1, klev IF (scdnc(i,k)<=0.0) scdnc(i, k) = 0.0 IF (reffclws(i,k)<=0.0) reffclws(i, k) = 0.0 IF (reffclwc(i,k)<=0.0) reffclwc(i, k) = 0.0 IF (lcc3d(i,k)<=0.0) lcc3d(i, k) = 0.0 IF (lcc3dcon(i,k)<=0.0) lcc3dcon(i, k) = 0.0 IF (lcc3dstra(i,k)<=0.0) lcc3dstra(i, k) = 0.0 !FC (CAUSES) IF (icc3dcon(i,k)<=0.0) icc3dcon(i, k) = 0.0 IF (icc3dstra(i,k)<=0.0) icc3dstra(i, k) = 0.0 !FC (CAUSES) ENDDO IF (reffclwtop(i)<=0.0) reffclwtop(i) = 0.0 IF (cldncl(i)<=0.0) cldncl(i) = 0.0 IF (cldnvi(i)<=0.0) cldnvi(i) = 0.0 IF (lcc(i)<=0.0) lcc(i) = 0.0 ENDDO ENDIF !ok_cdnc first=.false. !to be sure RETURN END SUBROUTINE newmicro