module atke_exchange_coeff_mod implicit none contains subroutine atke_compute_km_kh(ngrid,nlay, & wind_u,wind_v,temp,play,pinterf, & tke,Km,Kh) !======================================================================== ! Routine that computes turbulent Km / Kh coefficients with a ! 1.5 order closure scheme (TKE) with or without stationarity assumption ! ! This parameterization has been constructed in the framework of a ! collective and collaborative workshop, ! the so-called 'Atelier TKE (ATKE)' with ! K. Arjdal, L. Raillard, C. Dehondt, P. Tiengou, A. Spiga, F. Cheruy, ! M. Coulon-Decorzens, S. Fromang, G. Riviere, A. Sima, F. Hourdin, E. Vignon ! ! Main assumptions of the model : ! (1) dry atmosphere ! (2) horizontal homogeneity (Dx=Dy=0.) !======================================================================= USE atke_turbulence_ini_mod, ONLY : iflag_atke, kappa, l0, ric, cn, cinf, rpi USE atke_turbulence_ini_mod, ONLY : cepsilon, pr_slope, pr_asym, rg, rd implicit none ! Declarations: !============= INTEGER, INTENT(IN) :: ngrid ! number of horizontal index (flat grid) INTEGER, INTENT(IN) :: nlay ! number of vertical index REAL, DIMENSION(ngrid,nlay), INTENT(IN) :: wind_u ! zonal velocity (m/s) REAL, DIMENSION(ngrid,nlay), INTENT(IN) :: wind_v ! meridional velocity (m/s) REAL, DIMENSION(ngrid,nlay), INTENT(IN) :: temp ! temperature (K) REAL, DIMENSION(ngrid,nlay), INTENT(IN) :: play ! pressure (Pa) REAL, DIMENSION(ngrid,nlay+1), INTENT(IN) :: pinterf ! pressure at interfaces(Pa) REAL, DIMENSION(ngrid,nlay+1), INTENT(INOUT) :: tke ! turbulent kinetic energy at interface between layers REAL, DIMENSION(ngrid,nlay+1), INTENT(OUT) :: Km ! Exchange coefficient for momentum at interface between layers REAL, DIMENSION(ngrid,nlay+1), INTENT(OUT) :: Kh ! Exchange coefficient for heat flux at interface between layers ! Local variables REAL, DIMENSION(ngrid,nlay+1) :: l_exchange ! Length of exchange REAL, DIMENSION(ngrid,nlay+1) :: z_interf ! Altitude at the interface REAL, DIMENSION(ngrid,nlay+1) :: dz_interf ! distance between two consecutive interfaces REAL, DIMENSION(ngrid,nlay+1) :: Ri ! Richardson's number REAL, DIMENSION(ngrid,nlay+1) :: Prandtl ! Turbulent Prandtl's number REAL, DIMENSION(ngrid,nlay+1) :: Sm ! Stability function for momentum REAL, DIMENSION(ngrid,nlay+1) :: Sh ! Stability function for heat INTEGER :: igrid,ilay ! horizontal,vertical index (flat grid) REAL :: Ri0 ! parameter for Sm stability function ! Initializations: !================ DO igrid=1,ngrid z_interf(igrid,1) = 0.0 Ri(igrid,1) = 0.1! TO DO Sm(igrid,1) = 0.0 ! TO DO END DO ! Calculation of altitude of layers' bottom interfaces: !===================================================== DO ilay=2,nlay+1 DO igrid=1,ngrid dz_interf(igrid,ilay) = rg * temp(igrid,ilay) / rg * log(play(igrid,ilay-1)/play(igrid,ilay)) z_interf(igrid,ilay) = z_interf(igrid,ilay-1) + dz_interf(igrid,ilay) ENDDO ENDDO ! Computing the mixing length: !============================= DO ilay=2,nlay+1 DO igrid=1,ngrid l_exchange(igrid,ilay) = kappa*l0*z_interf(igrid,ilay) / (kappa*z_interf(igrid,ilay) + l0) ENDDO ENDDO ! Computes the gradient Richardson's number and stability functions: !=================================================================== DO ilay=2,nlay+1 DO igrid=1,ngrid ! Warning: sure that gradient of temp and wind should be calculated with dz_interf and not with dz_lay? Ri(igrid,ilay) = rg * (temp(igrid,ilay) - temp(igrid,ilay-1)) / dz_interf(igrid,ilay) / & (((wind_u(igrid,ilay) - wind_u(igrid,ilay-1)) / dz_interf(igrid,ilay))**2 + & ((wind_v(igrid,ilay) - wind_v(igrid,ilay-1)) / dz_interf(igrid,ilay))**2 ) ! calculation of Ri0 such that continuity in slope of Sm at Ri=0 Ri0=2.*ric*cinf/rpi/cn IF (Ri(igrid,ilay) < 0.) THEN Sm(igrid,ilay) = 2./rpi * cinf * atan(-Ri(igrid,ilay)/Ri0) + cn Prandtl(igrid,ilay) = 1. + Ri(igrid,ilay) * pr_slope ELSE Sm(igrid,ilay) = max(0.,cn*(1.-Ri(igrid,ilay)/Ric)) Prandtl(igrid,ilay) = 2./rpi * atan(-Ri(igrid,ilay)) - 1. + pr_asym ! exp(Ri(igrid,ilay)) END IF Sh(igrid,ilay) = Sm(igrid,ilay) / Prandtl(igrid,ilay) ENDDO ENDDO ! Computing the TKE: !=================== IF (iflag_atke == 0) THEN ! stationary solution neglecting the vertical transport of TKE by turbulence DO ilay=2,nlay+1 DO igrid=1,ngrid tke(igrid,ilay) = cepsilon * l_exchange(igrid,ilay)**2 * Sm(igrid,ilay) * & (((wind_u(igrid,ilay) - wind_u(igrid,ilay-1)) / dz_interf(igrid,ilay))**2 + & ((wind_v(igrid,ilay) - wind_v(igrid,ilay-1)) / dz_interf(igrid,ilay))**2 ) * & (1. - Ri(igrid,ilay) / Prandtl(igrid,ilay)) ENDDO ENDDO ELSE ! TO DO call abort_physic("atke_compute_km_kh", & 'traitement non-stationnaire de la tke pas encore prevu', 1) END IF ! Computing eddy diffusivity coefficients: !======================================== DO ilay=2,nlay+1 DO igrid=1,ngrid Km(igrid,ilay) = l_exchange(igrid,ilay) * Sm(igrid,ilay) * tke(igrid,ilay)**0.5 Kh(igrid,ilay) = l_exchange(igrid,ilay) * Sh(igrid,ilay) * tke(igrid,ilay)**0.5 END DO END DO end subroutine atke_compute_km_kh end module atke_exchange_coeff_mod