! $Id: convect2.F90 2160 2014-11-28 15:36:29Z jyg $ SUBROUTINE convect2(ncum, idcum, len, nd, ndp1, nl, minorig, nk1, icb1, t1, & q1, qs1, u1, v1, gz1, tv1, tp1, tvp1, clw1, h1, lv1, cpn1, p1, ph1, ft1, & fq1, fu1, fv1, tnk1, qnk1, gznk1, plcl1, precip1, cbmf1, iflag1, delt, & cpd, cpv, cl, rv, rd, lv0, g, sigs, sigd, elcrit, tlcrit, omtsnow, dtmax, & damp, alpha, entp, coeffs, coeffr, omtrain, cu, ma) ! .............................START PROLOGUE............................ ! SCCS IDENTIFICATION: @(#)convect2.f 1.2 05/18/00 ! 22:06:22 /h/cm/library/nogaps4/src/sub/fcst/convect2.f_v ! CONFIGURATION IDENTIFICATION: None ! MODULE NAME: convect2 ! DESCRIPTION: ! convect1 The Emanuel Cumulus Convection Scheme - compute tendencies ! CONTRACT NUMBER AND TITLE: None ! REFERENCES: Programmers K. Emanuel (MIT), Timothy F. Hogan, M. Peng ! (NRL) ! CLASSIFICATION: Unclassified ! RESTRICTIONS: None ! COMPILER DEPENDENCIES: FORTRAN 77, FORTRAN 90 ! COMPILE OPTIONS: Fortran 77: -Zu -Wf"-ei -o aggress" ! Fortran 90: -O vector3,scalar3,task1,aggress,overindex -ei -r 2 ! LIBRARIES OF RESIDENCE: /a/ops/lib/libfcst159.a ! USAGE: call convect2(ncum,idcum,len,nd,nl,minorig, ! & nk1,icb1, ! & t1,q1,qs1,u1,v1,gz1,tv1,tp1,tvp1,clw1,h1, ! & lv1,cpn1,p1,ph1,ft1,fq1,fu1,fv1, ! & tnk1,qnk1,gznk1,plcl1, ! & precip1,cbmf1,iflag1, ! & delt,cpd,cpv,cl,rv,rd,lv0,g, ! & sigs,sigd,elcrit,tlcrit,omtsnow,dtmax,damp, ! & alpha,entp,coeffs,coeffr,omtrain,cu) ! PARAMETERS: ! Name Type Usage Description ! ---------- ---------- ------- ---------------------------- ! ncum Integer Input number of cumulus points ! idcum Integer Input index of cumulus point ! len Integer Input first dimension ! nd Integer Input total vertical dimension ! ndp1 Integer Input nd + 1 ! nl Integer Input vertical dimension for ! convection ! minorig Integer Input First level where convection is ! allow to begin ! nk1 Integer Input First level of convection ! ncb1 Integer Input Level of free convection ! t1 Real Input temperature ! q1 Real Input specific hum ! qs1 Real Input sat specific hum ! u1 Real Input u-wind ! v1 Real Input v-wind ! gz1 Real Inout geop ! tv1 Real Input virtual temp ! tp1 Real Input ! clw1 Real Inout cloud liquid water ! h1 Real Inout ! lv1 Real Inout ! cpn1 Real Inout ! p1 Real Input full level pressure ! ph1 Real Input half level pressure ! ft1 Real Output temp tend ! fq1 Real Output spec hum tend ! fu1 Real Output u-wind tend ! fv1 Real Output v-wind tend ! precip1 Real Output prec ! cbmf1 Real In/Out cumulus mass flux ! iflag1 Integer Output iflag on latitude strip ! delt Real Input time step ! cpd Integer Input See description below ! cpv Integer Input See description below ! cl Integer Input See description below ! rv Integer Input See description below ! rd Integer Input See description below ! lv0 Integer Input See description below ! g Integer Input See description below ! sigs Integer Input See description below ! sigd Integer Input See description below ! elcrit Integer Input See description below ! tlcrit Integer Input See description below ! omtsnow Integer Input See description below ! dtmax Integer Input See description below ! damp Integer Input See description below ! alpha Integer Input See description below ! ent Integer Input See description below ! coeffs Integer Input See description below ! coeffr Integer Input See description below ! omtrain Integer Input See description below ! cu Integer Input See description below ! COMMON BLOCKS: ! Block Name Type Usage Notes ! -------- -------- ---- ------ ------------------------ ! FILES: None ! DATA BASES: None ! NON-FILE INPUT/OUTPUT: None ! ERROR CONDITIONS: None ! ADDITIONAL COMMENTS: None ! .................MAINTENANCE SECTION................................ ! MODULES CALLED: ! Name Description ! zilch Zero out an array ! ------- ---------------------- ! LOCAL VARIABLES AND ! STRUCTURES: ! Name Type Description ! ------- ------ ----------- ! See Comments Below ! i Integer loop index ! k Integer loop index ! METHOD: ! See Emanuel, K. and M. Zivkovic-Rothman, 2000: Development and evaluation ! of a ! convective scheme for use in climate models. ! FILES: None ! INCLUDE FILES: None ! MAKEFILE: /a/ops/met/nogaps/src/sub/fcst/fcst159lib.mak ! ..............................END PROLOGUE............................. USE dimphy IMPLICIT NONE ! ym#include "dimensions.h" ! ym#include "dimphy.h" INTEGER kmax2, imax2, kmin2, imin2 REAL ftmax2, ftmin2 INTEGER kmax, imax, kmin, imin REAL ftmax, ftmin INTEGER ncum INTEGER len INTEGER idcum(len) INTEGER nd INTEGER ndp1 INTEGER nl INTEGER minorig INTEGER nk1(len) INTEGER icb1(len) REAL t1(len, nd) REAL q1(len, nd) REAL qs1(len, nd) REAL u1(len, nd) REAL v1(len, nd) REAL gz1(len, nd) REAL tv1(len, nd) REAL tp1(len, nd) REAL tvp1(len, nd) REAL clw1(len, nd) REAL h1(len, nd) REAL lv1(len, nd) REAL cpn1(len, nd) REAL p1(len, nd) REAL ph1(len, ndp1) REAL ft1(len, nd) REAL fq1(len, nd) REAL fu1(len, nd) REAL fv1(len, nd) REAL tnk1(len) REAL qnk1(len) REAL gznk1(len) REAL precip1(len) REAL cbmf1(len) REAL plcl1(len) INTEGER iflag1(len) REAL delt REAL cpd REAL cpv REAL cl REAL rv REAL rd REAL lv0 REAL g REAL sigs ! SIGS IS THE FRACTION OF PRECIPITATION FALLING OUTSIDE REAL sigd ! SIGD IS THE FRACTIONAL AREA COVERED BY UNSATURATED DNDRAFT REAL elcrit ! ELCRIT IS THE AUTOCONVERSION THERSHOLD WATER CONTENT (gm/gm) REAL tlcrit ! TLCRIT IS CRITICAL TEMPERATURE BELOW WHICH THE AUTO- ! CONVERSION THRESHOLD IS ASSUMED TO BE ZERO REAL omtsnow ! OMTSNOW IS THE ASSUMED FALL SPEED (P/s) OF SNOW REAL dtmax ! DTMAX IS THE MAXIMUM NEGATIVE TEMPERATURE PERTURBATION ! A LIFTED PARCEL IS ALLOWED TO HAVE BELOW ITS LFC. REAL damp REAL alpha REAL entp ! ENTP IS THE COEFFICIENT OF MIXING IN THE ENTRAINMENT FORMULATION REAL coeffs ! COEFFS IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION OF ! SNOW REAL coeffr ! COEFFR IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION OF ! RAIN REAL omtrain ! OMTRAIN IS THE ASSUMED FALL SPEED (P/s) OF RAIN REAL cu ! CU IS THE COEFFICIENT GOVERNING CONVECTIVE MOMENTUM TRANSPORT REAL ma(len, nd) ! *** ELCRIT IS THE AUTOCONVERSION THERSHOLD WATER CONTENT (gm/gm) *** ! *** TLCRIT IS CRITICAL TEMPERATURE BELOW WHICH THE AUTO- *** ! *** CONVERSION THRESHOLD IS ASSUMED TO BE ZERO *** ! *** (THE AUTOCONVERSION THRESHOLD VARIES LINEARLY *** ! *** BETWEEN 0 C AND TLCRIT) *** ! *** ENTP IS THE COEFFICIENT OF MIXING IN THE ENTRAINMENT *** ! *** FORMULATION *** ! *** SIGD IS THE FRACTIONAL AREA COVERED BY UNSATURATED DNDRAFT *** ! *** SIGS IS THE FRACTION OF PRECIPITATION FALLING OUTSIDE *** ! *** OF CLOUD *** ! *** OMTRAIN IS THE ASSUMED FALL SPEED (P/s) OF RAIN *** ! *** OMTSNOW IS THE ASSUMED FALL SPEED (P/s) OF SNOW *** ! *** COEFFR IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION *** ! *** OF RAIN *** ! *** COEFFS IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION *** ! *** OF SNOW *** ! *** CU IS THE COEFFICIENT GOVERNING CONVECTIVE MOMENTUM *** ! *** TRANSPORT *** ! *** DTMAX IS THE MAXIMUM NEGATIVE TEMPERATURE PERTURBATION *** ! *** A LIFTED PARCEL IS ALLOWED TO HAVE BELOW ITS LFC *** ! *** ALPHA AND DAMP ARE PARAMETERS THAT CONTROL THE RATE OF *** ! *** APPROACH TO QUASI-EQUILIBRIUM *** ! *** (THEIR STANDARD VALUES ARE 0.20 AND 0.1, RESPECTIVELY) *** ! *** (DAMP MUST BE LESS THAN 1) *** ! Local arrays. REAL work(ncum) REAL t(ncum, klev) REAL q(ncum, klev) REAL qs(ncum, klev) REAL u(ncum, klev) REAL v(ncum, klev) REAL gz(ncum, klev) REAL h(ncum, klev) REAL lv(ncum, klev) REAL cpn(ncum, klev) REAL p(ncum, klev) REAL ph(ncum, klev) REAL ft(ncum, klev) REAL fq(ncum, klev) REAL fu(ncum, klev) REAL fv(ncum, klev) REAL precip(ncum) REAL cbmf(ncum) REAL plcl(ncum) REAL tnk(ncum) REAL qnk(ncum) REAL gznk(ncum) REAL tv(ncum, klev) REAL tp(ncum, klev) REAL tvp(ncum, klev) REAL clw(ncum, klev) ! real det(ncum,klev) REAL dph(ncum, klev) ! real wd(ncum) ! real tprime(ncum) ! real qprime(ncum) REAL ah0(ncum) REAL ep(ncum, klev) REAL sigp(ncum, klev) INTEGER nent(ncum, klev) REAL water(ncum, klev) REAL evap(ncum, klev) REAL mp(ncum, klev) REAL m(ncum, klev) REAL qti REAL wt(ncum, klev) REAL hp(ncum, klev) REAL lvcp(ncum, klev) REAL elij(ncum, klev, klev) REAL ment(ncum, klev, klev) REAL sij(ncum, klev, klev) REAL qent(ncum, klev, klev) REAL uent(ncum, klev, klev) REAL vent(ncum, klev, klev) REAL qp(ncum, klev) REAL up(ncum, klev) REAL vp(ncum, klev) REAL cape(ncum) REAL capem(ncum) REAL frac(ncum) REAL dtpbl(ncum) REAL tvpplcl(ncum) REAL tvaplcl(ncum) REAL dtmin(ncum) REAL w3d(ncum, klev) REAL am(ncum) REAL ents(ncum) REAL uav(ncum) REAL vav(ncum) INTEGER iflag(ncum) INTEGER nk(ncum) INTEGER icb(ncum) INTEGER inb(ncum) INTEGER inb1(ncum) INTEGER jtt(ncum) INTEGER nn, i, k, n, icbmax, nlp, j INTEGER ij INTEGER nn2, nn3 REAL clmcpv REAL clmcpd REAL cpdmcp REAL cpvmcpd REAL eps REAL epsi REAL epsim1 REAL tg, qg, s, alv, tc, ahg, denom, es, rg, ginv, rowl REAL delti REAL tca, elacrit REAL by, defrac ! real byp REAL byp(ncum) LOGICAL lcape(ncum) REAL dbo REAL bf2, anum, dei, altem, cwat, stemp REAL alt, qp1, smid, sjmax, sjmin REAL delp, delm REAL awat, coeff, afac, revap, dhdp, fac, qstm, rat REAL qsm, sigt, b6, c6 REAL dpinv, cpinv REAL fqold, ftold, fuold, fvold REAL wdtrain(ncum), xxx REAL bsum(ncum, klev) REAL asij(ncum) REAL smin(ncum) REAL scrit(ncum) ! real amp1,ad REAL amp1(ncum), ad(ncum) LOGICAL lwork(ncum) INTEGER num1, num2 ! print*,'cpd en entree de convect2 ',cpd nlp = nl + 1 rowl = 1000.0 ginv = 1.0/g delti = 1.0/delt ! Define some thermodynamic variables. clmcpv = cl - cpv clmcpd = cl - cpd cpdmcp = cpd - cpv cpvmcpd = cpv - cpd eps = rd/rv epsi = 1.0/eps epsim1 = epsi - 1.0 ! Compress the fields. DO k = 1, nl + 1 nn = 0 DO i = 1, len IF (iflag1(i)==0) THEN nn = nn + 1 t(nn, k) = t1(i, k) q(nn, k) = q1(i, k) qs(nn, k) = qs1(i, k) u(nn, k) = u1(i, k) v(nn, k) = v1(i, k) gz(nn, k) = gz1(i, k) h(nn, k) = h1(i, k) lv(nn, k) = lv1(i, k) cpn(nn, k) = cpn1(i, k) p(nn, k) = p1(i, k) ph(nn, k) = ph1(i, k) tv(nn, k) = tv1(i, k) tp(nn, k) = tp1(i, k) tvp(nn, k) = tvp1(i, k) clw(nn, k) = clw1(i, k) END IF END DO ! print*,'100 ncum,nn',ncum,nn END DO nn = 0 DO i = 1, len IF (iflag1(i)==0) THEN nn = nn + 1 cbmf(nn) = cbmf1(i) plcl(nn) = plcl1(i) tnk(nn) = tnk1(i) qnk(nn) = qnk1(i) gznk(nn) = gznk1(i) nk(nn) = nk1(i) icb(nn) = icb1(i) iflag(nn) = iflag1(i) END IF END DO ! print*,'150 ncum,nn',ncum,nn ! Initialize the tendencies, det, wd, tprime, qprime. DO k = 1, nl DO i = 1, ncum ! det(i,k)=0.0 ft(i, k) = 0.0 fu(i, k) = 0.0 fv(i, k) = 0.0 fq(i, k) = 0.0 dph(i, k) = ph(i, k) - ph(i, k+1) ep(i, k) = 0.0 sigp(i, k) = sigs END DO END DO DO i = 1, ncum ! wd(i)=0.0 ! tprime(i)=0.0 ! qprime(i)=0.0 precip(i) = 0.0 ft(i, nl+1) = 0.0 fu(i, nl+1) = 0.0 fv(i, nl+1) = 0.0 fq(i, nl+1) = 0.0 END DO ! Compute icbmax. icbmax = 2 DO i = 1, ncum icbmax = max(icbmax, icb(i)) END DO ! ===================================================================== ! --- FIND THE REST OF THE LIFTED PARCEL TEMPERATURES ! ===================================================================== ! --- The procedure is to solve the equation. ! cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. ! *** Calculate certain parcel quantities, including static energy *** DO i = 1, ncum ah0(i) = (cpd*(1.-qnk(i))+cl*qnk(i))*tnk(i) + qnk(i)*(lv0-clmcpv*(tnk(i)- & 273.15)) + gznk(i) END DO ! *** Find lifted parcel quantities above cloud base *** DO k = minorig + 1, nl DO i = 1, ncum IF (k>=(icb(i)+1)) THEN tg = t(i, k) qg = qs(i, k) alv = lv0 - clmcpv*(t(i,k)-273.15) ! First iteration. s = cpd + alv*alv*qg/(rv*t(i,k)*t(i,k)) s = 1./s ahg = cpd*tg + (cl-cpd)*qnk(i)*t(i, k) + alv*qg + gz(i, k) tg = tg + s*(ah0(i)-ahg) tg = max(tg, 35.0) tc = tg - 273.15 denom = 243.5 + tc IF (tc>=0.0) THEN es = 6.112*exp(17.67*tc/denom) ELSE es = exp(23.33086-6111.72784/tg+0.15215*log(tg)) END IF qg = eps*es/(p(i,k)-es*(1.-eps)) ! Second iteration. s = cpd + alv*alv*qg/(rv*t(i,k)*t(i,k)) s = 1./s ahg = cpd*tg + (cl-cpd)*qnk(i)*t(i, k) + alv*qg + gz(i, k) tg = tg + s*(ah0(i)-ahg) tg = max(tg, 35.0) tc = tg - 273.15 denom = 243.5 + tc IF (tc>=0.0) THEN es = 6.112*exp(17.67*tc/denom) ELSE es = exp(23.33086-6111.72784/tg+0.15215*log(tg)) END IF qg = eps*es/(p(i,k)-es*(1.-eps)) alv = lv0 - clmcpv*(t(i,k)-273.15) ! print*,'cpd dans convect2 ',cpd ! print*,'tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd' ! print*,tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd tp(i, k) = (ah0(i)-(cl-cpd)*qnk(i)*t(i,k)-gz(i,k)-alv*qg)/cpd ! if (.not.cpd.gt.1000.) then ! print*,'CPD=',cpd ! stop ! endif clw(i, k) = qnk(i) - qg clw(i, k) = max(0.0, clw(i,k)) rg = qg/(1.-qnk(i)) tvp(i, k) = tp(i, k)*(1.+rg*epsi) END IF END DO END DO ! ===================================================================== ! --- SET THE PRECIPITATION EFFICIENCIES AND THE FRACTION OF ! --- PRECIPITATION FALLING OUTSIDE OF CLOUD ! --- THESE MAY BE FUNCTIONS OF TP(I), P(I) AND CLW(I) ! ===================================================================== DO k = minorig + 1, nl DO i = 1, ncum IF (k>=(nk(i)+1)) THEN tca = tp(i, k) - 273.15 IF (tca>=0.0) THEN elacrit = elcrit ELSE elacrit = elcrit*(1.0-tca/tlcrit) END IF elacrit = max(elacrit, 0.0) ep(i, k) = 1.0 - elacrit/max(clw(i,k), 1.0E-8) ep(i, k) = max(ep(i,k), 0.0) ep(i, k) = min(ep(i,k), 1.0) sigp(i, k) = sigs END IF END DO END DO ! ===================================================================== ! --- CALCULATE VIRTUAL TEMPERATURE AND LIFTED PARCEL ! --- VIRTUAL TEMPERATURE ! ===================================================================== DO k = minorig + 1, nl DO i = 1, ncum IF (k>=(icb(i)+1)) THEN tvp(i, k) = tvp(i, k)*(1.0-qnk(i)+ep(i,k)*clw(i,k)) ! print*,'i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k)' ! print*, i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k) END IF END DO END DO DO i = 1, ncum tvp(i, nlp) = tvp(i, nl) - (gz(i,nlp)-gz(i,nl))/cpd END DO ! ===================================================================== ! --- NOW INITIALIZE VARIOUS ARRAYS USED IN THE COMPUTATIONS ! ===================================================================== DO i = 1, ncum*nlp nent(i, 1) = 0 water(i, 1) = 0.0 evap(i, 1) = 0.0 mp(i, 1) = 0.0 m(i, 1) = 0.0 wt(i, 1) = omtsnow hp(i, 1) = h(i, 1) ! if(.not.cpn(i,1).gt.900.) then ! print*,'i,lv(i,1),cpn(i,1)' ! print*, i,lv(i,1),cpn(i,1) ! k=(i-1)/ncum+1 ! print*,'i,k',mod(i,ncum),k,' cpn',cpn(mod(i,ncum),k) ! stop ! endif lvcp(i, 1) = lv(i, 1)/cpn(i, 1) END DO DO i = 1, ncum*nlp*nlp elij(i, 1, 1) = 0.0 ment(i, 1, 1) = 0.0 sij(i, 1, 1) = 0.0 END DO DO k = 1, nlp DO j = 1, nlp DO i = 1, ncum qent(i, k, j) = q(i, j) uent(i, k, j) = u(i, j) vent(i, k, j) = v(i, j) END DO END DO END DO DO i = 1, ncum qp(i, 1) = q(i, 1) up(i, 1) = u(i, 1) vp(i, 1) = v(i, 1) END DO DO k = 2, nlp DO i = 1, ncum qp(i, k) = q(i, k-1) up(i, k) = u(i, k-1) vp(i, k) = v(i, k-1) END DO END DO ! ===================================================================== ! --- FIND THE FIRST MODEL LEVEL (INB1) ABOVE THE PARCEL'S ! --- HIGHEST LEVEL OF NEUTRAL BUOYANCY ! --- AND THE HIGHEST LEVEL OF POSITIVE CAPE (INB) ! ===================================================================== DO i = 1, ncum cape(i) = 0.0 capem(i) = 0.0 inb(i) = icb(i) + 1 inb1(i) = inb(i) END DO ! Originial Code ! do 530 k=minorig+1,nl-1 ! do 520 i=1,ncum ! if(k.ge.(icb(i)+1))then ! by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) ! byp=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) ! cape(i)=cape(i)+by ! if(by.ge.0.0)inb1(i)=k+1 ! if(cape(i).gt.0.0)then ! inb(i)=k+1 ! capem(i)=cape(i) ! endif ! endif ! 520 continue ! 530 continue ! do 540 i=1,ncum ! byp=(tvp(i,nl)-tv(i,nl))*dph(i,nl)/p(i,nl) ! cape(i)=capem(i)+byp ! defrac=capem(i)-cape(i) ! defrac=max(defrac,0.001) ! frac(i)=-cape(i)/defrac ! frac(i)=min(frac(i),1.0) ! frac(i)=max(frac(i),0.0) ! 540 continue ! K Emanuel fix ! call zilch(byp,ncum) ! do 530 k=minorig+1,nl-1 ! do 520 i=1,ncum ! if(k.ge.(icb(i)+1))then ! by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) ! cape(i)=cape(i)+by ! if(by.ge.0.0)inb1(i)=k+1 ! if(cape(i).gt.0.0)then ! inb(i)=k+1 ! capem(i)=cape(i) ! byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) ! endif ! endif ! 520 continue ! 530 continue ! do 540 i=1,ncum ! inb(i)=max(inb(i),inb1(i)) ! cape(i)=capem(i)+byp(i) ! defrac=capem(i)-cape(i) ! defrac=max(defrac,0.001) ! frac(i)=-cape(i)/defrac ! frac(i)=min(frac(i),1.0) ! frac(i)=max(frac(i),0.0) ! 540 continue ! J Teixeira fix CALL zilch(byp, ncum) DO i = 1, ncum lcape(i) = .TRUE. END DO DO k = minorig + 1, nl - 1 DO i = 1, ncum IF (cape(i)<0.0) lcape(i) = .FALSE. IF ((k>=(icb(i)+1)) .AND. lcape(i)) THEN by = (tvp(i,k)-tv(i,k))*dph(i, k)/p(i, k) byp(i) = (tvp(i,k+1)-tv(i,k+1))*dph(i, k+1)/p(i, k+1) cape(i) = cape(i) + by IF (by>=0.0) inb1(i) = k + 1 IF (cape(i)>0.0) THEN inb(i) = k + 1 capem(i) = cape(i) END IF END IF END DO END DO DO i = 1, ncum cape(i) = capem(i) + byp(i) defrac = capem(i) - cape(i) defrac = max(defrac, 0.001) frac(i) = -cape(i)/defrac frac(i) = min(frac(i), 1.0) frac(i) = max(frac(i), 0.0) END DO ! ===================================================================== ! --- CALCULATE LIQUID WATER STATIC ENERGY OF LIFTED PARCEL ! ===================================================================== DO k = minorig + 1, nl DO i = 1, ncum IF ((k>=icb(i)) .AND. (k<=inb(i))) THEN hp(i, k) = h(i, nk(i)) + (lv(i,k)+(cpd-cpv)*t(i,k))*ep(i, k)*clw(i, k & ) END IF END DO END DO ! ===================================================================== ! --- CALCULATE CLOUD BASE MASS FLUX AND RATES OF MIXING, M(I), ! --- AT EACH MODEL LEVEL ! ===================================================================== ! tvpplcl = parcel temperature lifted adiabatically from level ! icb-1 to the LCL. ! tvaplcl = virtual temperature at the LCL. DO i = 1, ncum dtpbl(i) = 0.0 tvpplcl(i) = tvp(i, icb(i)-1) - rd*tvp(i, icb(i)-1)*(p(i,icb(i)-1)-plcl(i & ))/(cpn(i,icb(i)-1)*p(i,icb(i)-1)) tvaplcl(i) = tv(i, icb(i)) + (tvp(i,icb(i))-tvp(i,icb(i)+1))*(plcl(i)-p(i & ,icb(i)))/(p(i,icb(i))-p(i,icb(i)+1)) END DO ! ------------------------------------------------------------------- ! --- Interpolate difference between lifted parcel and ! --- environmental temperatures to lifted condensation level ! ------------------------------------------------------------------- ! dtpbl = average of tvp-tv in the PBL (k=nk to icb-1). DO k = minorig, icbmax DO i = 1, ncum IF ((k>=nk(i)) .AND. (k<=(icb(i)-1))) THEN dtpbl(i) = dtpbl(i) + (tvp(i,k)-tv(i,k))*dph(i, k) END IF END DO END DO DO i = 1, ncum dtpbl(i) = dtpbl(i)/(ph(i,nk(i))-ph(i,icb(i))) dtmin(i) = tvpplcl(i) - tvaplcl(i) + dtmax + dtpbl(i) END DO ! ------------------------------------------------------------------- ! --- Adjust cloud base mass flux ! ------------------------------------------------------------------- DO i = 1, ncum work(i) = cbmf(i) cbmf(i) = max(0.0, (1.0-damp)*cbmf(i)+0.1*alpha*dtmin(i)) IF ((work(i)==0.0) .AND. (cbmf(i)==0.0)) THEN iflag(i) = 3 END IF END DO ! ------------------------------------------------------------------- ! --- Calculate rates of mixing, m(i) ! ------------------------------------------------------------------- CALL zilch(work, ncum) DO j = minorig + 1, nl DO i = 1, ncum IF ((j>=(icb(i)+1)) .AND. (j<=inb(i))) THEN k = min(j, inb1(i)) dbo = abs(tv(i,k+1)-tvp(i,k+1)-tv(i,k-1)+tvp(i,k-1)) + & entp*0.04*(ph(i,k)-ph(i,k+1)) work(i) = work(i) + dbo m(i, j) = cbmf(i)*dbo END IF END DO END DO DO k = minorig + 1, nl DO i = 1, ncum IF ((k>=(icb(i)+1)) .AND. (k<=inb(i))) THEN m(i, k) = m(i, k)/work(i) END IF END DO END DO ! ===================================================================== ! --- CALCULATE ENTRAINED AIR MASS FLUX (ment), TOTAL WATER MIXING ! --- RATIO (QENT), TOTAL CONDENSED WATER (elij), AND MIXING ! --- FRACTION (sij) ! ===================================================================== DO i = minorig + 1, nl DO j = minorig + 1, nl DO ij = 1, ncum IF ((i>=(icb(ij)+1)) .AND. (j>=icb(ij)) .AND. (i<=inb(ij)) .AND. (j<= & inb(ij))) THEN qti = qnk(ij) - ep(ij, i)*clw(ij, i) bf2 = 1. + lv(ij, j)*lv(ij, j)*qs(ij, j)/(rv*t(ij,j)*t(ij,j)*cpd) anum = h(ij, j) - hp(ij, i) + (cpv-cpd)*t(ij, j)*(qti-q(ij,j)) denom = h(ij, i) - hp(ij, i) + (cpd-cpv)*(q(ij,i)-qti)*t(ij, j) dei = denom IF (abs(dei)<0.01) dei = 0.01 sij(ij, i, j) = anum/dei sij(ij, i, i) = 1.0 altem = sij(ij, i, j)*q(ij, i) + (1.-sij(ij,i,j))*qti - qs(ij, j) altem = altem/bf2 cwat = clw(ij, j)*(1.-ep(ij,j)) stemp = sij(ij, i, j) IF ((stemp<0.0 .OR. stemp>1.0 .OR. altem>cwat) .AND. j>i) THEN anum = anum - lv(ij, j)*(qti-qs(ij,j)-cwat*bf2) denom = denom + lv(ij, j)*(q(ij,i)-qti) IF (abs(denom)<0.01) denom = 0.01 sij(ij, i, j) = anum/denom altem = sij(ij, i, j)*q(ij, i) + (1.-sij(ij,i,j))*qti - qs(ij, j) altem = altem - (bf2-1.)*cwat END IF IF (sij(ij,i,j)>0.0 .AND. sij(ij,i,j)<0.9) THEN qent(ij, i, j) = sij(ij, i, j)*q(ij, i) + (1.-sij(ij,i,j))*qti uent(ij, i, j) = sij(ij, i, j)*u(ij, i) + & (1.-sij(ij,i,j))*u(ij, nk(ij)) vent(ij, i, j) = sij(ij, i, j)*v(ij, i) + & (1.-sij(ij,i,j))*v(ij, nk(ij)) elij(ij, i, j) = altem elij(ij, i, j) = max(0.0, elij(ij,i,j)) ment(ij, i, j) = m(ij, i)/(1.-sij(ij,i,j)) nent(ij, i) = nent(ij, i) + 1 END IF sij(ij, i, j) = max(0.0, sij(ij,i,j)) sij(ij, i, j) = min(1.0, sij(ij,i,j)) END IF END DO END DO ! *** If no air can entrain at level i assume that updraft detrains ! *** ! *** at that level and calculate detrained air flux and properties ! *** DO ij = 1, ncum IF ((i>=(icb(ij)+1)) .AND. (i<=inb(ij)) .AND. (nent(ij,i)==0)) THEN ment(ij, i, i) = m(ij, i) qent(ij, i, i) = q(ij, nk(ij)) - ep(ij, i)*clw(ij, i) uent(ij, i, i) = u(ij, nk(ij)) vent(ij, i, i) = v(ij, nk(ij)) elij(ij, i, i) = clw(ij, i) sij(ij, i, i) = 1.0 END IF END DO END DO DO i = 1, ncum sij(i, inb(i), inb(i)) = 1.0 END DO ! ===================================================================== ! --- NORMALIZE ENTRAINED AIR MASS FLUXES ! --- TO REPRESENT EQUAL PROBABILITIES OF MIXING ! ===================================================================== CALL zilch(bsum, ncum*nlp) DO ij = 1, ncum lwork(ij) = .FALSE. END DO DO i = minorig + 1, nl num1 = 0 DO ij = 1, ncum IF ((i>=icb(ij)+1) .AND. (i<=inb(ij))) num1 = num1 + 1 END DO IF (num1<=0) GO TO 789 DO ij = 1, ncum IF ((i>=icb(ij)+1) .AND. (i<=inb(ij))) THEN lwork(ij) = (nent(ij,i)/=0) qp1 = q(ij, nk(ij)) - ep(ij, i)*clw(ij, i) anum = h(ij, i) - hp(ij, i) - lv(ij, i)*(qp1-qs(ij,i)) denom = h(ij, i) - hp(ij, i) + lv(ij, i)*(q(ij,i)-qp1) IF (abs(denom)<0.01) denom = 0.01 scrit(ij) = anum/denom alt = qp1 - qs(ij, i) + scrit(ij)*(q(ij,i)-qp1) IF (scrit(ij)<0.0 .OR. alt<0.0) scrit(ij) = 1.0 asij(ij) = 0.0 smin(ij) = 1.0 END IF END DO DO j = minorig, nl num2 = 0 DO ij = 1, ncum IF ((i>=icb(ij)+1) .AND. (i<=inb(ij)) .AND. (j>=icb( & ij)) .AND. (j<=inb(ij)) .AND. lwork(ij)) num2 = num2 + 1 END DO IF (num2<=0) GO TO 783 DO ij = 1, ncum IF ((i>=icb(ij)+1) .AND. (i<=inb(ij)) .AND. (j>=icb( & ij)) .AND. (j<=inb(ij)) .AND. lwork(ij)) THEN IF (sij(ij,i,j)>0.0 .AND. sij(ij,i,j)<0.9) THEN IF (j>i) THEN smid = min(sij(ij,i,j), scrit(ij)) sjmax = smid sjmin = smid IF (smid1) sjmin = sij(ij, i, j-1) sjmin = max(sjmin, scrit(ij)) END IF delp = abs(sjmax-smid) delm = abs(sjmin-smid) asij(ij) = asij(ij) + (delp+delm)*(ph(ij,j)-ph(ij,j+1)) ment(ij, i, j) = ment(ij, i, j)*(delp+delm)*(ph(ij,j)-ph(ij,j+1)) END IF END IF END DO 783 END DO DO ij = 1, ncum IF ((i>=icb(ij)+1) .AND. (i<=inb(ij)) .AND. lwork(ij)) THEN asij(ij) = max(1.0E-21, asij(ij)) asij(ij) = 1.0/asij(ij) bsum(ij, i) = 0.0 END IF END DO DO j = minorig, nl + 1 DO ij = 1, ncum IF ((i>=icb(ij)+1) .AND. (i<=inb(ij)) .AND. (j>=icb( & ij)) .AND. (j<=inb(ij)) .AND. lwork(ij)) THEN ment(ij, i, j) = ment(ij, i, j)*asij(ij) bsum(ij, i) = bsum(ij, i) + ment(ij, i, j) END IF END DO END DO DO ij = 1, ncum IF ((i>=icb(ij)+1) .AND. (i<=inb(ij)) .AND. (bsum(ij, & i)<1.0E-18) .AND. lwork(ij)) THEN nent(ij, i) = 0 ment(ij, i, i) = m(ij, i) qent(ij, i, i) = q(ij, nk(ij)) - ep(ij, i)*clw(ij, i) uent(ij, i, i) = u(ij, nk(ij)) vent(ij, i, i) = v(ij, nk(ij)) elij(ij, i, i) = clw(ij, i) sij(ij, i, i) = 1.0 END IF END DO 789 END DO ! ===================================================================== ! --- PRECIPITATING DOWNDRAFT CALCULATION ! ===================================================================== ! *** Check whether ep(inb)=0, if so, skip precipitating *** ! *** downdraft calculation *** ! *** Integrate liquid water equation to find condensed water *** ! *** and condensed water flux *** DO i = 1, ncum jtt(i) = 2 IF (ep(i,inb(i))<=0.0001) iflag(i) = 2 IF (iflag(i)==0) THEN lwork(i) = .TRUE. ELSE lwork(i) = .FALSE. END IF END DO ! *** Begin downdraft loop *** CALL zilch(wdtrain, ncum) DO i = nl + 1, 1, -1 num1 = 0 DO ij = 1, ncum IF ((i<=inb(ij)) .AND. lwork(ij)) num1 = num1 + 1 END DO IF (num1<=0) GO TO 899 ! *** Calculate detrained precipitation *** DO ij = 1, ncum IF ((i<=inb(ij)) .AND. (lwork(ij))) THEN wdtrain(ij) = g*ep(ij, i)*m(ij, i)*clw(ij, i) END IF END DO IF (i>1) THEN DO j = 1, i - 1 DO ij = 1, ncum IF ((i<=inb(ij)) .AND. (lwork(ij))) THEN awat = elij(ij, j, i) - (1.-ep(ij,i))*clw(ij, i) awat = max(0.0, awat) wdtrain(ij) = wdtrain(ij) + g*awat*ment(ij, j, i) END IF END DO END DO END IF ! *** Find rain water and evaporation using provisional *** ! *** estimates of qp(i)and qp(i-1) *** ! *** Value of terminal velocity and coeffecient of evaporation for snow ! *** DO ij = 1, ncum IF ((i<=inb(ij)) .AND. (lwork(ij))) THEN coeff = coeffs wt(ij, i) = omtsnow ! *** Value of terminal velocity and coeffecient of evaporation for ! rain *** IF (t(ij,i)>273.0) THEN coeff = coeffr wt(ij, i) = omtrain END IF qsm = 0.5*(q(ij,i)+qp(ij,i+1)) afac = coeff*ph(ij, i)*(qs(ij,i)-qsm)/(1.0E4+2.0E3*ph(ij,i)*qs(ij,i)) afac = max(afac, 0.0) sigt = sigp(ij, i) sigt = max(0.0, sigt) sigt = min(1.0, sigt) b6 = 100.*(ph(ij,i)-ph(ij,i+1))*sigt*afac/wt(ij, i) c6 = (water(ij,i+1)*wt(ij,i+1)+wdtrain(ij)/sigd)/wt(ij, i) revap = 0.5*(-b6+sqrt(b6*b6+4.*c6)) evap(ij, i) = sigt*afac*revap water(ij, i) = revap*revap ! *** Calculate precipitating downdraft mass flux under *** ! *** hydrostatic approximation *** IF (i>1) THEN dhdp = (h(ij,i)-h(ij,i-1))/(p(ij,i-1)-p(ij,i)) dhdp = max(dhdp, 10.0) mp(ij, i) = 100.*ginv*lv(ij, i)*sigd*evap(ij, i)/dhdp mp(ij, i) = max(mp(ij,i), 0.0) ! *** Add small amount of inertia to downdraft *** fac = 20.0/(ph(ij,i-1)-ph(ij,i)) mp(ij, i) = (fac*mp(ij,i+1)+mp(ij,i))/(1.+fac) ! *** Force mp to decrease linearly to zero ! *** ! *** between about 950 mb and the surface ! *** IF (p(ij,i)>(0.949*p(ij,1))) THEN jtt(ij) = max(jtt(ij), i) mp(ij, i) = mp(ij, jtt(ij))*(p(ij,1)-p(ij,i))/ & (p(ij,1)-p(ij,jtt(ij))) END IF END IF ! *** Find mixing ratio of precipitating downdraft *** IF (i/=inb(ij)) THEN IF (i==1) THEN qstm = qs(ij, 1) ELSE qstm = qs(ij, i-1) END IF IF (mp(ij,i)>mp(ij,i+1)) THEN rat = mp(ij, i+1)/mp(ij, i) qp(ij, i) = qp(ij, i+1)*rat + q(ij, i)*(1.0-rat) + & 100.*ginv*sigd*(ph(ij,i)-ph(ij,i+1))*(evap(ij,i)/mp(ij,i)) up(ij, i) = up(ij, i+1)*rat + u(ij, i)*(1.-rat) vp(ij, i) = vp(ij, i+1)*rat + v(ij, i)*(1.-rat) ELSE IF (mp(ij,i+1)>0.0) THEN qp(ij, i) = (gz(ij,i+1)-gz(ij,i)+qp(ij,i+1)*(lv(ij,i+1)+t(ij, & i+1)*(cl-cpd))+cpd*(t(ij,i+1)-t(ij, & i)))/(lv(ij,i)+t(ij,i)*(cl-cpd)) up(ij, i) = up(ij, i+1) vp(ij, i) = vp(ij, i+1) END IF END IF qp(ij, i) = min(qp(ij,i), qstm) qp(ij, i) = max(qp(ij,i), 0.0) END IF END IF END DO 899 END DO ! *** Calculate surface precipitation in mm/day *** DO i = 1, ncum IF (iflag(i)<=1) THEN ! c precip(i)=precip(i)+wt(i,1)*sigd*water(i,1)*3600.*24000. ! c & /(rowl*g) ! c precip(i)=precip(i)*delt/86400. precip(i) = wt(i, 1)*sigd*water(i, 1)*86400/g END IF END DO ! *** Calculate downdraft velocity scale and surface temperature and *** ! *** water vapor fluctuations *** ! wd=beta*abs(mp(icb))*0.01*rd*t(icb)/(sigd*p(icb)) ! qprime=0.5*(qp(1)-q(1)) ! tprime=lv0*qprime/cpd ! *** Calculate tendencies of lowest level potential temperature *** ! *** and mixing ratio *** DO i = 1, ncum work(i) = 0.01/(ph(i,1)-ph(i,2)) am(i) = 0.0 END DO DO k = 2, nl DO i = 1, ncum IF ((nk(i)==1) .AND. (k<=inb(i)) .AND. (nk(i)==1)) THEN am(i) = am(i) + m(i, k) END IF END DO END DO DO i = 1, ncum IF ((g*work(i)*am(i))>=delti) iflag(i) = 1 ft(i, 1) = ft(i, 1) + g*work(i)*am(i)*(t(i,2)-t(i,1)+(gz(i,2)-gz(i, & 1))/cpn(i,1)) ft(i, 1) = ft(i, 1) - lvcp(i, 1)*sigd*evap(i, 1) ft(i, 1) = ft(i, 1) + sigd*wt(i, 2)*(cl-cpd)*water(i, 2)*(t(i,2)-t(i,1))* & work(i)/cpn(i, 1) fq(i, 1) = fq(i, 1) + g*mp(i, 2)*(qp(i,2)-q(i,1))*work(i) + & sigd*evap(i, 1) fq(i, 1) = fq(i, 1) + g*am(i)*(q(i,2)-q(i,1))*work(i) fu(i, 1) = fu(i, 1) + g*work(i)*(mp(i,2)*(up(i,2)-u(i,1))+am(i)*(u(i, & 2)-u(i,1))) fv(i, 1) = fv(i, 1) + g*work(i)*(mp(i,2)*(vp(i,2)-v(i,1))+am(i)*(v(i, & 2)-v(i,1))) END DO DO j = 2, nl DO i = 1, ncum IF (j<=inb(i)) THEN fq(i, 1) = fq(i, 1) + g*work(i)*ment(i, j, 1)*(qent(i,j,1)-q(i,1)) fu(i, 1) = fu(i, 1) + g*work(i)*ment(i, j, 1)*(uent(i,j,1)-u(i,1)) fv(i, 1) = fv(i, 1) + g*work(i)*ment(i, j, 1)*(vent(i,j,1)-v(i,1)) END IF END DO END DO ! *** Calculate tendencies of potential temperature and mixing ratio *** ! *** at levels above the lowest level *** ! *** First find the net saturated updraft and downdraft mass fluxes *** ! *** through each level *** DO i = 2, nl + 1 num1 = 0 DO ij = 1, ncum IF (i<=inb(ij)) num1 = num1 + 1 END DO IF (num1<=0) GO TO 1500 CALL zilch(amp1, ncum) CALL zilch(ad, ncum) DO k = i + 1, nl + 1 DO ij = 1, ncum IF ((i>=nk(ij)) .AND. (i<=inb(ij)) .AND. (k<=(inb(ij)+1))) THEN amp1(ij) = amp1(ij) + m(ij, k) END IF END DO END DO DO k = 1, i DO j = i + 1, nl + 1 DO ij = 1, ncum IF ((j<=(inb(ij)+1)) .AND. (i<=inb(ij))) THEN amp1(ij) = amp1(ij) + ment(ij, k, j) END IF END DO END DO END DO DO k = 1, i - 1 DO j = i, nl + 1 DO ij = 1, ncum IF ((i<=inb(ij)) .AND. (j<=inb(ij))) THEN ad(ij) = ad(ij) + ment(ij, j, k) END IF END DO END DO END DO DO ij = 1, ncum IF (i<=inb(ij)) THEN dpinv = 0.01/(ph(ij,i)-ph(ij,i+1)) cpinv = 1.0/cpn(ij, i) ft(ij, i) = ft(ij, i) + g*dpinv*(amp1(ij)*(t(ij,i+1)-t(ij, & i)+(gz(ij,i+1)-gz(ij,i))*cpinv)-ad(ij)*(t(ij,i)-t(ij, & i-1)+(gz(ij,i)-gz(ij,i-1))*cpinv)) - sigd*lvcp(ij, i)*evap(ij, i) ft(ij, i) = ft(ij, i) + g*dpinv*ment(ij, i, i)*(hp(ij,i)-h(ij,i)+t(ij & ,i)*(cpv-cpd)*(q(ij,i)-qent(ij,i,i)))*cpinv ft(ij, i) = ft(ij, i) + sigd*wt(ij, i+1)*(cl-cpd)*water(ij, i+1)*(t( & ij,i+1)-t(ij,i))*dpinv*cpinv fq(ij, i) = fq(ij, i) + g*dpinv*(amp1(ij)*(q(ij,i+1)-q(ij, & i))-ad(ij)*(q(ij,i)-q(ij,i-1))) fu(ij, i) = fu(ij, i) + g*dpinv*(amp1(ij)*(u(ij,i+1)-u(ij, & i))-ad(ij)*(u(ij,i)-u(ij,i-1))) fv(ij, i) = fv(ij, i) + g*dpinv*(amp1(ij)*(v(ij,i+1)-v(ij, & i))-ad(ij)*(v(ij,i)-v(ij,i-1))) END IF END DO DO k = 1, i - 1 DO ij = 1, ncum IF (i<=inb(ij)) THEN awat = elij(ij, k, i) - (1.-ep(ij,i))*clw(ij, i) awat = max(awat, 0.0) fq(ij, i) = fq(ij, i) + g*dpinv*ment(ij, k, i)*(qent(ij,k,i)-awat-q & (ij,i)) fu(ij, i) = fu(ij, i) + g*dpinv*ment(ij, k, i)*(uent(ij,k,i)-u(ij,i & )) fv(ij, i) = fv(ij, i) + g*dpinv*ment(ij, k, i)*(vent(ij,k,i)-v(ij,i & )) END IF END DO END DO DO k = i, nl + 1 DO ij = 1, ncum IF ((i<=inb(ij)) .AND. (k<=inb(ij))) THEN fq(ij, i) = fq(ij, i) + g*dpinv*ment(ij, k, i)*(qent(ij,k,i)-q(ij,i & )) fu(ij, i) = fu(ij, i) + g*dpinv*ment(ij, k, i)*(uent(ij,k,i)-u(ij,i & )) fv(ij, i) = fv(ij, i) + g*dpinv*ment(ij, k, i)*(vent(ij,k,i)-v(ij,i & )) END IF END DO END DO DO ij = 1, ncum IF (i<=inb(ij)) THEN fq(ij, i) = fq(ij, i) + sigd*evap(ij, i) + g*(mp(ij,i+1)*(qp(ij, & i+1)-q(ij,i))-mp(ij,i)*(qp(ij,i)-q(ij,i-1)))*dpinv fu(ij, i) = fu(ij, i) + g*(mp(ij,i+1)*(up(ij,i+1)-u(ij, & i))-mp(ij,i)*(up(ij,i)-u(ij,i-1)))*dpinv fv(ij, i) = fv(ij, i) + g*(mp(ij,i+1)*(vp(ij,i+1)-v(ij, & i))-mp(ij,i)*(vp(ij,i)-v(ij,i-1)))*dpinv END IF END DO 1500 END DO ! *** Adjust tendencies at top of convection layer to reflect *** ! *** actual position of the level zero cape *** DO ij = 1, ncum fqold = fq(ij, inb(ij)) fq(ij, inb(ij)) = fq(ij, inb(ij))*(1.-frac(ij)) fq(ij, inb(ij)-1) = fq(ij, inb(ij)-1) + frac(ij)*fqold*((ph(ij, & inb(ij))-ph(ij,inb(ij)+1))/(ph(ij,inb(ij)-1)-ph(ij, & inb(ij))))*lv(ij, inb(ij))/lv(ij, inb(ij)-1) ftold = ft(ij, inb(ij)) ft(ij, inb(ij)) = ft(ij, inb(ij))*(1.-frac(ij)) ft(ij, inb(ij)-1) = ft(ij, inb(ij)-1) + frac(ij)*ftold*((ph(ij, & inb(ij))-ph(ij,inb(ij)+1))/(ph(ij,inb(ij)-1)-ph(ij, & inb(ij))))*cpn(ij, inb(ij))/cpn(ij, inb(ij)-1) fuold = fu(ij, inb(ij)) fu(ij, inb(ij)) = fu(ij, inb(ij))*(1.-frac(ij)) fu(ij, inb(ij)-1) = fu(ij, inb(ij)-1) + frac(ij)*fuold*((ph(ij, & inb(ij))-ph(ij,inb(ij)+1))/(ph(ij,inb(ij)-1)-ph(ij,inb(ij)))) fvold = fv(ij, inb(ij)) fv(ij, inb(ij)) = fv(ij, inb(ij))*(1.-frac(ij)) fv(ij, inb(ij)-1) = fv(ij, inb(ij)-1) + frac(ij)*fvold*((ph(ij, & inb(ij))-ph(ij,inb(ij)+1))/(ph(ij,inb(ij)-1)-ph(ij,inb(ij)))) END DO ! *** Very slightly adjust tendencies to force exact *** ! *** enthalpy, momentum and tracer conservation *** DO ij = 1, ncum ents(ij) = 0.0 uav(ij) = 0.0 vav(ij) = 0.0 DO i = 1, inb(ij) ents(ij) = ents(ij) + (cpn(ij,i)*ft(ij,i)+lv(ij,i)*fq(ij,i))*(ph(ij,i)- & ph(ij,i+1)) uav(ij) = uav(ij) + fu(ij, i)*(ph(ij,i)-ph(ij,i+1)) vav(ij) = vav(ij) + fv(ij, i)*(ph(ij,i)-ph(ij,i+1)) END DO END DO DO ij = 1, ncum ents(ij) = ents(ij)/(ph(ij,1)-ph(ij,inb(ij)+1)) uav(ij) = uav(ij)/(ph(ij,1)-ph(ij,inb(ij)+1)) vav(ij) = vav(ij)/(ph(ij,1)-ph(ij,inb(ij)+1)) END DO DO ij = 1, ncum DO i = 1, inb(ij) ft(ij, i) = ft(ij, i) - ents(ij)/cpn(ij, i) fu(ij, i) = (1.-cu)*(fu(ij,i)-uav(ij)) fv(ij, i) = (1.-cu)*(fv(ij,i)-vav(ij)) END DO END DO DO k = 1, nl + 1 DO i = 1, ncum IF ((q(i,k)+delt*fq(i,k))<0.0) iflag(i) = 10 END DO END DO DO i = 1, ncum IF (iflag(i)>2) THEN precip(i) = 0.0 cbmf(i) = 0.0 END IF END DO DO k = 1, nl DO i = 1, ncum IF (iflag(i)>2) THEN ft(i, k) = 0.0 fq(i, k) = 0.0 fu(i, k) = 0.0 fv(i, k) = 0.0 END IF END DO END DO DO i = 1, ncum precip1(idcum(i)) = precip(i) cbmf1(idcum(i)) = cbmf(i) iflag1(idcum(i)) = iflag(i) END DO DO k = 1, nl DO i = 1, ncum ft1(idcum(i), k) = ft(i, k) fq1(idcum(i), k) = fq(i, k) fu1(idcum(i), k) = fu(i, k) fv1(idcum(i), k) = fv(i, k) END DO END DO DO k = 1, nd DO i = 1, len ma(i, k) = 0. END DO END DO DO k = nl, 1, -1 DO i = 1, ncum ma(i, k) = ma(i, k+1) + m(i, k) END DO END DO RETURN END SUBROUTINE convect2