subroutine SISVAT_GSn C +------------------------------------------------------------------------+ C | MAR SISVAT_GSn 20-09-2003 MAR | C | SubRoutine SISVAT_GSn simulates SNOW Metamorphism | C +------------------------------------------------------------------------+ C | | C | PARAMETERS: knonv: Total Number of columns = | C | ^^^^^^^^^^ = Total Number of continental grid boxes | C | X Number of Mosaic Cell per grid box | C | | C | INPUT / isnoSV = total Nb of Ice/Snow Layers | C | OUTPUT: iiceSV = total Nb of Ice Layers | C | ^^^^^^ istoSV = 0,...,5 : Snow History (see istdSV data) | C | | C | INPUT: TsisSV : Soil/Ice Temperatures (layers -nsol,-nsol+1,..,0)| C | ^^^^^ & Snow Temperatures (layers 1,2,...,nsno) [K] | C | ro__SV : Soil/Snow Volumic Mass [kg/m3] | C | eta_SV : Soil/Snow Water Content [m3/m3] | C | slopSV : Surface Slope [-] | C | dzsnSV : Snow Layer Thickness [m] | C | dt__SV2 : Time Step [s] | C | | C | INPUT / G1snSV : Dendricity (<0) or Sphericity (>0) of Snow Layer | C | OUTPUT: G2snSV : Sphericity (>0) or Size of Snow Layer | C | ^^^^^^ | C | | C | Formalisme adopte pour la Representation des Grains: | C | Formalism for the Representation of Grains: | C | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | C | | C | 1 - -1 Neige Fraiche | C | / \ | ------------- | C | / \ | Dendricite decrite par Dendricite | C | / \ | Dendricity et Sphericite | C | / \ | | C | 2---------3 - 0 described by Dendricity | C | and Sphericity | C | |---------| | C | 0 1 | C | Sphericite | C | Sphericity | C | | C | 4---------5 - | C | | | | | C | | | | Diametre (1/10eme de mm) (ou Taille) | C | | | | Diameter (1/10th of mm) (or Size ) | C | | | | | C | | | | Neige non dendritique | C | 6---------7 - --------------------- | C | decrite par Sphericite | C | et Taille | C | described by Sphericity | C | and Size | C | | C | Les Variables du Modele: | C | Model Variables: | C | ^^^^^^^^^^^^^^^^^^^^^^^^ | C | Cas Dendritique Cas non Dendritique | C | | C | G1snSV : Dendricite G1snSV : Sphericite | C | G2snSV : Sphericite G2snSV : Taille (1/10e mm) | C | Size | C | | C | Cas Dendritique/ Dendritic Case | C | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | C | Dendricite(Dendricity) G1snSV | C | varie de -G1_dSV (-99 par defaut / etoile) a 0 | C | division par -G1_dSV pour obtenir des valeurs entre 1 et 0 | C | varies from -G1_dSV (default -99 / fresh snow) to 0 | C | division by -G1_dSV to obtain values between 1 and 0 | C | | C | Sphericite(Sphericity) G2snSV | C | varie de 0 (cas completement anguleux) | C | a G1_dSV (99 par defaut, cas spherique) | C | division par G1_dSV pour obtenir des valeurs entre 0 et 1 | C | varies from 0 (full faceted) to G1_dSV | C | | C | Cas non Dendritique / non Dendritic Case | C | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | C | Sphericite(Sphericity) G1snSV | C | varie de 0 (cas completement anguleux) | C | a G1_dSV (99 par defaut, cas spherique) | C | division par G1_dSV pour obtenir des valeurs entre 0 et 1 | C | varies from 0 (full faceted) to G1_dSV | C | | C | Taille (Size) G2snSV | C | superieure a ADSdSV (.4 mm) et ne fait que croitre | C | greater than ADSdSV (.4 mm) always increases | C | | C | Exemples: Points caracteristiques des Figures ci-dessus | C | ^^^^^^^^^ | C | | C | G1snSV G2snSV dendricite sphericite taille | C | dendricity sphericity size | C | ------------------------------------------------------------------ | C | [1/10 mm] | C | 1 -G1_dSV sph3SN 1 0.5 | C | 2 0 0 0 0 | C | 3 0 G1_dSV 0 1 | C | 4 0 ADSdSV 0 4. | C | 5 G1_dSV ADSdSV-vsphe1 1 3. | C | 6 0 -- 0 -- | C | 7 G1_dSV -- 1 -- | C | | C | par defaut: G1_dSV=99. | C | sph3SN=50. | C | ADSdSV= 4. | C | vsphe1=1. | C | | C | Methode: | C | ^^^^^^^^ | C | 1. Evolution Types de Grains selon Lois de Brun et al. (1992): | C | Grain metamorphism according to Brun et al. (1992): | C | Plusieurs Cas sont a distiguer / the different Cases are: | C | 1.1 Metamorphose Neige humide / wet Snow | C | 1.2 Metamorphose Neige seche / dry Snow | C | 1.2.1 Gradient faible / low Temperature Gradient | C | 1.2.2 Gradient moyen / moderate Temperature Gradient | C | 1.2.3 Gradient fort / high Temperature Gradient | C | Dans chaque Cas on separe Neige Dendritique et non Dendritique | C | le Passage Dendritique -> non Dendritique | C | se fait lorsque G1snSV devient > 0 | C | the Case of Dentritic or non Dendritic Snow is treated separately | C | the Limit Dentritic -> non Dendritic is reached when G1snSV > 0 | C | | C | 2. Tassement: Loi de Viscosite adaptee selon le Type de Grains | C | Snow Settling: Viscosity depends on the Grain Type | C | | C | 3. Update Variables historiques (cas non dendritique seulement) | C | nhSNow defaut | C | 0 Cas normal | C | istdSV(1) 1 Grains anguleux / faceted cristal | C | istdSV(2) 2 Grains ayant ete en presence d eau liquide | C | mais n'ayant pas eu de caractere anguleux / | C | liquid water and no faceted cristals before | C | istdSV(3) 3 Grains ayant ete en presence d eau liquide | C | ayant eu auparavant un caractere anguleux / | C | liquid water and faceted cristals before | C | | C | REFER. : Brun et al. 1989, J. Glaciol 35 pp. 333--342 | C | ^^^^^^^^ Brun et al. 1992, J. Glaciol 38 pp. 13-- 22 | C | (CROCUS Model, adapted to MAR at CEN by H.Gallee) | C | | C | REFER. : Marbouty, D. 1980, J. Glaciol 26 pp. xxx--xxx | C | ^^^^^^^^ (CROCUS Model, adapted to MAR at CEN by H.Gallee) | C | (for angular shapes) | C | | C | Preprocessing Option: SISVAT IO (not always a standard preprocess.) | C | ^^^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^ | C | FILE | CONTENT | C | ~~~~~~~~~~~~~~~~~~~~~+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | C | # SISVAT_GSn.vp | #vp: OUTPUT/Verification: Snow Properties | C | | unit 47, SubRoutines SISVAT_zSn, _GSn | C | # stdout | #wp: OUTPUT/Verification: Snow Properties | C | | unit 6, SubRoutine SISVAT_GSn | C | | C +------------------------------------------------------------------------+ C +--Global Variables C + ================ use VARphy use VAR_SV use VARdSV use VAR0SV use VARxSV use VARtSV IMPLICIT NONE C +--INPUT/OUTPUT C + ------------ C +--OUTPUT C + ------ integer dt__SV2 C +--Local Variables C + ================ logical vector ! integer ikl ! integer isn ,isnp ! integer istoOK ! real G1_bak,G2_bak ! Old Values of G1, G2 real ro_dry(knonv, nsno) ! Dry Density [g/cm3] real etaSno(knonv, nsno) ! Liquid Water Content [g/cm2] real SnMass(knonv) ! Snow Mass [kg/m2] real dTsndz ! Temperature Gradient real sWater ! Water Content [%] real exp1Wa ! real dDENDR ! Dendricity Increment real DENDRn ! Normalized Dendricity real SPHERn ! Normalized Sphericity real Wet_OK ! Wet Metamorphism Switch real OK__DE ! real OK__wd ! New G*, from wet Dendritic real G1__wd ! New G1, from wet Dendritic real G2__wd ! New G2, from wet Dendritic real OKlowT ! real facVap ! real OK_ldd ! real G1_ldd ! real G2_ldd ! real DiamGx ! real DiamOK ! real No_Big ! real dSPHER ! real SPHER0 ! real SPHbig ! real G1_lds ! real OK_mdT ! real OKmidT ! real OKhigT ! real OK_mdd ! real G1_mdd ! real G2_mdd ! real G1_mds ! real OK_hdd ! real G1_hdd ! real G2_hdd ! real OK_hds ! real G1_hds ! real T1__OK,T2__OK ! real T3_xOK,T3__OK,T3_nOK ! real ro1_OK,ro2_OK ! real dT1_OK,dT2_OK,dT3xOK,dT3_OK ! real dT4xOK,dT4_OK,dT4nOK,AngSno ! real G2_hds,SphrOK,HISupd ! real H1a_OK,H1b_OK,H1__OK ! real H23aOK,H23bOK,H23_OK ! real H2__OK,H3__OK ! real H45_OK,H4__OK,H5__OK ! real ViscSn,OK_Liq,OK_Ang,OKxLiq ! real dSnMas,dzsnew,rosnew,rosmax,smb_old,smb_new real zn_old,zn_new real epsi5 ! Alpha ev67 single precision real vdiam1 ! Small Grains Min.Diam.[.0001m] real vdiam2 ! Spher.Variat.Max Diam. [mm] real vdiam3 ! Min.Diam.|Limit Spher. [mm] real vdiam4 ! Min.Diam.|Viscosity Change real vsphe1 ! Max Sphericity real vsphe2 ! Low T Metamorphism Coeff. real vsphe3 ! Max.Sphericity (history=1) real vsphe4 ! Min.Sphericity=>history=1 real vtang1,vtang2,vtang3,vtang4 ! Temperature Contribution real vtang5,vtang6,vtang7,vtang8 ! real vtang9,vtanga,vtangb,vtangc ! real vrang1,vrang2 ! Density Contribution real vgang1,vgang2,vgang3,vgang4 ! Grad(T) Contribution real vgang5,vgang6,vgang7,vgang8 ! real vgang9,vganga,vgangb,vgangc ! real vgran6 ! Max.Sphericity for Settling real vtelv1 ! Threshold | history = 2, 3 real vvap1 ! Vapor Pressure Coefficient real vvap2 ! Vapor Pressure Exponent real vgrat1 ! Boundary weak/mid grad(T) real vgrat2 ! Boundary mid/strong grad(T) real vfi ! PHI, strong grad(T) real vvisc1,vvisc2,vvisc3,vvisc4 ! Viscosity Coefficients real vvisc5,vvisc6,vvisc7 ! id., wet Snow real rovisc ! Wet Snow Density Influence real vdz3 ! Maximum Layer Densification real OK__ws ! New G2 real G1__ws ! New G1, from wet Spheric real G2__ws ! New G2, from wet Spheric real husi_0,husi_1,husi_2,husi_3 ! Constants for New G2 real vtail1,vtail2 ! Constants for New G2 real frac_j ! Time Step [Day] real vdent1 ! Wet Snow Metamorphism integer nvdent1 ! (Coefficients for integer nvdent2 ! Dendricity) C +--Snow Properties: IO C + ~~~~~~~~~~~~~~~~~~~ ! #vp real G_curr(18),Gcases(18) ! #vp common /GSnLOC/ Gcases ! #wp real D__MAX ! #wp common /GSnMAX/ D__MAX C +--DATA C + ==== data vector/.true./ ! Vectorization Switch data vdent1/ 0.5e8/ ! Wet Snow Metamorphism cXF tuned for Greenland (2.e8=old value) data nvdent1/ 3 / ! (Coefficients for data nvdent2/16 / ! Dendricity) data husi_0 /20. / ! 10 * 2 data husi_1 / 0.23873 / ! (3/4) /pi data husi_2 / 4.18880 / ! (4/3) *pi data husi_3 / 0.33333 / ! 1/3 data vtail1 / 1.28e-08/ ! Wet Metamorphism data vtail2 / 4.22e-10/ ! (NON Dendritic / Spheric) data epsi5 / 1.0e-5 / ! data vdiam1 / 4.0 / ! Small Grains Min.Diameter data vdiam2 / 0.5 / ! Spher.Variat.Max Diam.[mm] data vdiam3 / 3.0 / ! Min.Diam.|Limit Spher.[mm] data vdiam4 / 2.0 / ! Min.Diam.|Viscosity Change data vsphe1 / 1.0 / ! Max Sphericity data vsphe2 / 1.0e9 / ! Low T Metamorphism Coeff. data vsphe3 / 0.5 / ! Max.Sphericity (history=1) data vsphe4 / 0.1 / ! Min.Sphericity=>history=1 data vgran6 / 51. / ! Max.Sphericity for Settling data vtelv1 / 5.e-1 / ! Threshold | history = 2, 3 data vvap1 /-6.e3 / ! Vapor Pressure Coefficient data vvap2 / 0.4 / ! Vapor Pressure Exponent data vgrat1 /0.05 / ! Boundary weak/mid grad(T) data vgrat2 /0.15 / ! Boundary mid/strong grad(T) data vfi /0.09 / ! PHI, strong grad(T) data vvisc1 / 0.70 / ! Viscosity Coefficients data vvisc2 / 1.11e5 / ! data vvisc3 /23.00 / ! data vvisc4 / 0.10 / ! data vvisc5 / 1.00 / ! id., wet Snow data vvisc6 / 2.00 / ! data vvisc7 /10.00 / ! data rovisc / 0.25 / ! Wet Snow Density Influence data vdz3 / 0.30 / ! Maximum Layer Densification C +--DATA (Coefficient Fonction fort Gradient Marbouty) C + -------------------------------------------------- data vtang1 /40.0/ ! Temperature Contribution data vtang2 / 6.0/ ! data vtang3 /22.0/ ! data vtang4 / 0.7/ ! data vtang5 / 0.3/ ! data vtang6 / 6.0/ ! data vtang7 / 1.0/ ! data vtang8 / 0.8/ ! data vtang9 /16.0/ ! data vtanga / 0.2/ ! data vtangb / 0.2/ ! data vtangc /18.0/ ! data vrang1 / 0.40/ ! Density Contribution data vrang2 / 0.15/ ! data vgang1 / 0.70/ ! Grad(T) Contribution data vgang2 / 0.25/ ! data vgang3 / 0.40/ ! data vgang4 / 0.50/ ! data vgang5 / 0.10/ ! data vgang6 / 0.15/ ! data vgang7 / 0.10/ ! data vgang8 / 0.55/ ! data vgang9 / 0.65/ ! data vganga / 0.20/ ! data vgangb / 0.85/ ! data vgangc / 0.15/ ! ! #wp data D__MAX / 4.00/ ! C +-- 1. Metamorphoses dans les Strates C + Metamorphism C + ============================== dt__SV2= dt__SV frac_j = dt__SV2 / 86400. ! Time Step [Day] zn4_SV = 0 C +-- 1.1 Initialisation: teneur en eau liquide et gradient de temperature C + ------------------ liquid water content and temperature gradient DO ikl=1,knonv DO isn=1,isnoSV(ikl) ro_dry(ikl,isn) = 1.e-3 *ro__SV(ikl,isn) ! Dry Density . *(1. -eta_SV(ikl,isn)) ! [g/cm3] etaSno(ikl,isn) = 1.e-1 *dzsnSV(ikl,isn) ! Liquid Water . * ro__SV(ikl,isn) ! Content [g/cm2] . * eta_SV(ikl,isn) ! END DO END DO c!$OMP PARALLEL DO default(firstprivate) c!$OMP.shared (/xSISVAT_I/,/xSISVAT_R/,/SoR0SV/,/SoI0SV/,/Sn_dSV/) DO ikl=1,knonv DO isn=1,isnoSV(ikl) isnp = min(isn+1,isnoSV(ikl)) dTsndz = abs( (TsisSV(ikl,isnp)-TsisSV(ikl,isn-1)) *2.e-2 . /max(((dzsnSV(ikl,isnp)+dzsnSV(ikl,isn) ) . *( isnp - isn) . +(dzsnSV(ikl,isn )+dzsnSV(ikl,isn-1))),epsi)) C +... Factor 1.d-2 for Conversion K/m --> K/cm C +-- 1.2 Metamorphose humide C + Wet Snow Metamorphism C + --------------------- Wet_OK = max(zero,sign(unun,eta_SV(ikl,isn)-epsi)) C +-- Vitesse de diminution de la dendricite C + Rate of the dendricity decrease C + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ sWater=1.d-1*ro__SV(ikl,isn)*eta_SV(ikl,isn) . /max(epsi,ro_dry(ikl,isn)) C +... sWater:Water Content [%] C + 1.d-1= 1.d2(1->%) * 1.d-3(ro__SV*eta_SV:kg/m3->g/cm3) exp1Wa= sWater**nvdent1 dDENDR=max(exp1Wa/nvdent2,vdent1*exp(vvap1/TfSnow)) C +-- 1.2.1 Cas dendritique/dendritic Case C + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ OK__wd=max(zero, ! . sign(unun,-G1snSV(ikl,isn) ! . -epsi )) ! DENDRn=-G1snSV(ikl,isn)/G1_dSV ! Normalized Dendricity (+) SPHERn= G2snSV(ikl,isn)/G1_dSV ! Normalized Sphericity DENDRn= DENDRn -dDENDR *frac_j ! New Dendricity (+) SPHERn= SPHERn +dDENDR *frac_j ! New Sphericity OK__DE=max(zero, ! IF 1., . sign(unun, DENDRn ! NO change . -epsi )) ! Dendr. -> Spheric G1__wd=OK__DE * ( -DENDRn*G1_dSV) ! Dendritic . +(1.-OK__DE)* min(G1_dSV,SPHERn*G1_dSV) ! Dendr. -> Spheric G2__wd=OK__DE * min(G1_dSV,SPHERn*G1_dSV) ! Spheric . +(1.-OK__DE)*(ADSdSV-min(SPHERn,vsphe1)) ! Spher. -> Size C +-- 1.2.2 Cas non dendritique non completement spherique C + Evolution de la Sphericite seulement. C + Non dendritic and not completely spheric Case C + Evolution of Sphericity only (not size) C + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ OK__ws=max(zero, ! . sign(unun, G1_dSV ! . -epsi5 ! . -G1snSV(ikl,isn))) ! SPHERn= G1snSV(ikl,isn)/G1_dSV SPHERn= SPHERn +dDENDR *frac_j G1__ws= min(G1_dSV,SPHERn*G1_dSV) C +-- 1.2.3 Cas non dendritique et spherique / non dendritic and spheric C + Evolution de la Taille seulement / Evolution of Size only C + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ G2__ws = husi_0 . *( husi_1 . *(husi_2 *( G2snSV(ikl,isn)/husi_0)**3 . +(vtail1 +vtail2 *exp1Wa )*dt__SV2)) . ** husi_3 C +-- 1.3 Metamorposes seches / Dry Metamorphism C + -------------------------------------- C +-- 1.3.1 Calcul Metamorphose faible/low Gradient (0.00-0.05 deg/cm) C + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ OKlowT=max(zero, ! . sign(unun, vgrat1 ! . -dTsndz )) ! facVap=exp(vvap1/TsisSV(ikl,isn)) C +-- 1.3.1.1 Cas dendritique / dendritic Case OK_ldd=max(zero, ! . sign(unun,-G1snSV(ikl,isn) ! . -epsi )) ! DENDRn=-G1snSV(ikl,isn) /G1_dSV SPHERn= G2snSV(ikl,isn) /G1_dSV DENDRn= DENDRn-vdent1*facVap*frac_j SPHERn= SPHERn+vsphe2*facVap*frac_j OK__DE=max(zero, ! IF 1., . sign(unun, DENDRn ! NO change . -epsi )) ! Dendr. -> Spheric G1_ldd= OK__DE * ( -DENDRn*G1_dSV) ! Dendritic . +(1.-OK__DE)* min(G1_dSV,SPHERn*G1_dSV) ! Dendr. -> Spheric G2_ldd= OK__DE * min(G1_dSV,SPHERn*G1_dSV) ! Spheric . +(1.-OK__DE)*(ADSdSV-min(SPHERn,vsphe1)) ! Spher. -> Size C +-- 1.3.1.2 Cas non dendritique / non dendritic Case SPHERn=G1snSV(ikl,isn)/G1_dSV DiamGx=G2snSV(ikl,isn)*0.1 istoOK=min( abs(istoSV(ikl,isn)- . istdSV(1) ),1) ! zero if istoSV = 1 DiamOK=max(zero, sign(unun,vdiam2-DiamGx)) No_Big= istoOK+DiamOK No_Big=min(No_Big,unun) dSPHER= vsphe2*facVap*frac_j ! SPHER0= SPHERn+dSPHER ! small grains SPHbig= SPHERn+dSPHER ! big grains . *exp(min(zero,vdiam3-G2snSV(ikl,isn))) ! (history = 2 or 3) SPHbig= min(vsphe3,SPHbig) ! limited sphericity SPHERn= No_Big * SPHER0 . + (1.-No_Big)* SPHbig G1_lds= min(G1_dSV,SPHERn*G1_dSV) C +-- 1.3.2 Calcul Metamorphose Gradient Moyen/Moderate (0.05-0.15) C + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ OK_mdT=max(zero, ! . sign(unun, vgrat2 ! . -dTsndz)) ! OKmidT= OK_mdT *(1.-OKlowT) ! OKhigT= (1. -OK_mdT) *(1.-OKlowT) ! facVap=vdent1*exp(vvap1/TsisSV(ikl,isn)) . * (1.e2 *dTsndz)**vvap2 C +-- 1.3.2.1 cas dendritique / dendritic case. OK_mdd=max(zero, ! . sign(unun,-G1snSV(ikl,isn) ! . -epsi )) ! DENDRn=-G1snSV(ikl,isn)/G1_dSV SPHERn= G2snSV(ikl,isn)/G1_dSV DENDRn= DENDRn - facVap*frac_j SPHERn= SPHERn - facVap*frac_j OK__DE=max(zero, ! IF 1., . sign(unun, DENDRn ! NO change . -epsi )) ! Dendr. -> Spheric G1_mdd= OK__DE * ( -DENDRn*G1_dSV) ! Dendritic . +(1.-OK__DE)* max(zero ,SPHERn*G1_dSV) ! Dendr. -> Spheric G2_mdd= OK__DE * max(zero ,SPHERn*G1_dSV) ! Spheric . +(1.-OK__DE)*(ADSdSV-max(SPHERn,zero )) ! Spher. -> Size C +-- 1.3.2.2 Cas non dendritique / non dendritic Case SPHERn=G1snSV(ikl,isn)/G1_dSV SPHERn= SPHERn-facVap*frac_j G1_mds=max(zero,SPHERn*G1_dSV) C +-- 1.3.3 Calcul Metamorphose fort / high Gradient C + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ facVap=vdent1*exp(vvap1/TsisSV(ikl,isn)) . * (1.e2 *dTsndz)**vvap2 C +-- 1.3.3.1 Cas dendritique / dendritic Case OK_hdd=max(zero, ! . sign(unun,-G1snSV(ikl,isn) ! . -epsi )) ! DENDRn=-G1snSV(ikl,isn)/G1_dSV ! SPHERn= G2snSV(ikl,isn)/G1_dSV ! DENDRn= DENDRn - facVap*frac_j ! SPHERn= SPHERn - facVap*frac_j ! Non dendritic C + ! and angular OK__DE=max(zero, ! IF 1., . sign(unun, DENDRn ! NO change . -epsi )) ! Dendr. -> Spheric G1_hdd= OK__DE * ( -DENDRn*G1_dSV) ! Dendritic . +(1.-OK__DE)* max(zero ,SPHERn*G1_dSV) ! Dendr. -> Spheric G2_hdd= OK__DE * max(zero ,SPHERn*G1_dSV) ! Spheric . +(1.-OK__DE)*(ADSdSV-max(SPHERn,zero )) ! Spher. -> Size C +-- 1.3.3.2 Cas non dendritique non completement anguleux. C + non dendritic and spericity gt. 0 OK_hds=max(zero, ! . sign(unun, G1snSV(ikl,isn) ! . -epsi )) ! SPHERn= G1snSV(ikl,isn)/G1_dSV SPHERn= SPHERn - facVap*frac_j G1_hds= max(zero,SPHERn*G1_dSV) C +-- 1.3.3.3 Cas non dendritique et anguleux C + dendritic and spericity = 0. T1__OK = max(zero,sign(unun,TsisSV(ikl,isn)-TfSnow+vtang1)) T2__OK = max(zero,sign(unun,TsisSV(ikl,isn)-TfSnow+vtang2)) T3_xOK = max(zero,sign(unun,TsisSV(ikl,isn)-TfSnow+vtang3)) T3__OK = T3_xOK * (1. - T2__OK) T3_nOK = (1. - T3_xOK) * (1. - T2__OK) ro1_OK = max(zero,sign(unun,vrang1-ro_dry(ikl,isn))) ro2_OK = max(zero,sign(unun,ro_dry(ikl,isn)-vrang2)) dT1_OK = max(zero,sign(unun,vgang1-dTsndz )) dT2_OK = max(zero,sign(unun,vgang2-dTsndz )) dT3xOK = max(zero,sign(unun,vgang3-dTsndz )) dT3_OK = dT3xOK * (1. - dT2_OK) dT4xOK = max(zero,sign(unun,vgang4-dTsndz )) dT4_OK = dT4xOK * (1. - dT3_OK) . * (1. - dT2_OK) dT4nOK = (1. - dT4xOK) * (1. - dT3_OK) . * (1. - dT2_OK) C +-- Influence de la Temperature /Temperature Influence C + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ AngSno = . T1__OK ! 11 . *(T2__OK*(vtang4+vtang5*(TfSnow -TsisSV(ikl,isn)) ! 12 . /vtang6) ! . +T3__OK*(vtang7-vtang8*(TfSnow-vtang2-TsisSV(ikl,isn)) ! 13 . /vtang9) ! . +T3_nOK*(vtanga-vtangb*(TfSnow-vtang3-TsisSV(ikl,isn)) ! 14 . /vtangc)) ! C +-- Influence de la Masse Volumique /Density Influence C + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . * ro1_OK . *( ro2_OK*(1. - (ro_dry(ikl,isn)-vrang2) ! . /(vrang1-vrang2)) ! . +1.-ro2_OK ) ! C +-- Influence du Gradient de Temperature /Temperature Gradient Influence C + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . *( dT1_OK*(dT2_OK*vgang5*(dTsndz-vgang6) ! 15 . /(vgang2-vgang6) ! . +dT3_OK*vgang7 ! 16 . +dT4_OK*vgang9 ! 17 . +dT4nOK*vgangb ) ! 18 . +1.-dT1_OK ) ! . + ro1_OK . * dT1_OK*(dT3_OK*vgang8*(dTsndz-vgang2) . /(vgang3-vgang2) . +dT4_OK*vganga*(dTsndz-vgang3) . /(vgang4-vgang3) . +dT4nOK*vgangc*(dTsndz-vgang4) . /(vgang1-vgang4)) G2_hds = G2snSV(ikl,isn) + 1.d2 *AngSno*vfi *frac_j C +--New Properties C + -------------- G1_bak = G1snSV(ikl,isn) G2_bak = G2snSV(ikl,isn) G1snSV(ikl,isn) = Wet_OK * ( OK__wd *G1__wd ! 1 . +(1.-OK__wd)* OK__ws *G1__ws ! 2 . +(1.-OK__wd)*(1.-OK__ws)*G1_bak) ! 3 . +(1. - Wet_OK) ! . *( OKlowT *( OK_ldd *G1_ldd ! 4 . +(1.-OK_ldd) *G1_lds) ! 5 . + OKmidT *( OK_mdd *G1_mdd ! 6 . +(1.-OK_mdd) *G1_mds) ! 7 . + OKhigT *( OK_hdd *G1_hdd ! 8 . +(1.-OK_hdd)* OK_hds *G1_hds ! 9 . +(1.-OK_hdd)*(1.-OK_hds)*G1_bak)) ! 10 cXF if(G1snSV(ikl,isn)<0.1) . G2_hds = G2snSV(ikl,isn) + 1.d1 *AngSno*vfi *frac_j cXF G2snSV(ikl,isn) = Wet_OK * ( OK__wd *G2__wd ! 1 . +(1.-OK__wd)* OK__ws *G2_bak ! 2 . +(1.-OK__wd)*(1.-OK__ws)*G2__ws) ! 3 . +(1. - Wet_OK) ! . *( OKlowT *( OK_ldd *G2_ldd ! 4 . +(1.-OK_ldd) *G2_bak) ! 5 . + OKmidT *( OK_mdd *G2_mdd ! 6 . +(1.-OK_mdd) *G2_bak) ! 7 . + OKhigT *( OK_hdd *G2_hdd ! 8 . +(1.-OK_hdd)* OK_hds *G2_bak ! 9 . +(1.-OK_hdd)*(1.-OK_hds)*G2_hds)) ! 10 C +--Snow Properties: IO Set Up C + ~~~~~~~~~~~~~~~~~~~~~~~~~~ ! #vp G_curr( 1) = Wet_OK * OK__wd ! #vp G_curr( 2) = Wet_OK *(1.-OK__wd)* OK__ws ! #vp G_curr( 3) = Wet_OK *(1.-OK__wd)*(1.-OK__ws) ! #vp G_curr( 4) = (1.-Wet_OK)* OKlowT * OK_ldd ! #vp G_curr( 5) = (1.-Wet_OK)* OKlowT *(1.-OK_ldd) ! #vp G_curr( 6) = (1.-Wet_OK)* OKmidT * OK_mdd ! #vp G_curr( 7) = (1.-Wet_OK)* OKmidT *(1.-OK_mdd) ! #vp G_curr( 8) = (1.-Wet_OK)* OKhigT * OK_hdd ! #vp G_curr( 9) = (1.-Wet_OK)* OKhigT *(1.-OK_hdd)* OK_hds ! #vp G_curr(10) = (1.-Wet_OK)* OKhigT *(1.-OK_hdd)*(1.-OK_hds) ! #vp G_curr(11) = T1__OK * G_curr(10) ! #vp G_curr(12) = T2__OK * G_curr(10) ! #vp G_curr(13) = T3__OK * G_curr(10) ! #vp G_curr(14) = T3_nOK * G_curr(10) ! #vp G_curr(15) = ro1_OK* dT1_OK * dT2_OK * G_curr(10) ! #vp G_curr(16) = ro1_OK* dT1_OK * dT3_OK * G_curr(10) ! #vp G_curr(17) = ro1_OK* dT1_OK * dT4_OK * G_curr(10) ! #vp G_curr(18) = ro1_OK* dT1_OK * dT4nOK * G_curr(10) ! #vp Gcases( 1) = max(Gcases( 1),G_curr( 1)) ! #vp Gcases( 2) = max(Gcases( 2),G_curr( 2)) ! #vp Gcases( 3) = max(Gcases( 3),G_curr( 3)) ! #vp Gcases( 4) = max(Gcases( 4),G_curr( 4)) ! #vp Gcases( 5) = max(Gcases( 5),G_curr( 5)) ! #vp Gcases( 6) = max(Gcases( 6),G_curr( 6)) ! #vp Gcases( 7) = max(Gcases( 7),G_curr( 7)) ! #vp Gcases( 8) = max(Gcases( 8),G_curr( 8)) ! #vp Gcases( 9) = max(Gcases( 9),G_curr( 9)) ! #vp Gcases(10) = max(Gcases(10),G_curr(10)) ! #vp Gcases(11) = max(Gcases(11),G_curr(11)) ! #vp Gcases(12) = max(Gcases(12),G_curr(12)) ! #vp Gcases(13) = max(Gcases(13),G_curr(13)) ! #vp Gcases(14) = max(Gcases(14),G_curr(14)) ! #vp Gcases(15) = max(Gcases(15),G_curr(15)) ! #vp Gcases(16) = max(Gcases(16),G_curr(16)) ! #vp Gcases(17) = max(Gcases(17),G_curr(17)) ! #vp Gcases(18) = max(Gcases(18),G_curr(18)) C +--Snow Properties: IO C + ~~~~~~~~~~~~~~~~~~~ ! #vp IF (isn .le. isnoSV(ikl)) ! #vp. write(47,471)isn ,isnoSV(ikl) , ! #vp. TsisSV(ikl,isn),ro__SV(ikl,isn),eta_SV(ikl,isn), ! #vp. G1_bak ,G2_bak ,istoSV(ikl,isn), ! #vp. dTsndz, ! #vp. ( k ,k=1,18), ! #vp. (G_curr(k),k=1,18), ! #vp. (Gcases(k),k=1,18), ! #vp. Wet_OK,OK__wd,G1__wd,G2__wd, ! #vp. 1.-OK__wd,OK__ws,G1__ws,1.-OK__ws,G2__ws, ! #vp. 1.-Wet_OK,OKlowT,OK_ldd,G1_ldd, G2_ldd, ! #vp. 1.-OK_ldd,G1_lds, ! #vp. OKmidT,OK_mdd,G1_mdd, G1_mdd, ! #vp. 1.-OK_mdd,G1_mds, ! #vp. OKhigT,OK_hdd,G1_hdd, G2_hdd, ! #vp. 1.-OK_hdd,OK_hds, G1_hds, ! #vp. 1.-OK_hds,G2_hds, ! #vp. G1snSV(ikl,isn), ! #vp. G2snSV(ikl,isn) END DO END DO c!$OMP END PARALLEL DO C +-- 2. Mise a Jour Variables Historiques (Cas non dendritique) C + Update of the historical Variables C + ======================================================= IF (vector) THEN cXF DO ikl=1,knonv DO isn=1,isnoSV(ikl) SphrOK = max(zero,sign(unun, G1snSV(ikl,isn))) H1a_OK = max(zero,sign(unun,vsphe4-G1snSV(ikl,isn))) H1b_OK = 1 - min(1 , istoSV(ikl,isn)) H1__OK = H1a_OK*H1b_OK H23aOK = max(zero,sign(unun,vsphe4-G1_dSV . +G1snSV(ikl,isn))) H23bOK = max(zero,sign(unun,etaSno(ikl,isn) . /max(epsi,dzsnSV(ikl,isn)) . -vtelv1 )) H23_OK = H23aOK*H23bOK H2__OK = 1 - min(1 , istoSV(ikl,isn)) H3__OK = 1 - min(1 , abs(istoSV(ikl,isn)-istdSV(1))) H45_OK = max(zero,sign(unun,TfSnow-TsisSV(ikl,isn)+epsi)) H4__OK = 1 - min(1 , abs(istoSV(ikl,isn)-istdSV(2))) H5__OK = 1 - min(1 , abs(istoSV(ikl,isn)-istdSV(3))) HISupd = . SphrOK*(H1__OK *istdSV(1) . +(1.-H1__OK)* H23_OK *(H2__OK*istdSV(2) . +H3__OK*istdSV(3)) . +(1.-H1__OK)*(1.-H23_OK) *H45_OK*(H4__OK*istdSV(4) . +H5__OK*istdSV(5))) istoSV(ikl,isn) = HISupd + . (1.-min(unun,HISupd)) *istoSV(ikl,isn) END DO END DO ELSE C +-- 2. Mise a Jour Variables Historiques (Cas non dendritique) C + Update of the historical Variables C + ======================================================= DO ikl=1,knonv DO isn=iiceSV(ikl),isnoSV(ikl) IF (G1snSV(ikl,isn).ge.0.) THEN IF(G1snSV(ikl,isn).lt.vsphe4.and.istoSV(ikl,isn).eq.0) THEN istoSV(ikl,isn)=istdSV(1) ELSEIF(G1_dSV-G1snSV(ikl,isn) .lt.vsphe4.and. . etaSno(ikl,isn)/dzsnSV(ikl,isn).gt.vtelv1) THEN IF (istoSV(ikl,isn).eq.0) . istoSV(ikl,isn)= istdSV(2) IF (istoSV(ikl,isn).eq.istdSV(1)) . istoSV(ikl,isn)= istdSV(3) ELSEIF(TsisSV(ikl,isn).lt.TfSnow) THEN IF (istoSV(ikl,isn).eq.istdSV(2)) . istoSV(ikl,isn)= istdSV(4) IF (istoSV(ikl,isn).eq.istdSV(3)) . istoSV(ikl,isn)= istdSV(5) END IF END IF END DO END DO END IF C +-- 3. Tassement mecanique /mechanical Settlement C + ========================================== DO ikl=1,knonv SnMass(ikl) = 0. END DO cXF DO ikl=1,knonv smb_old = 0. zn_old = 0 DO isn = 1, isnoSV(ikl) smb_old = smb_old + dzsnSV(ikl,isn) *ro__SV(ikl,isn) zn_old = zn_old + dzsnSV(ikl,isn) ENDDO DO isn=isnoSV(ikl),1,-1 dSnMas = 100.*dzsnSV(ikl,isn)*ro_dry(ikl,isn) SnMass(ikl)= SnMass(ikl)+0.5*dSnMas ViscSn = vvisc1 *vvisc2 . *exp(vvisc3 *ro_dry(ikl,isn) . +vvisc4*abs(TfSnow-TsisSV(ikl,isn))) . *ro_dry(ikl,isn)/rovisc C +-- Changement de Viscosite si Teneur en Eau liquide C + Change of the Viscosity if liquid Water Content C + ------------------------------------------------ OK_Liq = max(zero,sign(unun,etaSno(ikl,isn)-epsi)) OK_Ang = max(zero,sign(unun,vgran6-G1snSV(ikl,isn))) . *(1-min(1 , abs(istoSV(ikl,isn)-istdSV(1)))) ! #wp IF (G1snSV(ikl,isn).gt.0..AND.G1snSV(ikl,isn).lt.vsphe4 ! #wp. .AND.istoSV(ikl,isn).eq. 0) ! #wp. THEN ! #wp write(6,*) ikl,isn,' G1,G2,hist,OK_Ang ', ! #wp. G1snSV(ikl,isn), G2snSV(ikl,isn),istoSV(ikl,isn),OK_Ang ! #wp stop "Grains anguleux mal d?finis" ! #wp END IF OKxLiq = max(zero,sign(unun,vtelv1-etaSno(ikl,isn) . /max(epsi,dzsnSV(ikl,isn)))) . * max(0 ,sign(1 ,istoSV(ikl,isn) . -istdSV(1) )) ViscSn = . ViscSn*( OK_Liq/(vvisc5+vvisc6*etaSno(ikl,isn) . /max(epsi,dzsnSV(ikl,isn))) . +(1.-OK_Liq) ) . *( OK_Ang*exp(min(ADSdSV,G2snSV(ikl,isn)-vdiam4)) . +(1.-OK_Ang) ) . *( OKxLiq* vvisc7 . +(1.-OKxLiq) ) C +-- Calcul nouvelle Epaisseur / new Thickness C + ----------------------------------------- dzsnew = . dzsnSV(ikl,isn) . *max(vdz3, . (unun-dt__SV2*max(SnMass(ikl)*cos(slopSV(ikl)),unun) . /max(ViscSn ,epsi))) rosnew = ro__SV(ikl,isn) *dzsnSV(ikl,isn) . /max(1e-10,dzsnew) rosmax = 1. /( (1. -eta_SV(ikl,isn)) /ro_Ice . + eta_SV(ikl,isn) /ro_Wat) rosnew = min(rosnew ,rosmax) dzsnew = dzsnSV(ikl,isn) *ro__SV(ikl,isn) . /max(1e-10,rosnew) ro__SV(ikl,isn)= rosnew dzsnSV(ikl,isn)= dzsnew ro_dry(ikl,isn)= ro__SV(ikl,isn)*(1.-eta_SV(ikl,isn))*1.e-3 C +... ro_dry: Dry Density (g/cm3) C + SnMass(ikl) = SnMass(ikl)+dSnMas*0.5 END DO smb_new = 0. DO isn = 1, isnoSV(ikl) smb_new = smb_new + dzsnSV(ikl,isn) *ro__SV(ikl,isn) ENDDO isn=1 if (dzsnSV(ikl,isn)>0.and.ro__SV(ikl,isn)>0) then dzsnSV(ikl,isn) = dzsnSV(ikl,isn) +0.9999*(smb_old-smb_new) . / ro__SV(ikl,isn) endif zn_new = 0 DO isn = 1, isnoSV(ikl) zn_new = zn_new + dzsnSV(ikl,isn) ENDDO zn4_SV(ikl) = zn4_SV(ikl) + (zn_new - zn_old) END DO return end