SUBROUTINE SRTM_SETCOEF & & ( KIDIA , KFDIA , KLEV ,& & PAVEL , PTAVEL ,& & PCOLDRY , PWKL ,& & KLAYTROP,& & PCOLCH4 , PCOLCO2 , PCOLH2O , PCOLMOL , PCOLO2 , PCOLO3 ,& & PFORFAC , PFORFRAC , KINDFOR , PSELFFAC, PSELFFRAC, KINDSELF ,& & PFAC00 , PFAC01 , PFAC10 , PFAC11 ,& & KJP , KJT , KJT1 , PRMU0 & & ) ! J. Delamere, AER, Inc. (version 2.5, 02/04/01) ! Modifications: ! JJMorcrette 030224 rewritten / adapted to ECMWF F90 system ! M.Hamrud 01-Oct-2003 CY28 Cleaning ! D.Salmond 31-Oct-2007 Vector version in the style of RRTM from Meteo France & NEC ! Purpose: For a given atmosphere, calculate the indices and ! fractions related to the pressure and temperature interpolations. USE PARKIND1 , ONLY : JPIM, JPRB USE YOMHOOK , ONLY : LHOOK, DR_HOOK USE YOESRTWN , ONLY : PREFLOG, TREF !! USE YOESWN , ONLY : NDBUG IMPLICIT NONE !-- Input arguments INTEGER(KIND=JPIM),INTENT(IN) :: KIDIA, KFDIA INTEGER(KIND=JPIM),INTENT(IN) :: KLEV REAL(KIND=JPRB) ,INTENT(IN) :: PAVEL(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: PTAVEL(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: PCOLDRY(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: PWKL(KIDIA:KFDIA,35,KLEV) INTEGER(KIND=JPIM),INTENT(OUT) :: KLAYTROP(KIDIA:KFDIA) REAL(KIND=JPRB) ,INTENT(OUT) :: PCOLCH4(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(OUT) :: PCOLCO2(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(OUT) :: PCOLH2O(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(OUT) :: PCOLMOL(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(OUT) :: PCOLO2(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(OUT) :: PCOLO3(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(OUT) :: PFORFAC(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(OUT) :: PFORFRAC(KIDIA:KFDIA,KLEV) INTEGER(KIND=JPIM),INTENT(OUT) :: KINDFOR(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(OUT) :: PSELFFAC(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(OUT) :: PSELFFRAC(KIDIA:KFDIA,KLEV) INTEGER(KIND=JPIM),INTENT(OUT) :: KINDSELF(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(OUT) :: PFAC00(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(OUT) :: PFAC01(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(OUT) :: PFAC10(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(OUT) :: PFAC11(KIDIA:KFDIA,KLEV) INTEGER(KIND=JPIM),INTENT(OUT) :: KJP(KIDIA:KFDIA,KLEV) INTEGER(KIND=JPIM),INTENT(OUT) :: KJT(KIDIA:KFDIA,KLEV) INTEGER(KIND=JPIM),INTENT(OUT) :: KJT1(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: PRMU0(KIDIA:KFDIA) !-- Output arguments !-- local integers INTEGER(KIND=JPIM) :: I_NLAYERS, JK, JL, JP1 !-- local reals REAL(KIND=JPRB) :: Z_STPFAC, Z_PLOG REAL(KIND=JPRB) :: Z_FP, Z_FT, Z_FT1, Z_WATER, Z_SCALEFAC REAL(KIND=JPRB) :: Z_FACTOR, Z_CO2REG, Z_COMPFP !REAL(KIND=JPRB) :: Z_TBNDFRAC, Z_T0FRAC REAL(KIND=JPRB) :: ZHOOK_HANDLE ASSOCIATE(NFLEVG=>KLEV) IF (LHOOK) CALL DR_HOOK('SRTM_SETCOEF',0,ZHOOK_HANDLE) Z_STPFAC = 296._JPRB/1013._JPRB I_NLAYERS = KLEV DO JL = KIDIA, KFDIA IF (PRMU0(JL) > 0.0_JPRB) THEN KLAYTROP(JL) = 0 ENDIF ENDDO DO JK = 1, I_NLAYERS DO JL = KIDIA, KFDIA IF (PRMU0(JL) > 0.0_JPRB) THEN ! Find the two reference pressures on either side of the ! layer pressure. Store them in JP and JP1. Store in FP the ! fraction of the difference (in ln(pressure)) between these ! two values that the layer pressure lies. Z_PLOG = LOG(PAVEL(JL,JK)) KJP(JL,JK) = INT(36._JPRB - 5._JPRB*(Z_PLOG+0.04_JPRB)) IF (KJP(JL,JK) < 1) THEN KJP(JL,JK) = 1 ELSEIF (KJP(JL,JK) > 58) THEN KJP(JL,JK) = 58 ENDIF JP1 = KJP(JL,JK) + 1 Z_FP = 5. * (PREFLOG(KJP(JL,JK)) - Z_PLOG) ! Determine, for each reference pressure (JP and JP1), which ! reference temperature (these are different for each ! reference pressure) is nearest the layer temperature but does ! not exceed it. Store these indices in JT and JT1, resp. ! Store in FT (resp. FT1) the fraction of the way between JT ! (JT1) and the next highest reference temperature that the ! layer temperature falls. KJT(JL,JK) = INT(3. + (PTAVEL(JL,JK)-TREF(KJP(JL,JK)))/15.) IF (KJT(JL,JK) < 1) THEN KJT(JL,JK) = 1 ELSEIF (KJT(JL,JK) > 4) THEN KJT(JL,JK) = 4 ENDIF Z_FT = ((PTAVEL(JL,JK)-TREF(KJP(JL,JK)))/15.) - REAL(KJT(JL,JK)-3) KJT1(JL,JK) = INT(3. + (PTAVEL(JL,JK)-TREF(JP1))/15.) IF (KJT1(JL,JK) < 1) THEN KJT1(JL,JK) = 1 ELSEIF (KJT1(JL,JK) > 4) THEN KJT1(JL,JK) = 4 ENDIF Z_FT1 = ((PTAVEL(JL,JK)-TREF(JP1))/15.) - REAL(KJT1(JL,JK)-3) Z_WATER = PWKL(JL,1,JK)/PCOLDRY(JL,JK) Z_SCALEFAC = PAVEL(JL,JK) * Z_STPFAC / PTAVEL(JL,JK) ! If the pressure is less than ~100mb, perform a different ! set of species interpolations. IF (Z_PLOG <= 4.56_JPRB) GO TO 5300 KLAYTROP(JL) = KLAYTROP(JL) + 1 ! Set up factors needed to separately include the water vapor ! foreign-continuum in the calculation of absorption coefficient. PFORFAC(JL,JK) = Z_SCALEFAC / (1.+Z_WATER) Z_FACTOR = (332.0-PTAVEL(JL,JK))/36.0 KINDFOR(JL,JK) = MIN(2, MAX(1, INT(Z_FACTOR))) PFORFRAC(JL,JK) = Z_FACTOR - REAL(KINDFOR(JL,JK)) ! Set up factors needed to separately include the water vapor ! self-continuum in the calculation of absorption coefficient. PSELFFAC(JL,JK) = Z_WATER * PFORFAC(JL,JK) Z_FACTOR = (PTAVEL(JL,JK)-188.0)/7.2 KINDSELF(JL,JK) = MIN(9, MAX(1, INT(Z_FACTOR)-7)) PSELFFRAC(JL,JK) = Z_FACTOR - REAL(KINDSELF(JL,JK) + 7) ! Calculate needed column amounts. PCOLH2O(JL,JK) = 1.E-20 * PWKL(JL,1,JK) PCOLCO2(JL,JK) = 1.E-20 * PWKL(JL,2,JK) PCOLO3(JL,JK) = 1.E-20 * PWKL(JL,3,JK) ! COLO3(LAY) = 0. ! COLO3(LAY) = colo3(lay)/1.16 PCOLCH4(JL,JK) = 1.E-20 * PWKL(JL,6,JK) PCOLO2(JL,JK) = 1.E-20 * PWKL(JL,7,JK) PCOLMOL(JL,JK) = 1.E-20 * PCOLDRY(JL,JK) + PCOLH2O(JL,JK) ! colco2(lay) = 0. ! colo3(lay) = 0. ! colch4(lay) = 0. ! colo2(lay) = 0. ! colmol(lay) = 0. IF (PCOLCO2(JL,JK) == 0.) PCOLCO2(JL,JK) = 1.E-32 * PCOLDRY(JL,JK) IF (PCOLCH4(JL,JK) == 0.) PCOLCH4(JL,JK) = 1.E-32 * PCOLDRY(JL,JK) IF (PCOLO2(JL,JK) == 0.) PCOLO2(JL,JK) = 1.E-32 * PCOLDRY(JL,JK) ! Using E = 1334.2 cm-1. Z_CO2REG = 3.55E-24 * PCOLDRY(JL,JK) GO TO 5400 ! Above LAYTROP. 5300 CONTINUE ! Set up factors needed to separately include the water vapor ! foreign-continuum in the calculation of absorption coefficient. PFORFAC(JL,JK) = Z_SCALEFAC / (1.+Z_WATER) Z_FACTOR = (PTAVEL(JL,JK)-188.0)/36.0 KINDFOR(JL,JK) = 3 PFORFRAC(JL,JK) = Z_FACTOR - 1.0 ! Calculate needed column amounts. PCOLH2O(JL,JK) = 1.E-20 * PWKL(JL,1,JK) PCOLCO2(JL,JK) = 1.E-20 * PWKL(JL,2,JK) PCOLO3(JL,JK) = 1.E-20 * PWKL(JL,3,JK) PCOLCH4(JL,JK) = 1.E-20 * PWKL(JL,6,JK) PCOLO2(JL,JK) = 1.E-20 * PWKL(JL,7,JK) PCOLMOL(JL,JK) = 1.E-20 * PCOLDRY(JL,JK) + PCOLH2O(JL,JK) IF (PCOLCO2(JL,JK) == 0.) PCOLCO2(JL,JK) = 1.E-32 * PCOLDRY(JL,JK) IF (PCOLCH4(JL,JK) == 0.) PCOLCH4(JL,JK) = 1.E-32 * PCOLDRY(JL,JK) IF (PCOLO2(JL,JK) == 0.) PCOLO2(JL,JK) = 1.E-32 * PCOLDRY(JL,JK) Z_CO2REG = 3.55E-24 * PCOLDRY(JL,JK) PSELFFAC(JL,JK) =0.0_JPRB PSELFFRAC(JL,JK)=0.0_JPRB KINDSELF(JL,JK) = 0 5400 CONTINUE ! We have now isolated the layer ln pressure and temperature, ! between two reference pressures and two reference temperatures ! (for each reference pressure). We multiply the pressure ! fraction FP with the appropriate temperature fractions to get ! the factors that will be needed for the interpolation that yields ! the optical depths (performed in routines TAUGBn for band n). Z_COMPFP = 1. - Z_FP PFAC10(JL,JK) = Z_COMPFP * Z_FT PFAC00(JL,JK) = Z_COMPFP * (1. - Z_FT) PFAC11(JL,JK) = Z_FP * Z_FT1 PFAC01(JL,JK) = Z_FP * (1. - Z_FT1) ! IF (NDBUG.LE.3) THEN ! print 9000,LAY,LAYTROP,JP(LAY),JT(LAY),JT1(LAY),TAVEL(LAY) & ! &,FAC00(LAY),FAC01(LAY),FAC10(LAY),FAC11(LAY) & ! &,COLMOL(LAY),COLCH4(LAY),COLCO2(LAY),COLH2O(LAY) & ! &,COLO2(LAY),COLO3(LAY),SELFFAC(LAY),SELFFRAC(LAY) & ! &,FORFAC(LAY),FORFRAC(LAY),INDSELF(LAY),INDFOR(LAY) 9000 format(1x,2I3,3I4,F6.1,4F7.2,12E9.2,2I5) ! ENDIF ENDIF ENDDO ENDDO !----------------------------------------------------------------------- IF (LHOOK) CALL DR_HOOK('SRTM_SETCOEF',1,ZHOOK_HANDLE) END ASSOCIATE END SUBROUTINE SRTM_SETCOEF