!---------------------------------------------------------------------------- SUBROUTINE RRTM_TAUMOL5 (KIDIA,KFDIA,KLEV,P_TAU,P_WX,& & P_TAUAERL,P_FAC00,P_FAC01,P_FAC10,P_FAC11,P_FORFAC,P_FORFRAC,K_INDFOR,K_JP,K_JT,K_JT1,P_ONEMINUS,& & P_COLH2O,P_COLCO2, P_COLO3,K_LAYTROP,P_SELFFAC,P_SELFFRAC,K_INDSELF,PFRAC, & & P_RAT_H2OCO2, P_RAT_H2OCO2_1, P_RAT_O3CO2, P_RAT_O3CO2_1,PMINORFRAC,KINDMINOR) ! BAND 5: 700-820 cm-1 (low - H2O,CO2; high - O3,CO2) ! AUTHOR. ! ------- ! JJMorcrette, ECMWF ! MODIFICATIONS. ! -------------- ! M.Hamrud 01-Oct-2003 CY28 Cleaning ! NEC 25-Oct-2007 Optimisations ! JJMorcrette 20110613 flexible number of g-points ! ABozzo 201306 updated to rrtmg v4.85 ! band 5: 700-820 cm-1 (low key - h2o,co2; low minor - o3, ccl4) ! (high key - o3,co2) ! --------------------------------------------------------------------------- USE PARKIND1 ,ONLY : JPIM ,JPRB USE YOMHOOK ,ONLY : LHOOK, DR_HOOK USE PARRRTM , ONLY : JPBAND ,JPXSEC USE YOERRTM , ONLY : JPGPT ,NG5 ,NGS4 USE YOERRTWN , ONLY : NSPA ,NSPB USE YOERRTA5 , ONLY : ABSA ,ABSB ,CCL4 , FRACREFA, FRACREFB,SELFREF,FORREF, & & KA_MO3 USE YOERRTRF, ONLY : CHI_MLS IMPLICIT NONE INTEGER(KIND=JPIM),INTENT(IN) :: KIDIA INTEGER(KIND=JPIM),INTENT(IN) :: KFDIA INTEGER(KIND=JPIM),INTENT(IN) :: KLEV REAL(KIND=JPRB) ,INTENT(OUT) :: P_TAU(KIDIA:KFDIA,JPGPT,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_WX(KIDIA:KFDIA,JPXSEC,KLEV) ! Amount of trace gases REAL(KIND=JPRB) ,INTENT(IN) :: P_TAUAERL(KIDIA:KFDIA,KLEV,JPBAND) REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC00(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC01(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC10(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC11(KIDIA:KFDIA,KLEV) INTEGER(KIND=JPIM),INTENT(IN) :: K_JP(KIDIA:KFDIA,KLEV) INTEGER(KIND=JPIM),INTENT(IN) :: K_JT(KIDIA:KFDIA,KLEV) INTEGER(KIND=JPIM),INTENT(IN) :: K_JT1(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_ONEMINUS REAL(KIND=JPRB) ,INTENT(IN) :: P_COLH2O(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_COLCO2(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_COLO3(KIDIA:KFDIA,KLEV) INTEGER(KIND=JPIM),INTENT(IN) :: K_LAYTROP(KIDIA:KFDIA) REAL(KIND=JPRB) ,INTENT(IN) :: P_SELFFAC(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_SELFFRAC(KIDIA:KFDIA,KLEV) INTEGER(KIND=JPIM),INTENT(IN) :: K_INDSELF(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(OUT) :: PFRAC(KIDIA:KFDIA,JPGPT,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_RAT_H2OCO2(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_RAT_H2OCO2_1(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_RAT_O3CO2(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_RAT_O3CO2_1(KIDIA:KFDIA,KLEV) INTEGER(KIND=JPIM),INTENT(IN) :: K_INDFOR(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_FORFRAC(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_FORFAC(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: PMINORFRAC(KIDIA:KFDIA,KLEV) INTEGER(KIND=JPIM),INTENT(IN) :: KINDMINOR(KIDIA:KFDIA,KLEV) ! --------------------------------------------------------------------------- REAL(KIND=JPRB) :: Z_SPECCOMB(KLEV),Z_SPECCOMB1(KLEV), & & Z_SPECCOMB_MO3(KLEV), Z_SPECCOMB_PLANCK(KLEV) INTEGER(KIND=JPIM) :: IND0(KLEV),IND1(KLEV),INDS(KLEV),INDF(KLEV),INDM(KLEV) INTEGER(KIND=JPIM) :: IG, JS, JLAY, JS1, JPL, JMO3 INTEGER(KIND=JPIM) :: JLON REAL(KIND=JPRB) :: Z_REFRAT_PLANCK_A, Z_REFRAT_PLANCK_B,Z_REFRAT_M_A REAL(KIND=JPRB) :: Z_FAC000, Z_FAC100, Z_FAC200,& & Z_FAC010, Z_FAC110, Z_FAC210, & & Z_FAC001, Z_FAC101, Z_FAC201, & & Z_FAC011, Z_FAC111, Z_FAC211 REAL(KIND=JPRB) :: ZP, ZP4, ZFK0, ZFK1, ZFK2 REAL(KIND=JPRB) :: ZTAUFOR,ZTAUSELF,ZTAU_MAJOR,ZTAU_MAJOR1, ZO3M1, ZO3M2, ZABSO3 REAL(KIND=JPRB) :: Z_FS, Z_SPECMULT, Z_SPECPARM, & & Z_FS1, Z_SPECMULT1, Z_SPECPARM1, & & Z_FPL, Z_SPECMULT_PLANCK, Z_SPECPARM_PLANCK, & & Z_FMO3, Z_SPECMULT_MO3, Z_SPECPARM_MO3 REAL(KIND=JPRB) :: ZHOOK_HANDLE ! Minor gas mapping level : ! lower - o3, p = 317.34 mbar, t = 240.77 k ! lower - ccl4 ! Calculate reference ratio to be used in calculation of Planck ! fraction in lower/upper atmosphere. ! P = 473.420 mb Z_REFRAT_PLANCK_A = CHI_MLS(1,5)/CHI_MLS(2,5) ! P = 0.2369 mb Z_REFRAT_PLANCK_B = CHI_MLS(3,43)/CHI_MLS(2,43) ! P = 317.3480 Z_REFRAT_M_A = CHI_MLS(1,7)/CHI_MLS(2,7) ! Compute the optical depth by interpolating in ln(pressure), ! temperature, and appropriate species. Below LAYTROP, the water ! vapor self-continuum and foreign continuum is ! interpolated (in temperature) separately. ASSOCIATE(NFLEVG=>KLEV) IF (LHOOK) CALL DR_HOOK('RRTM_TAUMOL5',0,ZHOOK_HANDLE) DO JLAY = 1, KLEV DO JLON = KIDIA, KFDIA IF (JLAY <= K_LAYTROP(JLON)) THEN Z_SPECCOMB(JLAY) = P_COLH2O(JLON,JLAY) + P_RAT_H2OCO2(JLON,JLAY)*P_COLCO2(JLON,JLAY) Z_SPECPARM = P_COLH2O(JLON,JLAY)/Z_SPECCOMB(JLAY) Z_SPECPARM=MIN(P_ONEMINUS,Z_SPECPARM) Z_SPECMULT = 8._JPRB*(Z_SPECPARM) JS = 1 + INT(Z_SPECMULT) Z_FS = MOD(Z_SPECMULT,1.0_JPRB) Z_SPECCOMB1(JLAY) = P_COLH2O(JLON,JLAY) + P_RAT_H2OCO2_1(JLON,JLAY)*P_COLCO2(JLON,JLAY) Z_SPECPARM1 = P_COLH2O(JLON,JLAY)/Z_SPECCOMB1(JLAY) IF (Z_SPECPARM1 >= P_ONEMINUS) Z_SPECPARM1 = P_ONEMINUS Z_SPECMULT1 = 8._JPRB*(Z_SPECPARM1) JS1 = 1 + INT(Z_SPECMULT1) Z_FS1 = MOD(Z_SPECMULT1,1.0_JPRB) Z_SPECCOMB_MO3(JLAY) = P_COLH2O(JLON,JLAY) + Z_REFRAT_M_A*P_COLCO2(JLON,JLAY) Z_SPECPARM_MO3 = P_COLH2O(JLON,JLAY)/Z_SPECCOMB_MO3(JLAY) IF (Z_SPECPARM_MO3 >= P_ONEMINUS) Z_SPECPARM_MO3 = P_ONEMINUS Z_SPECMULT_MO3 = 8._JPRB*Z_SPECPARM_MO3 JMO3 = 1 + INT(Z_SPECMULT_MO3) Z_FMO3 = MOD(Z_SPECMULT_MO3,1.0_JPRB) Z_SPECCOMB_PLANCK(JLAY) = P_COLH2O(JLON,JLAY)+Z_REFRAT_PLANCK_A*P_COLCO2(JLON,JLAY) Z_SPECPARM_PLANCK = P_COLH2O(JLON,JLAY)/Z_SPECCOMB_PLANCK(JLAY) IF (Z_SPECPARM_PLANCK >= P_ONEMINUS) Z_SPECPARM_PLANCK=P_ONEMINUS Z_SPECMULT_PLANCK = 8._JPRB*Z_SPECPARM_PLANCK JPL= 1 + INT(Z_SPECMULT_PLANCK) Z_FPL = MOD(Z_SPECMULT_PLANCK,1.0_JPRB) IND0(JLAY) = ((K_JP(JLON,JLAY)-1)*5+(K_JT(JLON,JLAY)-1))*NSPA(5) + JS IND1(JLAY) = (K_JP(JLON,JLAY)*5+(K_JT1(JLON,JLAY)-1))*NSPA(5) + JS1 INDS(JLAY) = K_INDSELF(JLON,JLAY) INDF(JLAY) = K_INDFOR(JLON,JLAY) INDM(JLAY) = KINDMINOR(JLON,JLAY) IF (Z_SPECPARM < 0.125_JPRB) THEN ZP = Z_FS - 1 ZP4 = ZP**4 ZFK0 = ZP4 ZFK1 = 1 - ZP - 2.0_JPRB*ZP4 ZFK2 = ZP + ZP4 Z_FAC000 = ZFK0*P_FAC00(JLON,JLAY) Z_FAC100 = ZFK1*P_FAC00(JLON,JLAY) Z_FAC200 = ZFK2*P_FAC00(JLON,JLAY) Z_FAC010 = ZFK0*P_FAC10(JLON,JLAY) Z_FAC110 = ZFK1*P_FAC10(JLON,JLAY) Z_FAC210 = ZFK2*P_FAC10(JLON,JLAY) ELSEIF (Z_SPECPARM > 0.875_JPRB) THEN ZP = -Z_FS ZP4 = ZP**4 ZFK0 = ZP4 ZFK1 = 1 - ZP - 2.0_JPRB*ZP4 ZFK2 = ZP + ZP4 Z_FAC000 = ZFK0*P_FAC00(JLON,JLAY) Z_FAC100 = ZFK1*P_FAC00(JLON,JLAY) Z_FAC200 = ZFK2*P_FAC00(JLON,JLAY) Z_FAC010 = ZFK0*P_FAC10(JLON,JLAY) Z_FAC110 = ZFK1*P_FAC10(JLON,JLAY) Z_FAC210 = ZFK2*P_FAC10(JLON,JLAY) ELSE Z_FAC000 = (1._JPRB - Z_FS) * P_FAC00(JLON,JLAY) Z_FAC010 = (1._JPRB - Z_FS) * P_FAC10(JLON,JLAY) Z_FAC100 = Z_FS * P_FAC00(JLON,JLAY) Z_FAC110 = Z_FS * P_FAC10(JLON,JLAY) ENDIF IF (Z_SPECPARM1 < 0.125_JPRB) THEN ZP = Z_FS1 - 1 ZP4 = ZP**4 ZFK0 = ZP4 ZFK1 = 1 - ZP - 2.0_JPRB*ZP4 ZFK2 = ZP + ZP4 Z_FAC001 = ZFK0*P_FAC01(JLON,JLAY) Z_FAC101 = ZFK1*P_FAC01(JLON,JLAY) Z_FAC201 = ZFK2*P_FAC01(JLON,JLAY) Z_FAC011 = ZFK0*P_FAC11(JLON,JLAY) Z_FAC111 = ZFK1*P_FAC11(JLON,JLAY) Z_FAC211 = ZFK2*P_FAC11(JLON,JLAY) ELSEIF (Z_SPECPARM1 > 0.875_JPRB) THEN ZP = -Z_FS1 ZP4 = ZP**4 ZFK0 = ZP4 ZFK1 = 1 - ZP - 2.0_JPRB*ZP4 ZFK2 = ZP + ZP4 Z_FAC001 = ZFK0*P_FAC01(JLON,JLAY) Z_FAC101 = ZFK1*P_FAC01(JLON,JLAY) Z_FAC201 = ZFK2*P_FAC01(JLON,JLAY) Z_FAC011 = ZFK0*P_FAC11(JLON,JLAY) Z_FAC111 = ZFK1*P_FAC11(JLON,JLAY) Z_FAC211 = ZFK2*P_FAC11(JLON,JLAY) ELSE Z_FAC001 = (1._JPRB - Z_FS1) * P_FAC01(JLON,JLAY) Z_FAC011 = (1._JPRB - Z_FS1) * P_FAC11(JLON,JLAY) Z_FAC101 = Z_FS1 * P_FAC01(JLON,JLAY) Z_FAC111 = Z_FS1 * P_FAC11(JLON,JLAY) ENDIF !CDIR UNROLL=NG5 DO IG = 1, NG5 ZTAUSELF = P_SELFFAC(JLON,JLAY)* (SELFREF(INDS(JLAY),IG) + P_SELFFRAC(JLON,JLAY) * & & (SELFREF(INDS(JLAY)+1,IG) - SELFREF(INDS(JLAY),IG))) ZTAUFOR = P_FORFAC(JLON,JLAY) * (FORREF(INDF(JLAY),IG) + P_FORFRAC(JLON,JLAY) * & & (FORREF(INDF(JLAY)+1,IG) - FORREF(INDF(JLAY),IG))) ZO3M1 = KA_MO3(JMO3,INDM(JLAY),IG) + Z_FMO3 * & & (KA_MO3(JMO3+1,INDM(JLAY),IG) - KA_MO3(JMO3,INDM(JLAY),IG)) ZO3M2 = KA_MO3(JMO3,INDM(JLAY)+1,IG) + Z_FMO3 * & & (KA_MO3(JMO3+1,INDM(JLAY)+1,IG) - KA_MO3(JMO3,INDM(JLAY)+1,IG)) ZABSO3 = ZO3M1 + PMINORFRAC(JLON,JLAY) * (ZO3M2 - ZO3M1) IF (Z_SPECPARM < 0.125_JPRB) THEN ZTAU_MAJOR = Z_SPECCOMB(JLAY) * & & (Z_FAC000 * ABSA(IND0(JLAY),IG) + & & Z_FAC100 * ABSA(IND0(JLAY)+1,IG) + & & Z_FAC200 * ABSA(IND0(JLAY)+2,IG) + & & Z_FAC010 * ABSA(IND0(JLAY)+9,IG) + & & Z_FAC110 * ABSA(IND0(JLAY)+10,IG) + & & Z_FAC210 * ABSA(IND0(JLAY)+11,IG)) ELSEIF (Z_SPECPARM > 0.875_JPRB) THEN ZTAU_MAJOR = Z_SPECCOMB(JLAY) * & & (Z_FAC200 * ABSA(IND0(JLAY)-1,IG) + & & Z_FAC100 * ABSA(IND0(JLAY),IG) + & & Z_FAC000 * ABSA(IND0(JLAY)+1,IG) + & & Z_FAC210 * ABSA(IND0(JLAY)+8,IG) + & & Z_FAC110 * ABSA(IND0(JLAY)+9,IG) + & & Z_FAC010 * ABSA(IND0(JLAY)+10,IG)) ELSE ZTAU_MAJOR = Z_SPECCOMB(JLAY) * & & (Z_FAC000 * ABSA(IND0(JLAY),IG) + & & Z_FAC100 * ABSA(IND0(JLAY)+1,IG) + & & Z_FAC010 * ABSA(IND0(JLAY)+9,IG) + & & Z_FAC110 * ABSA(IND0(JLAY)+10,IG)) ENDIF IF (Z_SPECPARM1 < 0.125_JPRB) THEN ZTAU_MAJOR1 = Z_SPECCOMB1(JLAY) * & & (Z_FAC001 * ABSA(IND1(JLAY),IG) + & & Z_FAC101 * ABSA(IND1(JLAY)+1,IG) + & & Z_FAC201 * ABSA(IND1(JLAY)+2,IG) + & & Z_FAC011 * ABSA(IND1(JLAY)+9,IG) + & & Z_FAC111 * ABSA(IND1(JLAY)+10,IG) + & & Z_FAC211 * ABSA(IND1(JLAY)+11,IG)) ELSEIF (Z_SPECPARM1 > 0.875_JPRB) THEN ZTAU_MAJOR1 = Z_SPECCOMB1(JLAY) * & & (Z_FAC201 * ABSA(IND1(JLAY)-1,IG) + & & Z_FAC101 * ABSA(IND1(JLAY),IG) + & & Z_FAC001 * ABSA(IND1(JLAY)+1,IG) + & & Z_FAC211 * ABSA(IND1(JLAY)+8,IG) + & & Z_FAC111 * ABSA(IND1(JLAY)+9,IG) + & & Z_FAC011 * ABSA(IND1(JLAY)+10,IG)) ELSE ZTAU_MAJOR1 = Z_SPECCOMB1(JLAY) * & & (Z_FAC001 * ABSA(IND1(JLAY),IG) + & & Z_FAC101 * ABSA(IND1(JLAY)+1,IG) + & & Z_FAC011 * ABSA(IND1(JLAY)+9,IG) + & & Z_FAC111 * ABSA(IND1(JLAY)+10,IG)) ENDIF P_TAU(JLON,NGS4+IG,JLAY) = ZTAU_MAJOR + ZTAU_MAJOR1 & & + ZTAUSELF + ZTAUFOR & & + ZABSO3*P_COLO3(JLON,JLAY) & & + P_WX(JLON,1,JLAY) * CCL4(IG)& & + P_TAUAERL(JLON,JLAY,5) PFRAC(JLON,NGS4+IG,JLAY) = FRACREFA(IG,JPL) + Z_FPL *& & (FRACREFA(IG,JPL+1) - FRACREFA(IG,JPL)) ENDDO ENDIF IF (JLAY > K_LAYTROP(JLON)) THEN Z_SPECCOMB(JLAY) = P_COLO3(JLON,JLAY) + P_RAT_O3CO2(JLON,JLAY)*P_COLCO2(JLON,JLAY) Z_SPECPARM = P_COLO3(JLON,JLAY)/Z_SPECCOMB(JLAY) Z_SPECPARM=MIN(P_ONEMINUS,Z_SPECPARM) Z_SPECMULT = 4._JPRB*(Z_SPECPARM) JS = 1 + INT(Z_SPECMULT) Z_FS = MOD(Z_SPECMULT,1.0_JPRB) Z_SPECCOMB1(JLAY) = P_COLO3(JLON,JLAY) + P_RAT_O3CO2_1(JLON,JLAY)*P_COLCO2(JLON,JLAY) Z_SPECPARM1 = P_COLO3(JLON,JLAY)/Z_SPECCOMB1(JLAY) IF (Z_SPECPARM1 >= P_ONEMINUS) Z_SPECPARM1 = P_ONEMINUS Z_SPECMULT1 = 4._JPRB*(Z_SPECPARM1) JS1 = 1 + INT(Z_SPECMULT1) Z_FS1 = MOD(Z_SPECMULT1,1.0_JPRB) Z_FAC000 = (1._JPRB - Z_FS) * P_FAC00(JLON,JLAY) Z_FAC010 = (1._JPRB - Z_FS) * P_FAC10(JLON,JLAY) Z_FAC100 = Z_FS * P_FAC00(JLON,JLAY) Z_FAC110 = Z_FS * P_FAC10(JLON,JLAY) Z_FAC001 = (1._JPRB - Z_FS1) * P_FAC01(JLON,JLAY) Z_FAC011 = (1._JPRB - Z_FS1) * P_FAC11(JLON,JLAY) Z_FAC101 = Z_FS1 * P_FAC01(JLON,JLAY) Z_FAC111 = Z_FS1 * P_FAC11(JLON,JLAY) Z_SPECCOMB_PLANCK(JLAY) = P_COLO3(JLON,JLAY)+Z_REFRAT_PLANCK_B*P_COLCO2(JLON,JLAY) Z_SPECPARM_PLANCK = P_COLO3(JLON,JLAY)/Z_SPECCOMB_PLANCK(JLAY) IF (Z_SPECPARM_PLANCK >= P_ONEMINUS) Z_SPECPARM_PLANCK=P_ONEMINUS Z_SPECMULT_PLANCK = 4._JPRB*Z_SPECPARM_PLANCK JPL= 1 + INT(Z_SPECMULT_PLANCK) Z_FPL = MOD(Z_SPECMULT_PLANCK,1.0_JPRB) IND0(JLAY) = ((K_JP(JLON,JLAY)-13)*5+(K_JT(JLON,JLAY)-1))*NSPB(5) + JS IND1(JLAY) = ((K_JP(JLON,JLAY)-12)*5+(K_JT1(JLON,JLAY)-1))*NSPB(5) + JS1 !CDIR UNROLL=NG5 DO IG = 1, NG5 !-- DS_000515 P_TAU(JLON,NGS4+IG,JLAY) = Z_SPECCOMB(JLAY) * & &(Z_FAC000 * ABSB(IND0(JLAY) ,IG) +& & Z_FAC100 * ABSB(IND0(JLAY)+1,IG) +& & Z_FAC010 * ABSB(IND0(JLAY)+5,IG) +& & Z_FAC110 * ABSB(IND0(JLAY)+6,IG)) +& & Z_SPECCOMB1(JLAY) * & & (Z_FAC001 * ABSB(IND1(JLAY) ,IG) +& & Z_FAC101 * ABSB(IND1(JLAY)+1,IG) +& & Z_FAC011 * ABSB(IND1(JLAY)+5,IG) +& & Z_FAC111 * ABSB(IND1(JLAY)+6,IG))+& & P_WX(JLON,1,JLAY) * CCL4(IG)+& & P_TAUAERL(JLON,JLAY,5) PFRAC(JLON,NGS4+IG,JLAY) = FRACREFB(IG,JPL) + Z_FPL *& & (FRACREFB(IG,JPL+1) - FRACREFB(IG,JPL)) ENDDO ENDIF ENDDO ENDDO IF (LHOOK) CALL DR_HOOK('RRTM_TAUMOL5',1,ZHOOK_HANDLE) END ASSOCIATE END SUBROUTINE RRTM_TAUMOL5