!---------------------------------------------------------------------------- SUBROUTINE RRTM_TAUMOL15 (KIDIA,KFDIA,KLEV,P_TAU,& & P_TAUAERL,P_FAC00,P_FAC01,P_FAC10,P_FAC11,P_FORFAC,P_FORFRAC,K_INDFOR,K_JP,K_JT,K_JT1,P_ONEMINUS,& & P_COLH2O,P_COLCO2,P_COLN2O,K_LAYTROP,P_SELFFAC,P_SELFFRAC,K_INDSELF,PFRAC, & & PRAT_N2OCO2, PRAT_N2OCO2_1,PMINORFRAC,KINDMINOR,PSCALEMINOR,PCOLBRD) ! BAND 15: 2380-2600 cm-1 (low - N2O,CO2; high - nothing) ! AUTHOR. ! ------- ! JJMorcrette, ECMWF ! MODIFICATIONS. ! -------------- ! M.Hamrud 01-Oct-2003 CY28 Cleaning ! NEC 25-Oct-2007 Optimisations ! JJMorcrette 20110613 flexible number of g-points ! ABozzo 2001306 updated to rrtmg v4.85 ! band 15: 2380-2600 cm-1 (low - n2o,co2; low minor - n2) ! (high - nothing) ! --------------------------------------------------------------------------- USE PARKIND1 ,ONLY : JPIM ,JPRB USE YOMHOOK ,ONLY : LHOOK, DR_HOOK USE PARRRTM , ONLY : JPBAND USE YOERRTM , ONLY : JPGPT ,NGS14 ,NG15 USE YOERRTWN , ONLY : NSPA USE YOERRTA15, ONLY : ABSA ,KA_MN2,FRACREFA,SELFREF,FORREF USE YOERRTRF, ONLY : CHI_MLS IMPLICIT NONE INTEGER(KIND=JPIM),INTENT(IN) :: KIDIA INTEGER(KIND=JPIM),INTENT(IN) :: KFDIA INTEGER(KIND=JPIM),INTENT(IN) :: KLEV REAL(KIND=JPRB) ,INTENT(OUT) :: P_TAU(KIDIA:KFDIA,JPGPT,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_TAUAERL(KIDIA:KFDIA,KLEV,JPBAND) REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC00(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC01(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC10(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC11(KIDIA:KFDIA,KLEV) INTEGER(KIND=JPIM),INTENT(IN) :: K_JP(KIDIA:KFDIA,KLEV) INTEGER(KIND=JPIM),INTENT(IN) :: K_JT(KIDIA:KFDIA,KLEV) INTEGER(KIND=JPIM),INTENT(IN) :: K_JT1(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_ONEMINUS REAL(KIND=JPRB) ,INTENT(IN) :: P_COLH2O(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_COLCO2(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_COLN2O(KIDIA:KFDIA,KLEV) INTEGER(KIND=JPIM),INTENT(IN) :: K_LAYTROP(KIDIA:KFDIA) REAL(KIND=JPRB) ,INTENT(IN) :: P_SELFFAC(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_SELFFRAC(KIDIA:KFDIA,KLEV) INTEGER(KIND=JPIM),INTENT(IN) :: K_INDSELF(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(OUT) :: PFRAC(KIDIA:KFDIA,JPGPT,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: PRAT_N2OCO2(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: PRAT_N2OCO2_1(KIDIA:KFDIA,KLEV) INTEGER(KIND=JPIM),INTENT(IN) :: K_INDFOR(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_FORFAC(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: P_FORFRAC(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: PMINORFRAC(KIDIA:KFDIA,KLEV) INTEGER(KIND=JPIM),INTENT(IN) :: KINDMINOR(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: PSCALEMINOR(KIDIA:KFDIA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: PCOLBRD(KIDIA:KFDIA,KLEV) ! --------------------------------------------------------------------------- INTEGER(KIND=JPIM) :: IG, IND0, IND1, INDS,INDF,INDM, JS,JS1,JPL,JMN2, JLAY INTEGER(KIND=JPIM) :: JLON REAL(KIND=JPRB) :: ZREFRAT_PLANCK_A, ZREFRAT_M_A REAL(KIND=JPRB) :: ZTAUFOR,ZTAUSELF,ZTAU_MAJOR,ZTAU_MAJOR1, ZN2M1, ZN2M2, ZTAUN2,ZSCALEN2 REAL(KIND=JPRB) :: Z_FAC000, Z_FAC100, Z_FAC200,& & Z_FAC010, Z_FAC110, Z_FAC210, & & Z_FAC001, Z_FAC101, Z_FAC201, & & Z_FAC011, Z_FAC111, Z_FAC211 REAL(KIND=JPRB) :: ZP, ZP4, ZFK0, ZFK1, ZFK2 REAL(KIND=JPRB) :: Z_FS, Z_SPECMULT, Z_SPECPARM,Z_SPECCOMB, & & Z_FS1, Z_SPECMULT1, Z_SPECPARM1,Z_SPECCOMB1, & & Z_FMN2, Z_SPECMULT_MN2, Z_SPECPARM_MN2,Z_SPECCOMB_MN2, & & Z_FPL, Z_SPECMULT_PLANCK, Z_SPECPARM_PLANCK,Z_SPECCOMB_PLANCK REAL(KIND=JPRB) :: ZHOOK_HANDLE ! --------------------------------------------------------------------------- ! Minor gas mapping level : ! Lower - Nitrogen Continuum, P = 1053., T = 294. ! Calculate reference ratio to be used in calculation of Planck ! fraction in lower atmosphere. ! P = 1053. mb (Level 1) Zrefrat_planck_a = chi_mls(4,1)/chi_mls(2,1) ! P = 1053. Zrefrat_m_a = chi_mls(4,1)/chi_mls(2,1) ! Compute the optical depth by interpolating in ln(pressure), ! temperature, and appropriate species. Below laytrop, the water ! vapor self-continuum and foreign continuum is interpolated ! (in temperature) separately. ASSOCIATE(NFLEVG=>KLEV) IF (LHOOK) CALL DR_HOOK('RRTM_TAUMOL15',0,ZHOOK_HANDLE) DO JLAY = 1, KLEV DO JLON = KIDIA, KFDIA IF (JLAY <= K_LAYTROP(JLON)) THEN Z_SPECCOMB = P_COLN2O(JLON,JLAY) + PRAT_N2OCO2(JLON,JLAY)*P_COLCO2(JLON,JLAY) Z_SPECPARM = P_COLN2O(JLON,JLAY)/Z_SPECCOMB Z_SPECPARM = MIN(Z_SPECPARM,P_ONEMINUS) Z_SPECMULT = 8._JPRB*(Z_SPECPARM) JS = 1 + INT(Z_SPECMULT) Z_FS = MOD(Z_SPECMULT,1.0_JPRB) Z_SPECCOMB1 = P_COLN2O(JLON,JLAY) + PRAT_N2OCO2_1(JLON,JLAY)*P_COLCO2(JLON,JLAY) Z_SPECPARM1 = P_COLN2O(JLON,JLAY)/Z_SPECCOMB1 IF (Z_SPECPARM1 >= P_ONEMINUS) Z_SPECPARM1 = P_ONEMINUS Z_SPECMULT1 = 8._JPRB*(Z_SPECPARM1) JS1 = 1 + INT(Z_SPECMULT1) Z_FS1 = MOD(Z_SPECMULT1,1.0_JPRB) Z_SPECCOMB_MN2 = P_COLN2O(JLON,JLAY) + ZREFRAT_M_A*P_COLCO2(JLON,JLAY) Z_SPECPARM_MN2 = P_COLN2O(JLON,JLAY)/Z_SPECCOMB_MN2 IF (Z_SPECPARM_MN2 >= P_ONEMINUS) Z_SPECPARM_MN2 = P_ONEMINUS Z_SPECMULT_MN2 = 8._JPRB*Z_SPECPARM_MN2 JMN2 = 1 + INT(Z_SPECMULT_MN2) Z_FMN2 = MOD(Z_SPECMULT_MN2,1.0_JPRB) Z_SPECCOMB_PLANCK = P_COLN2O(JLON,JLAY)+ZREFRAT_PLANCK_A*P_COLCO2(JLON,JLAY) Z_SPECPARM_PLANCK = P_COLN2O(JLON,JLAY)/Z_SPECCOMB_PLANCK IF (Z_SPECPARM_PLANCK >= P_ONEMINUS) Z_SPECPARM_PLANCK=P_ONEMINUS Z_SPECMULT_PLANCK = 8._JPRB*Z_SPECPARM_PLANCK JPL= 1 + INT(Z_SPECMULT_PLANCK) Z_FPL = MOD(Z_SPECMULT_PLANCK,1.0_JPRB) IND0 = ((K_JP(JLON,JLAY)-1)*5+(K_JT(JLON,JLAY)-1))*NSPA(15) + JS IND1 = (K_JP(JLON,JLAY)*5+(K_JT1(JLON,JLAY)-1))*NSPA(15) + JS1 INDS = K_INDSELF(JLON,JLAY) INDF = K_INDFOR(JLON,JLAY) INDM = KINDMINOR(JLON,JLAY) ZSCALEN2 = PCOLBRD(JLON,JLAY)*PSCALEMINOR(JLON,JLAY) IF (Z_SPECPARM < 0.125_JPRB) THEN ZP = Z_FS - 1 ZP4 = ZP**4 ZFK0 = ZP4 ZFK1 = 1 - ZP - 2.0_JPRB*ZP4 ZFK2 = ZP + ZP4 Z_FAC000 = ZFK0*P_FAC00(JLON,JLAY) Z_FAC100 = ZFK1*P_FAC00(JLON,JLAY) Z_FAC200 = ZFK2*P_FAC00(JLON,JLAY) Z_FAC010 = ZFK0*P_FAC10(JLON,JLAY) Z_FAC110 = ZFK1*P_FAC10(JLON,JLAY) Z_FAC210 = ZFK2*P_FAC10(JLON,JLAY) ELSEIF (Z_SPECPARM > 0.875_JPRB) THEN ZP = -Z_FS ZP4 = ZP**4 ZFK0 = ZP4 ZFK1 = 1 - ZP - 2.0_JPRB*ZP4 ZFK2 = ZP + ZP4 Z_FAC000 = ZFK0*P_FAC00(JLON,JLAY) Z_FAC100 = ZFK1*P_FAC00(JLON,JLAY) Z_FAC200 = ZFK2*P_FAC00(JLON,JLAY) Z_FAC010 = ZFK0*P_FAC10(JLON,JLAY) Z_FAC110 = ZFK1*P_FAC10(JLON,JLAY) Z_FAC210 = ZFK2*P_FAC10(JLON,JLAY) ELSE Z_FAC000 = (1._JPRB - Z_FS) * P_FAC00(JLON,JLAY) Z_FAC010 = (1._JPRB - Z_FS) * P_FAC10(JLON,JLAY) Z_FAC100 = Z_FS * P_FAC00(JLON,JLAY) Z_FAC110 = Z_FS * P_FAC10(JLON,JLAY) ENDIF IF (Z_SPECPARM1 < 0.125_JPRB) THEN ZP = Z_FS1 - 1 ZP4 = ZP**4 ZFK0 = ZP4 ZFK1 = 1 - ZP - 2.0_JPRB*ZP4 ZFK2 = ZP + ZP4 Z_FAC001 = ZFK0*P_FAC01(JLON,JLAY) Z_FAC101 = ZFK1*P_FAC01(JLON,JLAY) Z_FAC201 = ZFK2*P_FAC01(JLON,JLAY) Z_FAC011 = ZFK0*P_FAC11(JLON,JLAY) Z_FAC111 = ZFK1*P_FAC11(JLON,JLAY) Z_FAC211 = ZFK2*P_FAC11(JLON,JLAY) ELSEIF (Z_SPECPARM1 > 0.875_JPRB) THEN ZP = -Z_FS1 ZP4 = ZP**4 ZFK0 = ZP4 ZFK1 = 1 - ZP - 2.0_JPRB*ZP4 ZFK2 = ZP + ZP4 Z_FAC001 = ZFK0*P_FAC01(JLON,JLAY) Z_FAC101 = ZFK1*P_FAC01(JLON,JLAY) Z_FAC201 = ZFK2*P_FAC01(JLON,JLAY) Z_FAC011 = ZFK0*P_FAC11(JLON,JLAY) Z_FAC111 = ZFK1*P_FAC11(JLON,JLAY) Z_FAC211 = ZFK2*P_FAC11(JLON,JLAY) ELSE Z_FAC001 = (1._JPRB - Z_FS1) * P_FAC01(JLON,JLAY) Z_FAC011 = (1._JPRB - Z_FS1) * P_FAC11(JLON,JLAY) Z_FAC101 = Z_FS1 * P_FAC01(JLON,JLAY) Z_FAC111 = Z_FS1 * P_FAC11(JLON,JLAY) ENDIF !-- DS_990714 !-- jjm20110728 re-establishing the loop instead of specified IG to allow a flexible number of NG15 DO IG = 1, NG15 ZTAUSELF = P_SELFFAC(JLON,JLAY)* (SELFREF(INDS,IG) + P_SELFFRAC(JLON,JLAY) * & & (SELFREF(INDS+1,IG) - SELFREF(INDS,IG))) ZTAUFOR = P_FORFAC(JLON,JLAY) * (FORREF(INDF,IG) + P_FORFRAC(JLON,JLAY) * & & (FORREF(INDF+1,IG) - FORREF(INDF,IG))) ZN2M1 = KA_MN2(JMN2,INDM,IG) + Z_FMN2 * & & (KA_MN2(JMN2+1,INDM,IG) - KA_MN2(JMN2,INDM,IG)) ZN2M2 = KA_MN2(JMN2,INDM+1,IG) + Z_FMN2 * & & (KA_MN2(JMN2+1,INDM+1,IG) - KA_MN2(JMN2,INDM+1,IG)) ZTAUN2 = ZSCALEN2 * (ZN2M1 + PMINORFRAC(JLON,JLAY) * (ZN2M2 - ZN2M1)) IF (Z_SPECPARM < 0.125_JPRB) THEN ZTAU_MAJOR = Z_SPECCOMB * & & (Z_FAC000 * ABSA(IND0,IG) + & & Z_FAC100 * ABSA(IND0+1,IG) + & & Z_FAC200 * ABSA(IND0+2,IG) + & & Z_FAC010 * ABSA(IND0+9,IG) + & & Z_FAC110 * ABSA(IND0+10,IG) + & & Z_FAC210 * ABSA(IND0+11,IG)) ELSEIF (Z_SPECPARM > 0.875_JPRB) THEN ZTAU_MAJOR = Z_SPECCOMB * & & (Z_FAC200 * ABSA(IND0-1,IG) + & & Z_FAC100 * ABSA(IND0,IG) + & & Z_FAC000 * ABSA(IND0+1,IG) + & & Z_FAC210 * ABSA(IND0+8,IG) + & & Z_FAC110 * ABSA(IND0+9,IG) + & & Z_FAC010 * ABSA(IND0+10,IG)) ELSE ZTAU_MAJOR = Z_SPECCOMB * & & (Z_FAC000 * ABSA(IND0,IG) + & & Z_FAC100 * ABSA(IND0+1,IG) + & & Z_FAC010 * ABSA(IND0+9,IG) + & & Z_FAC110 * ABSA(IND0+10,IG)) ENDIF IF (Z_SPECPARM1 < 0.125_JPRB) THEN ZTAU_MAJOR1 = Z_SPECCOMB1 * & & (Z_FAC001 * ABSA(IND1,IG) + & & Z_FAC101 * ABSA(IND1+1,IG) + & & Z_FAC201 * ABSA(IND1+2,IG) + & & Z_FAC011 * ABSA(IND1+9,IG) + & & Z_FAC111 * ABSA(IND1+10,IG) + & & Z_FAC211 * ABSA(IND1+11,IG)) ELSEIF (Z_SPECPARM1 > 0.875_JPRB) THEN ZTAU_MAJOR1 = Z_SPECCOMB1 * & & (Z_FAC201 * ABSA(IND1-1,IG) + & & Z_FAC101 * ABSA(IND1,IG) + & & Z_FAC001 * ABSA(IND1+1,IG) + & & Z_FAC211 * ABSA(IND1+8,IG) + & & Z_FAC111 * ABSA(IND1+9,IG) + & & Z_FAC011 * ABSA(IND1+10,IG)) ELSE ZTAU_MAJOR1 = Z_SPECCOMB1 * & & (Z_FAC001 * ABSA(IND1,IG) + & & Z_FAC101 * ABSA(IND1+1,IG) + & & Z_FAC011 * ABSA(IND1+9,IG) + & & Z_FAC111 * ABSA(IND1+10,IG)) ENDIF P_TAU(JLON,NGS14+IG,JLAY) = ZTAU_MAJOR + ZTAU_MAJOR1 & & + ZTAUSELF + ZTAUFOR + ZTAUN2 & & + P_TAUAERL(JLON,JLAY,15) PFRAC(JLON,NGS14+IG,JLAY) = FRACREFA(IG,JPL) + Z_FPL * & & (FRACREFA(IG,JPL+1) - FRACREFA(IG,JPL)) ENDDO !-- jjm20110728 !-- DS_990714 ENDIF IF (JLAY > K_LAYTROP(JLON)) THEN DO IG = 1, NG15 !-- jjm20110728 re-establishing the loop instead of specified IG to allow a flexible number of NG15 !-- DS_990714 P_TAU(JLON,NGS14+IG,JLAY) = P_TAUAERL(JLON,JLAY,15) PFRAC(JLON,NGS14+IG,JLAY) = 0.0_JPRB ENDDO !-- jjm20110728 !-- DS_990714 ENDIF ENDDO ENDDO IF (LHOOK) CALL DR_HOOK('RRTM_TAUMOL15',1,ZHOOK_HANDLE) END ASSOCIATE END SUBROUTINE RRTM_TAUMOL15