! radiation_ifs_rrtm.F90 - Interface to IFS implementation of RRTM-G ! ! (C) Copyright 2015- ECMWF. ! ! This software is licensed under the terms of the Apache Licence Version 2.0 ! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. ! ! In applying this licence, ECMWF does not waive the privileges and immunities ! granted to it by virtue of its status as an intergovernmental organisation ! nor does it submit to any jurisdiction. ! ! Author: Robin Hogan ! Email: r.j.hogan@ecmwf.int ! ! Modifications ! 2017-04-11 R. Hogan Receive "surface" dummy argument ! 2017-09-08 R. Hogan Reverted some changes ! 2017-10-18 R. Hogan Added planck_function public function ! 2018-01-11 R. Hogan Added optional spectral scaling of incoming solar radiation ! 2018-02-22 R. Hogan Optimized reverse indexing of heights ! 2018-05-05 R. Hogan gas_optics can be called for reduced number of levels ! 2019-01-02 R. Hogan Initialize shortwave props to zero in case sun below horizon module radiation_ifs_rrtm implicit none public :: setup_gas_optics, gas_optics, planck_function, set_gas_units contains !--------------------------------------------------------------------- ! Setup the IFS implementation of RRTM-G gas absorption model subroutine setup_gas_optics(config, directory) use yoerrtm, only : jpglw use yoesrtm, only : jpgsw use yoerrtftr, only : ngb_lw => ngb use yoesrtm, only : ngb_sw => ngbsw use yomhook, only : lhook, dr_hook use radiation_config type(config_type), intent(inout), target :: config character(len=*), intent(in) :: directory integer :: irep ! For implied do integer, parameter :: RRTM_GPOINT_REORDERING_LW(140) = (/ & & 89, 90, 139, 77, 137, 69, 131, 97, 91, 70, 78, 71, 53, 72, 123, 54, 79, 98, & & 92, 55, 80, 132, 124, 81, 73, 56, 99, 82, 57, 23, 125, 100, 24, 74, 93, 58, 25, & & 83, 126, 75, 26, 11, 101, 133, 59, 27, 76, 140, 12, 84, 102, 94, 28, 127, 85, & & 13, 39, 60, 86, 103, 87, 109, 14, 29, 115, 40, 95, 15, 61, 88, 41, 110, 104, 1, & & 116, 42, 30, 134, 128, 138, 96, 62, 16, 43, 117, 63, 111, 44, 2, 64, 31, 65, & & 105, 17, 45, 66, 118, 32, 3, 33, 67, 18, 129, 135, 46, 112, 34, 106, 68, 35, 4, & & 119, 36, 47, 107, 19, 37, 38, 113, 48, 130, 5, 120, 49, 108, 20, 50, 51, 114, & & 21, 121, 52, 136, 122, 6, 22, 7, 8, 9, 10 & & /) integer, parameter :: RRTM_GPOINT_REORDERING_SW(112) = (/ & & 35, 45, 19, 27, 36, 57, 20, 46, 58, 21, 28, 67, 55, 68, 37, 1, 69, 22, 29, 59, & & 78, 101, 79, 77, 70, 76, 47, 75, 30, 81, 60, 102, 80, 82, 23, 2, 83, 84, 85, & & 86, 103, 61, 31, 87, 56, 38, 71, 48, 88, 3, 62, 89, 24, 7, 49, 32, 104, 72, 90, & & 63, 39, 4, 8, 50, 91, 64, 40, 33, 25, 51, 95, 96, 73, 65, 9, 41, 97, 92, 105, & & 52, 5, 98, 10, 42, 99, 100, 66, 11, 74, 34, 53, 26, 6, 106, 12, 43, 13, 54, 93, & & 44, 107, 94, 14, 108, 15, 16, 109, 17, 18, 110, 111, 112 & & /) real(jprb) :: hook_handle #include "surdi.intfb.h" #include "surrtab.intfb.h" #include "surrtpk.intfb.h" #include "surrtrf.intfb.h" #include "rrtm_init_140gp.intfb.h" #include "srtm_init.intfb.h" if (lhook) call dr_hook('radiation_ifs_rrtm:setup_gas_optics',0,hook_handle) ! The IFS implementation of RRTMG uses many global variables. In ! the IFS these will have been set up already; otherwise set them ! up now. if (config%do_setup_ifsrrtm) then call SURDI call SURRTAB call SURRTPK call SURRTRF call RRTM_INIT_140GP(directory) call SRTM_INIT(directory) end if config%n_g_sw = jpgsw config%n_g_lw = jpglw config%n_bands_sw = 14 config%n_bands_lw = 16 ! Wavenumber ranges of each band may be needed so that the user ! can compute UV and photosynthetically active radiation for a ! particular wavelength range allocate(config%wavenumber1_sw(config%n_bands_sw)) allocate(config%wavenumber2_sw(config%n_bands_sw)) allocate(config%wavenumber1_lw(config%n_bands_lw)) allocate(config%wavenumber2_lw(config%n_bands_lw)) config%wavenumber1_lw = (/ 10, 350, 500, 630, 700, 820, 980, 1080, 1180, 1390, 1480, & & 1800, 2080, 2250, 2380, 2600 /) config%wavenumber2_lw = (/ 350, 500, 630, 700, 820, 980, 1080, 1180, 1390, 1480, 1800, & & 2080, 2250, 2380, 2600, 3250 /) config%wavenumber1_sw = (/ 2600, 3250, 4000, 4650, 5150, 6150, 7700, 8050, 12850, & & 16000 , 22650, 29000, 38000, 820 /) config%wavenumber2_sw = (/ 3250, 4000, 4650, 5150, 6150, 7700, 8050, 12850, 16000, & & 22650, 29000, 38000, 50000, 2600 /) allocate(config%i_band_from_g_sw (config%n_g_sw)) allocate(config%i_band_from_g_lw (config%n_g_lw)) allocate(config%i_band_from_reordered_g_sw(config%n_g_sw)) allocate(config%i_band_from_reordered_g_lw(config%n_g_lw)) allocate(config%i_g_from_reordered_g_sw(config%n_g_sw)) allocate(config%i_g_from_reordered_g_lw(config%n_g_lw)) ! Shortwave starts at 16: need to start at 1 config%i_band_from_g_sw = ngb_sw - ngb_sw(1)+1 config%i_band_from_g_lw = ngb_lw if (config%i_solver_sw == ISolverSpartacus) then ! SPARTACUS requires g points ordered in approximately ! increasing order of optical depth config%i_g_from_reordered_g_sw = RRTM_GPOINT_REORDERING_SW else ! Implied-do for no reordering ! config%i_g_from_reordered_g_sw = RRTM_GPOINT_REORDERING_SW config%i_g_from_reordered_g_sw = (/ (irep, irep=1,config%n_g_sw) /) end if if (config%i_solver_lw == ISolverSpartacus) then ! SPARTACUS requires g points ordered in approximately ! increasing order of optical depth config%i_g_from_reordered_g_lw = RRTM_GPOINT_REORDERING_LW else ! Implied-do for no reordering config%i_g_from_reordered_g_lw = (/ (irep, irep=1,config%n_g_lw) /) end if config%i_band_from_reordered_g_sw & = config%i_band_from_g_sw(config%i_g_from_reordered_g_sw) config%i_band_from_reordered_g_lw & = config%i_band_from_g_lw(config%i_g_from_reordered_g_lw) ! The i_spec_* variables are used solely for storing spectral ! data, and this can either be by band or by g-point if (config%do_save_spectral_flux) then if (config%do_save_gpoint_flux) then config%n_spec_sw = config%n_g_sw config%n_spec_lw = config%n_g_lw config%i_spec_from_reordered_g_sw => config%i_g_from_reordered_g_sw config%i_spec_from_reordered_g_lw => config%i_g_from_reordered_g_lw else config%n_spec_sw = config%n_bands_sw config%n_spec_lw = config%n_bands_lw config%i_spec_from_reordered_g_sw => config%i_band_from_reordered_g_sw config%i_spec_from_reordered_g_lw => config%i_band_from_reordered_g_lw end if else config%n_spec_sw = 0 config%n_spec_lw = 0 nullify(config%i_spec_from_reordered_g_sw) nullify(config%i_spec_from_reordered_g_lw) end if if (lhook) call dr_hook('radiation_ifs_rrtm:setup_gas_optics',1,hook_handle) end subroutine setup_gas_optics !--------------------------------------------------------------------- ! Scale gas mixing ratios according to required units subroutine set_gas_units(gas) use radiation_gas, only : gas_type, IMassMixingRatio type(gas_type), intent(inout) :: gas call gas%set_units(IMassMixingRatio) end subroutine set_gas_units !--------------------------------------------------------------------- ! Compute gas optical depths, shortwave scattering, Planck function ! and incoming shortwave radiation at top-of-atmosphere subroutine gas_optics(ncol,nlev,istartcol,iendcol, & & config, single_level, thermodynamics, gas, & & od_lw, od_sw, ssa_sw, lw_albedo, planck_hl, lw_emission, & & incoming_sw) use parkind1, only : jprb, jpim USE PARRRTM , ONLY : JPBAND, JPXSEC, JPINPX USE YOERRTM , ONLY : JPGPT_LW => JPGPT USE YOESRTM , ONLY : JPGPT_SW => JPGPT !USE YOMDIMV , ONLY : YRDIMV use yomhook , only : lhook, dr_hook use radiation_config, only : config_type, ISolverSpartacus use radiation_thermodynamics, only : thermodynamics_type use radiation_single_level, only : single_level_type use radiation_gas integer, intent(in) :: ncol ! number of columns integer, intent(in) :: nlev ! number of model levels integer, intent(in) :: istartcol, iendcol ! range of columns to process type(config_type), intent(in) :: config type(single_level_type), intent(in) :: single_level type(thermodynamics_type),intent(in) :: thermodynamics type(gas_type), intent(in) :: gas ! Longwave albedo of the surface real(jprb), dimension(config%n_g_lw,istartcol:iendcol), & & intent(in), optional :: lw_albedo ! Gaseous layer optical depth in longwave and shortwave, and ! shortwave single scattering albedo (i.e. fraction of extinction ! due to Rayleigh scattering) at each g-point real(jprb), dimension(config%n_g_lw,nlev,istartcol:iendcol), intent(out) :: & & od_lw real(jprb), dimension(config%n_g_sw,nlev,istartcol:iendcol), intent(out) :: & & od_sw, ssa_sw ! The Planck function (emitted flux from a black body) at half ! levels at each longwave g-point real(jprb), dimension(config%n_g_lw,nlev+1,istartcol:iendcol), & & intent(out), optional :: planck_hl ! Planck function for the surface (W m-2) real(jprb), dimension(config%n_g_lw,istartcol:iendcol), & & intent(out), optional :: lw_emission ! The incoming shortwave flux into a plane perpendicular to the ! incoming radiation at top-of-atmosphere in each of the shortwave ! g-points real(jprb), dimension(config%n_g_sw,istartcol:iendcol), & & intent(out), optional :: incoming_sw real(jprb) :: incoming_sw_scale(istartcol:iendcol) ! The variables in capitals are used in the same way as the ! equivalent routine in the IFS real(jprb) :: ZOD_LW(JPGPT_LW,nlev,istartcol:iendcol) ! Note ordering of dimensions real(jprb) :: ZOD_SW(istartcol:iendcol,nlev,JPGPT_SW) real(jprb) :: ZSSA_SW(istartcol:iendcol,nlev,JPGPT_SW) real(jprb) :: ZINCSOL(istartcol:iendcol,JPGPT_SW) real(jprb) :: ZCOLMOL(istartcol:iendcol,nlev) real(jprb) :: ZCOLDRY(istartcol:iendcol,nlev) real(jprb) :: ZWBRODL(istartcol:iendcol,nlev) !BROADENING GASES,column density (mol/cm2) real(jprb) :: ZCOLBRD(istartcol:iendcol,nlev) !BROADENING GASES, column amount real(jprb) :: ZWKL(istartcol:iendcol,JPINPX,nlev) real(jprb) :: ZWX(istartcol:iendcol,JPXSEC,nlev) ! Amount of trace gases real(jprb) :: ZFLUXFAC, ZPI ! - from AER real(jprb) :: ZTAUAERL(istartcol:iendcol,nlev,JPBAND) !- from INTFAC real(jprb) :: ZFAC00(istartcol:iendcol,nlev) real(jprb) :: ZFAC01(istartcol:iendcol,nlev) real(jprb) :: ZFAC10(istartcol:iendcol,nlev) real(jprb) :: ZFAC11(istartcol:iendcol,nlev) !- from FOR real(jprb) :: ZFORFAC(istartcol:iendcol,nlev) real(jprb) :: ZFORFRAC(istartcol:iendcol,nlev) integer :: INDFOR(istartcol:iendcol,nlev) !- from MINOR integer :: INDMINOR(istartcol:iendcol,nlev) real(jprb) :: ZSCALEMINOR(istartcol:iendcol,nlev) real(jprb) :: ZSCALEMINORN2(istartcol:iendcol,nlev) real(jprb) :: ZMINORFRAC(istartcol:iendcol,nlev) real(jprb) :: & & ZRAT_H2OCO2(istartcol:iendcol,nlev),ZRAT_H2OCO2_1(istartcol:iendcol,nlev), & & ZRAT_H2OO3(istartcol:iendcol,nlev) ,ZRAT_H2OO3_1(istartcol:iendcol,nlev), & & ZRAT_H2ON2O(istartcol:iendcol,nlev),ZRAT_H2ON2O_1(istartcol:iendcol,nlev), & & ZRAT_H2OCH4(istartcol:iendcol,nlev),ZRAT_H2OCH4_1(istartcol:iendcol,nlev), & & ZRAT_N2OCO2(istartcol:iendcol,nlev),ZRAT_N2OCO2_1(istartcol:iendcol,nlev), & & ZRAT_O3CO2(istartcol:iendcol,nlev) ,ZRAT_O3CO2_1(istartcol:iendcol,nlev) !- from INTIND integer :: JP(istartcol:iendcol,nlev) integer :: JT(istartcol:iendcol,nlev) integer :: JT1(istartcol:iendcol,nlev) !- from PRECISE real(jprb) :: ZONEMINUS, ZONEMINUS_ARRAY(istartcol:iendcol) !- from PROFDATA real(jprb) :: ZCOLH2O(istartcol:iendcol,nlev) real(jprb) :: ZCOLCO2(istartcol:iendcol,nlev) real(jprb) :: ZCOLO3(istartcol:iendcol,nlev) real(jprb) :: ZCOLN2O(istartcol:iendcol,nlev) real(jprb) :: ZCOLCH4(istartcol:iendcol,nlev) real(jprb) :: ZCOLO2(istartcol:iendcol,nlev) real(jprb) :: ZCO2MULT(istartcol:iendcol,nlev) integer :: ILAYTROP(istartcol:iendcol) integer :: ILAYSWTCH(istartcol:iendcol) integer :: ILAYLOW(istartcol:iendcol) !- from PROFILE real(jprb) :: ZPAVEL(istartcol:iendcol,nlev) real(jprb) :: ZTAVEL(istartcol:iendcol,nlev) real(jprb) :: ZPZ(istartcol:iendcol,0:nlev) real(jprb) :: ZTZ(istartcol:iendcol,0:nlev) !- from SELF real(jprb) :: ZSELFFAC(istartcol:iendcol,nlev) real(jprb) :: ZSELFFRAC(istartcol:iendcol,nlev) integer :: INDSELF(istartcol:iendcol,nlev) !- from SP real(jprb) :: ZPFRAC(istartcol:iendcol,JPGPT_LW,nlev) !- from SURFACE integer :: IREFLECT(istartcol:iendcol) real(jprb) :: pressure_fl(ncol, nlev), temperature_fl(ncol, nlev) ! If nlev is less than the number of heights at which gas mixing ! ratios are stored, then we assume that the lower part of the ! atmosphere is required. This enables nlev=1 to be passed in to ! the routine, in which case the gas properties of the lowest ! layer are provided, useful for canopy radiative transfer. integer :: istartlev, iendlev integer :: jlev, jgreorder, jg, ig, iband, jcol real(jprb) :: hook_handle #include "rrtm_prepare_gases.intfb.h" #include "rrtm_setcoef_140gp.intfb.h" #include "rrtm_gas_optical_depth.intfb.h" #include "srtm_setcoef.intfb.h" #include "srtm_gas_optical_depth.intfb.h" if (lhook) call dr_hook('radiation_ifs_rrtm:gas_optics',0,hook_handle) ! Compute start and end levels for indexing the gas mixing ratio ! and thermodynamics arrays iendlev = ubound(gas%mixing_ratio,2) istartlev = iendlev - nlev + 1 ZPI = 2.0_jprb*ASIN(1.0_jprb) ZFLUXFAC = ZPI * 1.E+4 ZONEMINUS = 1.0_jprb - 1.0e-6_jprb ZONEMINUS_ARRAY = ZONEMINUS ! if (.not. associated(YRDIMV)) then ! allocate(YRDIMV) ! YRDIMV%NFLEVG = nlev ! end if pressure_fl(istartcol:iendcol,:) & & = 0.5_jprb * (thermodynamics%pressure_hl(istartcol:iendcol,istartlev:iendlev) & & +thermodynamics%pressure_hl(istartcol:iendcol,istartlev+1:iendlev+1)) temperature_fl(istartcol:iendcol,:) & & = 0.5_jprb * (thermodynamics%temperature_hl(istartcol:iendcol,istartlev:iendlev) & & +thermodynamics%temperature_hl(istartcol:iendcol,istartlev+1:iendlev+1)) ! Check we have gas mixing ratios in the right units call gas%assert_units(IMassMixingRatio) ! Warning: O2 is hard-coded within the following function so the ! user-provided concentrations of this gas are ignored for both ! the longwave and shortwave CALL RRTM_PREPARE_GASES & & ( istartcol, iendcol, ncol, nlev, & & thermodynamics%pressure_hl(:,istartlev:iendlev+1), & & pressure_fl, & & thermodynamics%temperature_hl(:,istartlev:iendlev+1), & & temperature_fl, & & gas%mixing_ratio(:,istartlev:iendlev,IH2O), & & gas%mixing_ratio(:,istartlev:iendlev,ICO2), & & gas%mixing_ratio(:,istartlev:iendlev,ICH4), & & gas%mixing_ratio(:,istartlev:iendlev,IN2O), & & gas%mixing_ratio(:,istartlev:iendlev,INO2), & & gas%mixing_ratio(:,istartlev:iendlev,ICFC11), & & gas%mixing_ratio(:,istartlev:iendlev,ICFC12), & & gas%mixing_ratio(:,istartlev:iendlev,IHCFC22), & & gas%mixing_ratio(:,istartlev:iendlev,ICCl4), & & gas%mixing_ratio(:,istartlev:iendlev,IO3), & & ZCOLDRY, ZWBRODL,ZWKL, ZWX, & & ZPAVEL , ZTAVEL , ZPZ , ZTZ, IREFLECT) CALL RRTM_SETCOEF_140GP & &( istartcol, iendcol, nlev , ZCOLDRY , ZWBRODL , ZWKL , & & ZFAC00 , ZFAC01 , ZFAC10 , ZFAC11 , ZFORFAC,ZFORFRAC,INDFOR, JP, JT, JT1 , & & ZCOLH2O, ZCOLCO2 , ZCOLO3 , ZCOLN2O, ZCOLCH4, ZCOLO2,ZCO2MULT , ZCOLBRD, & & ILAYTROP,ILAYSWTCH, ILAYLOW, ZPAVEL , ZTAVEL , ZSELFFAC, ZSELFFRAC, INDSELF, & & INDMINOR,ZSCALEMINOR,ZSCALEMINORN2,ZMINORFRAC,& & ZRAT_H2OCO2, ZRAT_H2OCO2_1, ZRAT_H2OO3, ZRAT_H2OO3_1, & & ZRAT_H2ON2O, ZRAT_H2ON2O_1, ZRAT_H2OCH4, ZRAT_H2OCH4_1, & & ZRAT_N2OCO2, ZRAT_N2OCO2_1, ZRAT_O3CO2, ZRAT_O3CO2_1) ZTAUAERL = 0.0_jprb CALL RRTM_GAS_OPTICAL_DEPTH & &( istartcol, iendcol, nlev, ZOD_LW, ZPAVEL, ZCOLDRY, ZCOLBRD, ZWX ,& & ZTAUAERL, ZFAC00 , ZFAC01, ZFAC10 , ZFAC11 , ZFORFAC,ZFORFRAC,INDFOR, & & JP, JT, JT1, ZONEMINUS ,& & ZCOLH2O , ZCOLCO2, ZCOLO3, ZCOLN2O, ZCOLCH4, ZCOLO2,ZCO2MULT ,& & ILAYTROP, ILAYSWTCH,ILAYLOW, ZSELFFAC, ZSELFFRAC, INDSELF, ZPFRAC, & & INDMINOR,ZSCALEMINOR,ZSCALEMINORN2,ZMINORFRAC,& & ZRAT_H2OCO2, ZRAT_H2OCO2_1, ZRAT_H2OO3, ZRAT_H2OO3_1, & & ZRAT_H2ON2O, ZRAT_H2ON2O_1, ZRAT_H2OCH4, ZRAT_H2OCH4_1, & & ZRAT_N2OCO2, ZRAT_N2OCO2_1, ZRAT_O3CO2, ZRAT_O3CO2_1) if (present(lw_albedo)) then call planck_function_atmos(nlev, istartcol, iendcol, config, & & thermodynamics, ZPFRAC, planck_hl) if (single_level%is_simple_surface) then call planck_function_surf(istartcol, iendcol, config, & & single_level%skin_temperature, ZPFRAC(:,:,1), & & lw_emission) ! The following can be used to extract the parameters defined at ! the top of the planck_function routine below: !write(*,'(a,140(e12.5,","),a)') 'ZPFRAC_surf=[', & !& sum(ZPFRAC(istartcol:iendcol,:,1),1) / (iendcol+1-istartcol), ']' ! lw_emission at this point is actually the planck function of ! the surface lw_emission = lw_emission * (1.0_jprb - lw_albedo) else ! Longwave emission has already been computed if (config%use_canopy_full_spectrum_lw) then lw_emission = transpose(single_level%lw_emission(istartcol:iendcol,:)) else lw_emission = transpose(single_level%lw_emission(istartcol:iendcol, & & config%i_emiss_from_band_lw(config%i_band_from_reordered_g_lw))) end if end if end if if (config%i_solver_lw == ISolverSpartacus) then ! if (.true.) then ! We need to rearrange the gas optics info in memory: reordering ! the g points in order of approximately increasing optical ! depth (for efficient 3D processing on only the regions of the ! spectrum that are optically thin for gases) and reorder in ! pressure since the the functions above treat pressure ! decreasing with increasing index. Note that the output gas ! arrays have dimensions in a different order to the inputs, ! so there is some inefficiency here. do jgreorder = 1,config%n_g_lw iband = config%i_band_from_reordered_g_lw(jgreorder) ig = config%i_g_from_reordered_g_lw(jgreorder) ! Top-of-atmosphere half level do jlev = 1,nlev do jcol = istartcol,iendcol ! Some g points can return negative optical depths; ! specifically original g points 54-56 which causes ! unphysical single-scattering albedo when combined with ! aerosol od_lw(jgreorder,jlev,jcol) & & = max(config%min_gas_od_lw, ZOD_LW(ig,nlev+1-jlev,jcol)) end do end do end do else ! G points have not been reordered do jcol = istartcol,iendcol do jlev = 1,nlev ! Check for negative optical depth od_lw(:,jlev,jcol) = max(config%min_gas_od_lw, ZOD_LW(:,nlev+1-jlev,jcol)) end do end do end if CALL SRTM_SETCOEF & & ( istartcol, iendcol, nlev,& & ZPAVEL , ZTAVEL,& & ZCOLDRY , ZWKL,& & ILAYTROP,& & ZCOLCH4 , ZCOLCO2 , ZCOLH2O , ZCOLMOL , ZCOLO2 , ZCOLO3,& & ZFORFAC , ZFORFRAC , INDFOR , ZSELFFAC, ZSELFFRAC, INDSELF, & & ZFAC00 , ZFAC01 , ZFAC10 , ZFAC11,& & JP , JT , JT1 , single_level%cos_sza(istartcol:iendcol) & & ) ! SRTM_GAS_OPTICAL_DEPTH will not initialize profiles when the sun ! is below the horizon, so we do it here ZOD_SW(istartcol:iendcol,:,:) = 0.0_jprb ZSSA_SW(istartcol:iendcol,:,:) = 0.0_jprb ZINCSOL(istartcol:iendcol,:) = 0.0_jprb CALL SRTM_GAS_OPTICAL_DEPTH & &( istartcol, iendcol , nlev , ZONEMINUS_ARRAY,& & single_level%cos_sza(istartcol:iendcol), ILAYTROP,& & ZCOLCH4 , ZCOLCO2 , ZCOLH2O, ZCOLMOL , ZCOLO2 , ZCOLO3,& & ZFORFAC , ZFORFRAC , INDFOR , ZSELFFAC, ZSELFFRAC, INDSELF,& & ZFAC00 , ZFAC01 , ZFAC10 , ZFAC11 ,& & JP , JT , JT1 ,& & ZOD_SW , ZSSA_SW , ZINCSOL ) ! Scale the incoming solar per band, if requested if (config%use_spectral_solar_scaling) then ZINCSOL(istartcol:iendcol,:) = ZINCSOL(istartcol:iendcol,:) & & * spread(single_level%spectral_solar_scaling(config%i_band_from_reordered_g_sw), & & 1,iendcol-istartcol+1) end if ! Scaling factor to ensure that the total solar irradiance is as ! requested. Note that if the sun is below the horizon then ! ZINCSOL will be zero. if (present(incoming_sw)) then incoming_sw_scale = 1.0_jprb do jcol = istartcol,iendcol if (single_level%cos_sza(jcol) > 0.0_jprb) then incoming_sw_scale(jcol) = single_level%solar_irradiance / sum(ZINCSOL(jcol,:)) end if end do end if if (config%i_solver_sw == ISolverSpartacus) then ! if (.true.) then ! Account for reordered g points do jgreorder = 1,config%n_g_sw ig = config%i_g_from_reordered_g_sw(jgreorder) do jlev = 1,nlev do jcol = istartcol,iendcol ! Check for negative optical depth od_sw (jgreorder,nlev+1-jlev,jcol) & & = max(config%min_gas_od_sw, ZOD_SW (jcol,jlev,ig)) ssa_sw(jgreorder,nlev+1-jlev,jcol) = ZSSA_SW(jcol,jlev,ig) end do end do if (present(incoming_sw)) then incoming_sw(jgreorder,:) & & = incoming_sw_scale(:) * ZINCSOL(:,ig) end if end do else ! G points have not been reordered do jg = 1,config%n_g_sw do jlev = 1,nlev do jcol = istartcol,iendcol ! Check for negative optical depth od_sw (jg,nlev+1-jlev,jcol) = max(config%min_gas_od_sw, ZOD_SW(jcol,jlev,jg)) ssa_sw(jg,nlev+1-jlev,jcol) = ZSSA_SW(jcol,jlev,jg) end do end do if (present(incoming_sw)) then incoming_sw(jg,:) & & = incoming_sw_scale(:) * ZINCSOL(:,jg) end if end do end if if (lhook) call dr_hook('radiation_ifs_rrtm:gas_optics',1,hook_handle) end subroutine gas_optics !--------------------------------------------------------------------- ! Compute Planck function of the atmosphere subroutine planck_function_atmos(nlev,istartcol,iendcol, & config, thermodynamics, PFRAC, & planck_hl) use parkind1, only : jprb, jpim USE YOERRTM , ONLY : JPGPT_LW => JPGPT use yoerrtwn, only : totplnk, delwave use yomhook, only : lhook, dr_hook use radiation_config, only : config_type, ISolverSpartacus use radiation_thermodynamics, only : thermodynamics_type !use radiation_gas integer, intent(in) :: nlev ! number of model levels integer, intent(in) :: istartcol, iendcol ! range of columns to process type(config_type), intent(in) :: config type(thermodynamics_type),intent(in) :: thermodynamics real(jprb), intent(in) :: PFRAC(istartcol:iendcol,JPGPT_LW,nlev) ! The Planck function (emitted flux from a black body) at half ! levels at each longwave g-point real(jprb), dimension(config%n_g_lw,nlev+1,istartcol:iendcol), intent(out) :: & & planck_hl ! Planck function values per band real(jprb), dimension(istartcol:iendcol, config%n_bands_lw) :: planck_store ! Look-up table variables for Planck function real(jprb), dimension(istartcol:iendcol) :: frac integer, dimension(istartcol:iendcol) :: ind ! Temperature (K) of a half-level real(jprb) :: temperature real(jprb) :: factor real(jprb) :: ZFLUXFAC integer :: jlev, jgreorder, jg, ig, iband, jband, jcol, ilevoffset real(jprb) :: hook_handle if (lhook) call dr_hook('radiation_ifs_rrtm:planck_function_atmos',0,hook_handle) ZFLUXFAC = 2.0_jprb*ASIN(1.0_jprb) * 1.0e4_jprb ! nlev may be less than the number of original levels, in which ! case we assume that the user wants the lower part of the ! atmosphere ilevoffset = ubound(thermodynamics%temperature_hl,2)-nlev-1 ! Work out interpolations: for each half level, the index of the ! lowest interpolation bound, and the fraction into interpolation ! interval do jlev = 1,nlev+1 do jcol = istartcol,iendcol temperature = thermodynamics%temperature_hl(jcol,jlev+ilevoffset) if (temperature < 339.0_jprb .and. temperature >= 160.0_jprb) then ! Linear interpolation between -113 and 66 degC ind(jcol) = int(temperature - 159.0_jprb) frac(jcol) = temperature - int(temperature) else if(temperature >= 339.0_jprb) then ! Extrapolation above 66 degC ind(jcol) = 180 frac(jcol) = temperature - 339.0_jprb else ! Cap below -113 degC (to avoid possible negative Planck ! function values) ind(jcol) = 1 frac(jcol) = 0.0_jprb end if end do ! Calculate Planck functions per band do jband = 1,config%n_bands_lw factor = zfluxfac * delwave(jband) do jcol = istartcol,iendcol planck_store(jcol,jband) = factor & & * (totplnk(ind(jcol),jband) & & + frac(jcol)*(totplnk(ind(jcol)+1,jband)-totplnk(ind(jcol),jband))) end do end do if (config%i_solver_lw == ISolverSpartacus) then ! We need to rearrange the gas optics info in memory: ! reordering the g points in order of approximately increasing ! optical depth (for efficient 3D processing on only the ! regions of the spectrum that are optically thin for gases) ! and reorder in pressure since the the functions above treat ! pressure decreasing with increasing index. if (jlev == 1) then ! Top-of-atmosphere half level - note that PFRAC is on model ! levels not half levels do jgreorder = 1,config%n_g_lw iband = config%i_band_from_reordered_g_lw(jgreorder) ig = config%i_g_from_reordered_g_lw(jgreorder) planck_hl(jgreorder,1,:) = planck_store(:,iband) & & * PFRAC(:,ig,nlev) end do else do jgreorder = 1,config%n_g_lw iband = config%i_band_from_reordered_g_lw(jgreorder) ig = config%i_g_from_reordered_g_lw(jgreorder) planck_hl(jgreorder,jlev,:) & & = planck_store(:,iband) & & * PFRAC(:,ig,nlev+2-jlev) end do end if else ! G points have not been reordered if (jlev == 1) then ! Top-of-atmosphere half level - note that PFRAC is on model ! levels not half levels do jg = 1,config%n_g_lw iband = config%i_band_from_g_lw(jg) planck_hl(jg,1,:) = planck_store(:,iband) * PFRAC(:,jg,nlev) end do else do jg = 1,config%n_g_lw iband = config%i_band_from_g_lw(jg) planck_hl(jg,jlev,:) = planck_store(:,iband) * PFRAC(:,jg,nlev+2-jlev) end do end if end if end do if (lhook) call dr_hook('radiation_ifs_rrtm:planck_function_atmos',1,hook_handle) end subroutine planck_function_atmos !--------------------------------------------------------------------- ! Compute Planck function of the surface subroutine planck_function_surf(istartcol, iendcol, config, temperature, PFRAC, & & planck_surf) use parkind1, only : jprb, jpim USE YOERRTM , ONLY : JPGPT_LW => JPGPT use yoerrtwn, only : totplnk, delwave use yomhook, only : lhook, dr_hook use radiation_config, only : config_type, ISolverSpartacus ! use radiation_gas integer, intent(in) :: istartcol, iendcol ! range of columns to process type(config_type), intent(in) :: config real(jprb), intent(in) :: temperature(:) real(jprb), intent(in) :: PFRAC(istartcol:iendcol,JPGPT_LW) ! Planck function of the surface (W m-2) real(jprb), dimension(config%n_g_lw,istartcol:iendcol), & & intent(out) :: planck_surf ! Planck function values per band real(jprb), dimension(istartcol:iendcol, config%n_bands_lw) :: planck_store ! Look-up table variables for Planck function real(jprb), dimension(istartcol:iendcol) :: frac integer, dimension(istartcol:iendcol) :: ind ! Temperature (K) real(jprb) :: Tsurf real(jprb) :: factor real(jprb) :: ZFLUXFAC integer :: jgreorder, jg, ig, iband, jband, jcol real(jprb) :: hook_handle if (lhook) call dr_hook('radiation_ifs_rrtm:planck_function_surf',0,hook_handle) ZFLUXFAC = 2.0_jprb*ASIN(1.0_jprb) * 1.0e4_jprb ! Work out surface interpolations do jcol = istartcol,iendcol Tsurf = temperature(jcol) if (Tsurf < 339.0_jprb .and. Tsurf >= 160.0_jprb) then ! Linear interpolation between -113 and 66 degC ind(jcol) = int(Tsurf - 159.0_jprb) frac(jcol) = Tsurf - int(Tsurf) else if(Tsurf >= 339.0_jprb) then ! Extrapolation above 66 degC ind(jcol) = 180 frac(jcol) = Tsurf - 339.0_jprb else ! Cap below -113 degC (to avoid possible negative Planck ! function values) ind(jcol) = 1 frac(jcol) = 0.0_jprb end if end do ! Calculate Planck functions per band do jband = 1,config%n_bands_lw factor = zfluxfac * delwave(jband) do jcol = istartcol,iendcol planck_store(jcol,jband) = factor & & * (totplnk(ind(jcol),jband) & & + frac(jcol)*(totplnk(ind(jcol)+1,jband)-totplnk(ind(jcol),jband))) end do end do if (config%i_solver_lw == ISolverSpartacus) then ! We need to rearrange the gas optics info in memory: reordering ! the g points in order of approximately increasing optical ! depth (for efficient 3D processing on only the regions of ! the spectrum that are optically thin for gases) and reorder ! in pressure since the the functions above treat pressure ! decreasing with increasing index. do jgreorder = 1,config%n_g_lw iband = config%i_band_from_reordered_g_lw(jgreorder) ig = config%i_g_from_reordered_g_lw(jgreorder) planck_surf(jgreorder,:) = planck_store(:,iband) * PFRAC(:,ig) end do else ! G points have not been reordered do jg = 1,config%n_g_lw iband = config%i_band_from_g_lw(jg) planck_surf(jg,:) = planck_store(:,iband) * PFRAC(:,jg) end do end if if (lhook) call dr_hook('radiation_ifs_rrtm:planck_function_surf',1,hook_handle) end subroutine planck_function_surf !--------------------------------------------------------------------- ! Externally facing function for computing the Planck function ! without reference to any gas profile; typically this would be used ! for computing the emission by facets of a complex surface. Note ! that this uses fixed "PFRAC" values, obtained by averaging over ! those derived from RRTM-G for near-surface conditions over a line ! of meridian from the ECMWF model. subroutine planck_function(config, temperature, planck_surf) use parkind1, only : jprb, jpim use radiation_config, only : config_type type(config_type), intent(in) :: config real(jprb), intent(in) :: temperature ! Planck function of the surface (W m-2) real(jprb), dimension(config%n_g_lw), & & intent(out) :: planck_surf ! Fraction of each band contributed by each g-point within ! it. Since there are 16 bands, this array sums to 16 real(jprb), parameter, dimension(1,140) :: frac & = reshape( (/ 0.21227E+00, 0.18897E+00, 0.25491E+00, 0.17864E+00, 0.11735E+00, 0.38298E-01, 0.57871E-02, & & 0.31753E-02, 0.53169E-03, 0.76476E-04, 0.16388E+00, 0.15241E+00, 0.14290E+00, 0.12864E+00, & & 0.11615E+00, 0.10047E+00, 0.80013E-01, 0.60445E-01, 0.44918E-01, 0.63395E-02, 0.32942E-02, & & 0.54541E-03, 0.15380E+00, 0.15194E+00, 0.14339E+00, 0.13138E+00, 0.11701E+00, 0.10081E+00, & & 0.82296E-01, 0.61735E-01, 0.41918E-01, 0.45918E-02, 0.37743E-02, 0.30121E-02, 0.22500E-02, & & 0.14490E-02, 0.55410E-03, 0.78364E-04, 0.15938E+00, 0.15146E+00, 0.14213E+00, 0.13079E+00, & & 0.11672E+00, 0.10053E+00, 0.81566E-01, 0.61126E-01, 0.41150E-01, 0.44488E-02, 0.36950E-02, & & 0.29101E-02, 0.21357E-02, 0.19609E-02, 0.14134E+00, 0.14390E+00, 0.13913E+00, 0.13246E+00, & & 0.12185E+00, 0.10596E+00, 0.87518E-01, 0.66164E-01, 0.44862E-01, 0.49402E-02, 0.40857E-02, & & 0.32288E-02, 0.23613E-02, 0.15406E-02, 0.58258E-03, 0.82171E-04, 0.29127E+00, 0.28252E+00, & & 0.22590E+00, 0.14314E+00, 0.45494E-01, 0.71792E-02, 0.38483E-02, 0.65712E-03, 0.29810E+00, & & 0.27559E+00, 0.11997E+00, 0.10351E+00, 0.84515E-01, 0.62253E-01, 0.41050E-01, 0.44217E-02, & & 0.36946E-02, 0.29113E-02, 0.34290E-02, 0.55993E-03, 0.31441E+00, 0.27586E+00, 0.21297E+00, & & 0.14064E+00, 0.45588E-01, 0.65665E-02, 0.34232E-02, 0.53199E-03, 0.19811E+00, 0.16833E+00, & & 0.13536E+00, 0.11549E+00, 0.10649E+00, 0.93264E-01, 0.75720E-01, 0.56405E-01, 0.41865E-01, & & 0.59331E-02, 0.26510E-02, 0.40040E-03, 0.32328E+00, 0.26636E+00, 0.21397E+00, 0.14038E+00, & & 0.52142E-01, 0.38852E-02, 0.14601E+00, 0.13824E+00, 0.27703E+00, 0.22388E+00, 0.15446E+00, & & 0.48687E-01, 0.98054E-02, 0.18870E-02, 0.11961E+00, 0.12106E+00, 0.13215E+00, 0.13516E+00, & & 0.25249E+00, 0.16542E+00, 0.68157E-01, 0.59725E-02, 0.49258E+00, 0.33651E+00, 0.16182E+00, & & 0.90984E-02, 0.95202E+00, 0.47978E-01, 0.91716E+00, 0.82857E-01, 0.77464E+00, 0.22536E+00 /), (/ 1,140 /) ) call planck_function_surf(1, 1, config, spread(temperature,1,1), & & frac, planck_surf) end subroutine planck_function end module radiation_ifs_rrtm