! radiation_ice_optics_fu.F90 - Fu's scheme for ice optical properties ! ! (C) Copyright 2014- ECMWF. ! ! This software is licensed under the terms of the Apache Licence Version 2.0 ! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. ! ! In applying this licence, ECMWF does not waive the privileges and immunities ! granted to it by virtue of its status as an intergovernmental organisation ! nor does it submit to any jurisdiction. ! ! Author: Robin Hogan ! Email: r.j.hogan@ecmwf.int ! ! Modifications ! 2020-08-10 R. Hogan Bounded re to be <= 100um and g to be < 1.0 module radiation_ice_optics_fu use parkind1, only : jprb implicit none public ! The number of ice coefficients depends on the parameterization integer, parameter :: NIceOpticsCoeffsFuSW = 10 integer, parameter :: NIceOpticsCoeffsFuLW = 11 ! Limits based on the range of validity of the parameterizations real(jprb), parameter :: MaxAsymmetryFactor = 1.0_jprb - 10.0_jprb*epsilon(1.0_jprb) real(jprb), parameter :: MaxEffectiveRadius = 100.0e-6_jprb ! metres contains !--------------------------------------------------------------------- ! Compute shortwave ice-particle scattering properties using Fu ! (1996) parameterization. The asymmetry factor in band 14 goes ! larger than one for re > 100.8 um, so we cap re at 100 um. ! Asymmetry factor is capped at just less than 1 because if it is ! exactly 1 then delta-Eddington scaling leads to a zero scattering ! optical depth and then division by zero. subroutine calc_ice_optics_fu_sw(nb, coeff, ice_wp, & & re, od, scat_od, g) !use yomhook, only : lhook, dr_hook ! Number of bands integer, intent(in) :: nb ! Coefficients read from a data file real(jprb), intent(in) :: coeff(:,:) ! Ice water path (kg m-2) real(jprb), intent(in) :: ice_wp ! Effective radius (m) real(jprb), intent(in) :: re ! Total optical depth, scattering optical depth and asymmetry factor real(jprb), intent(out) :: od(nb), scat_od(nb), g(nb) ! Fu's effective diameter (microns) and its inverse real(jprb) :: de_um, inv_de_um ! Ice water path in g m-2 real (jprb) :: iwp_gm_2 !real(jprb) :: hook_handle !if (lhook) call dr_hook('radiation_ice_optics:calc_ice_optics_fu_sw',0,hook_handle) ! Convert to effective diameter using the relationship in the IFS de_um = min(re, MaxEffectiveRadius) * (1.0e6_jprb / 0.64952_jprb) inv_de_um = 1.0_jprb / de_um iwp_gm_2 = ice_wp * 1000.0_jprb od = iwp_gm_2 * (coeff(1:nb,1) + coeff(1:nb,2) * inv_de_um) scat_od = od * (1.0_jprb - (coeff(1:nb,3) + de_um*(coeff(1:nb,4) & & + de_um*(coeff(1:nb,5) + de_um*coeff(1:nb,6))))) g = min(coeff(1:nb,7) + de_um*(coeff(1:nb,8) & & + de_um*(coeff(1:nb,9) + de_um*coeff(1:nb,10))), & & MaxAsymmetryFactor) !if (lhook) call dr_hook('radiation_ice_optics:calc_ice_optics_fu_sw',1,hook_handle) end subroutine calc_ice_optics_fu_sw !--------------------------------------------------------------------- ! Compute longwave ice-particle scattering properties using Fu et ! al. (1998) parameterization subroutine calc_ice_optics_fu_lw(nb, coeff, ice_wp, & & re, od, scat_od, g) !use yomhook, only : lhook, dr_hook ! Number of bands integer, intent(in) :: nb ! Coefficients read from a data file real(jprb), intent(in) :: coeff(:,:) ! Ice water path (kg m-2) real(jprb), intent(in) :: ice_wp ! Effective radius (m) real(jprb), intent(in) :: re ! Total optical depth, scattering optical depth and asymmetry factor real(jprb), intent(out) :: od(nb), scat_od(nb), g(nb) ! Fu's effective diameter (microns) and its inverse real(jprb) :: de_um, inv_de_um ! Ice water path in g m-2 real (jprb) :: iwp_gm_2 !real(jprb) :: hook_handle !if (lhook) call dr_hook('radiation_ice_optics:calc_ice_optics_fu_lw',0,hook_handle) ! Convert to effective diameter using the relationship in the IFS de_um = min(re, MaxEffectiveRadius) * (1.0e6_jprb / 0.64952_jprb) inv_de_um = 1.0_jprb / de_um iwp_gm_2 = ice_wp * 1000.0_jprb od = iwp_gm_2 * (coeff(1:nb,1) + inv_de_um*(coeff(1:nb,2) & & + inv_de_um*coeff(1:nb,3))) scat_od = od - iwp_gm_2*inv_de_um*(coeff(1:nb,4) + de_um*(coeff(1:nb,5) & & + de_um*(coeff(1:nb,6) + de_um*coeff(1:nb,7)))) g = min(coeff(1:nb,8) + de_um*(coeff(1:nb,9) & & + de_um*(coeff(1:nb,10) + de_um*coeff(1:nb,11))), & & MaxAsymmetryFactor) !if (lhook) call dr_hook('radiation_ice_optics:calc_ice_optics_fu_lw',1,hook_handle) end subroutine calc_ice_optics_fu_lw end module radiation_ice_optics_fu