c----- This subroutine calculates the sedimentation flux of Tracers c SUBROUTINE sediment_mod(t_seri,pplay,zrho,paprs,time_step,RHcl, . id_coss,id_codu,id_scdu, . ok_chimeredust, . sed_ss,sed_dust,sed_dustsco, . sed_ss3D,sed_dust3D,sed_dustsco3D,tr_seri) cnhl . xlon,xlat, c USE dimphy USE infotrac IMPLICIT NONE c #include "dimensions.h" #include "chem.h" c #include "dimphy.h" #include "YOMCST.h" #include "YOECUMF.h" c REAL RHcl(klon,klev) ! humidite relative ciel clair REAL tr_seri(klon, klev,nbtr) !conc of tracers REAL sed_ss(klon) !sedimentation flux of Sea Salt (g/m2/s) REAL sed_dust(klon) !sedimentation flux of dust (g/m2/s) REAL sed_dustsco(klon) !sedimentation flux of scoarse dust (g/m2/s) REAL sed_ss3D(klon,klev) !sedimentation flux of Sea Salt (g/m2/s) REAL sed_dust3D(klon,klev) !sedimentation flux of dust (g/m2/s) REAL sed_dustsco3D(klon,klev) !sedimentation flux of scoarse dust (g/m2/s) REAL t_seri(klon, klev) !Temperature at mid points of Z (K) REAL v_dep_ss(klon,klev) ! sed. velocity for SS m/s REAL v_dep_dust(klon,klev) ! sed. velocity for dust m/s REAL v_dep_dustsco(klon,klev) ! sed. velocity for dust m/s REAL pplay(klon, klev) !pressure at mid points of Z (Pa) REAL zrho(klon, klev) !Density of air at mid points of Z (kg/m3) REAL paprs(klon, klev+1) !pressure at interface of layers Z (Pa) REAL time_step !time step (sec) LOGICAL ok_chimeredust REAL xlat(klon) ! latitudes pour chaque point REAL xlon(klon) ! longitudes pour chaque point INTEGER id_coss,id_codu,id_scdu c c------local variables c INTEGER i, k, nbre_RH PARAMETER(nbre_RH=12) c REAL lambda, ss_g REAL mmd_ss !mass median diameter of SS (um) REAL mmd_dust !mass median diameter of dust (um) REAL mmd_dustsco !mass median diameter of scoarse dust (um) REAL rho_ss(nbre_RH),rho_ss1 !density of sea salt (kg/m3) REAL rho_dust !density of dust(kg/m3) REAL v_stokes, CC, v_sed, ss_growth_f(nbre_RH) REAL sed_flux(klon,klev) ! sedimentation flux g/m2/s REAL air_visco(klon,klev) REAL zdz(klon,klev) ! layers height (m) REAL temp ! temperature in degree Celius c INTEGER RH_num REAL RH_MAX, DELTA, rh, RH_tab(nbre_RH) PARAMETER (RH_MAX=95.) c DATA RH_tab/0.,10.,20.,30.,40.,50.,60.,70.,80.,85.,90.,95./ c c DATA rho_ss/2160. ,2160. ,2160., 2160, 1451.6, 1367.9, . 1302.9,1243.2,1182.7, 1149.5,1111.6, 1063.1/ c DATA ss_growth_f/0.503, 0.503, 0.503, 0.503, 0.724, 0.782, . 0.838, 0.905, 1.000, 1.072, 1.188, 1.447/ c c mmd_ss=12.7 !dia -um at 80% for bin 0.5-20 um but 90% of real mmd ! obsolete mmd_dust=2.8 !micrometer for bin 0.5-20 and 0.5-10 um ! 4tracer SPLA: mmd_dust=11.0 !micrometer for bin 0.5-20 and 0.5-10 um !3days mmd_dust=3.333464 !micrometer for bin 0.5-20 and 0.5-10 um !3days mmd_dustsco=12.91315 !micrometer for bin 0.5-20 and 0.5-10 um !JE20140911 mmd_dust=3.002283 !micrometer for bin 0.5-20 and 0.5-10 um !JE20140911 mmd_dustsco=13.09771 !micrometer for bin 0.5-20 and 0.5-10 um !JE20140911 mmd_dust=5.156346 !micrometer for bin 0.5-20 and 0.5-10 um !JE20140911 mmd_dustsco=15.56554 !micrometer for bin 0.5-20 and 0.5-10 um IF (ok_chimeredust) THEN !JE20150212<< : changes in ustar in dustmod changes emission distribution ! mmd_dust=3.761212 !micrometer for bin 0.5-3 and 0.5-10 um ! mmd_dustsco=15.06167 !micrometer for bin 3-20 and 0.5-10 um !JE20150212>> !JE20150618: Change in div3 of dustmod changes distribution. now is div3=6 !div=3 mmd_dust=3.983763 !div=3 mmd_dustsco=15.10854 mmd_dust=3.898047 mmd_dustsco=15.06167 ELSE mmd_dust=11.0 !micrometer for bin 0.5-20 and 0.5-10 um mmd_dustsco=100. ! absurd value, bin not used in this scheme ENDIF rho_dust=2600. !kg/m3 c c--------- Air viscosity (poise=0.1 kg/m-sec)----------- c DO k=1, klev DO i=1, klon c zdz(i,k)=(paprs(i,k)-paprs(i,k+1))/zrho(i,k)/RG c temp=t_seri(i,k)-RTT c IF (temp.LT.0.) THEN air_visco(i,k)=(1.718+0.0049*temp-1.2e-5*temp*temp)*1.e-4 ELSE air_visco(i,k)=(1.718+0.0049*temp)*1.e-4 ENDIF c ENDDO ENDDO c c--------- for Sea Salt ------------------- c c c IF(id_coss>0) THEN DO k=1, klev DO i=1,klon c c---cal. correction factor hygroscopic growth of aerosols c rh=MIN(RHcl(i,k)*100.,RH_MAX) RH_num = INT( rh/10. + 1.) IF (rh.gt.85.) RH_num=10 IF (rh.gt.90.) RH_num=11 DELTA=(rh-RH_tab(RH_num))/(RH_tab(RH_num+1)-RH_tab(RH_num)) c ss_g=ss_growth_f(rh_num) + . DELTA*(ss_growth_f(RH_num+1)-ss_growth_f(RH_num)) rho_ss1=rho_ss(rh_num) + . DELTA*(rho_ss(RH_num+1)-rho_ss(RH_num)) c v_stokes=RG*(rho_ss1-zrho(i,k))* !m/sec . (mmd_ss*ss_g)*(mmd_ss*ss_g)* . 1.e-12/(18.0*air_visco(i,k)/10.) c lambda=6.6*1.e-8*(103125/pplay(i,k))*(t_seri(i,k)/293.15) c CC=1.0+1.257*lambda/(mmd_ss*ss_g)/1.e6 ! C-correction factor c v_sed=v_stokes*CC ! m/sec !orig c c---------check for v_sed*dt0) THEN DO k=1, klev DO i=1,klon c v_stokes=RG*(rho_dust-zrho(i,k))* !m/sec . mmd_dust*mmd_dust* . 1.e-12/(18.0*air_visco(i,k)/10.) c lambda=6.6*1.e-8*(103125/pplay(i,k))*(t_seri(i,k)/293.15) CC=1.0+1.257*lambda/(mmd_dust)/1.e6 !dimensionless v_sed=v_stokes*CC !m/sec c c---------check for v_sed*dt0) THEN DO k=1, klev DO i=1,klon c v_stokes=RG*(rho_dust-zrho(i,k))* !m/sec . mmd_dustsco*mmd_dustsco* . 1.e-12/(18.0*air_visco(i,k)/10.) c lambda=6.6*1.e-8*(103125/pplay(i,k))*(t_seri(i,k)/293.15) CC=1.0+1.257*lambda/(mmd_dustsco)/1.e6 !dimensionless v_sed=v_stokes*CC !m/sec c c---------check for v_sed*dt