subroutine SISVAT_TSo ! #e1. (ETSo_0,ETSo_1,ETSo_d) C +------------------------------------------------------------------------+ C | MAR SISVAT_TSo 06-10-2020 MAR | C | SubRoutine SISVAT_TSo computes the Soil/Snow Energy Balance | C +------------------------------------------------------------------------+ C | | C | PARAMETERS: knonv: Total Number of columns = | C | ^^^^^^^^^^ = Total Number of continental grid boxes | C | X Number of Mosaic Cell per grid box | C | | C | INPUT: isotSV = 0,...,11: Soil Type | C | ^^^^^ 0: Water, Solid or Liquid | C | isnoSV = total Nb of Ice/Snow Layers | C | dQa_SV = Limitation of Water Vapor Turbulent Flux | C | | C | INPUT: sol_SV : Downward Solar Radiation [W/m2] | C | ^^^^^ IRd_SV : Surface Downward Longwave Radiation [W/m2] | C | za__SV : SBL Top Height [m] | C | VV__SV : SBL Top Wind Speed [m/s] | C | TaT_SV : SBL Top Temperature [K] | C | rhT_SV : SBL Top Air Density [kg/m3] | C | QaT_SV : SBL Top Specific Humidity [kg/kg] | C | LSdzsv : Vertical Discretization Factor [-] | C | = 1. Soil | C | = 1000. Ocean | C | dzsnSV : Snow Layer Thickness [m] | C | ro__SV : Snow/Soil Volumic Mass [kg/m3] | C | eta_SV : Soil Water Content [m3/m3] | C | dt__SV : Time Step [s] | C | | C | SoSosv : Absorbed Solar Radiation by Surfac.(Normaliz)[-] | C | Eso_sv : Soil+Snow Emissivity [-] | C | rah_sv : Aerodynamic Resistance for Heat [s/m] | C | Lx_H2O : Latent Heat of Vaporization/Sublimation [J/kg] | C | sEX_sv : Verticaly Integrated Extinction Coefficient [-] | C | | C | INPUT / TsisSV : Soil/Ice Temperatures (layers -nsol,-nsol+1,..,0)| C | OUTPUT: & Snow Temperatures (layers 1,2,...,nsno) [K] | C | ^^^^^^ | C | | C | OUTPUT: IRs_SV : Soil IR Radiation [W/m2] | C | ^^^^^^ HSs_sv : Sensible Heat Flux [W/m2] | C | HLs_sv : Latent Heat Flux [W/m2] | C | ETSo_0 : Snow/Soil Energy Power, before Forcing [W/m2] | C | ETSo_1 : Snow/Soil Energy Power, after Forcing [W/m2] | C | ETSo_d : Snow/Soil Energy Power Forcing [W/m2] | C | | C | Internal Variables: | C | ^^^^^^^^^^^^^^^^^^ | C | | C | METHOD: NO Skin Surface Temperature | C | ^^^^^^ Semi-Implicit Crank Nicholson Scheme | C | | C | # OPTIONS: #E0: Energy Budget Verification | C | # ^^^^^^^ #kd: KDsvat Option:NO Flux Limitor on HL | C | # #KD: KDsvat Option:Explicit Formulation of HL | C | # #NC: OUTPUT for Stand Alone NetCDF File | C | | C +------------------------------------------------------------------------+ C +--Global Variables C + ================ use VARphy use VAR_SV use VARdSV use VARxSV use VARySV use VARtSV use VAR0SV IMPLICIT NONE C +--OUTPUT C + ------ ! #e1 real ETSo_0(knonv) ! Soil/Snow Power, before Forcing ! #e1 real ETSo_1(knonv) ! Soil/Snow Power, after Forcing ! #e1 real ETSo_d(knonv) ! Soil/Snow Power, Forcing C +--Internal Variables C + ================== integer ikl ,isl ,jsl ,ist ! integer ist__s,ist__w ! Soil/Water Body Identifier integer islsgn ! Soil/Snow Surfac.Identifier real eps__3 ! Arbitrary Low Number real etaMid,psiMid ! Layer Interface's Humidity real mu_eta ! Soil thermal Conductivity real mu_exp ! arg Soil thermal Conductivity real mu_min ! Min Soil thermal Conductivity real mu_max ! Max Soil thermal Conductivity real mu_sno(knonv),mu_aux ! Snow thermal Conductivity real mu__dz(knonv,-nsol:nsno+1) ! mu_(eta,sno) / dz real dtC_sv(knonv,-nsol:nsno) ! dt / C real IRs__D(knonv) ! UpwardIR Previous Iter.Contr. real dIRsdT(knonv) ! UpwardIR T Derivat. real f_HSHL(knonv) ! Factor common to HS and HL real dRidTs(knonv) ! d(Rib)/d(Ts) real HS___D(knonv) ! Sensible Heat Flux Atm.Contr. real f___HL(knonv) ! real HL___D(knonv) ! Latent Heat Flux Atm.Contr. REAL TSurf0(knonv),dTSurf ! Previous Surface Temperature real qsatsg(knonv) !,den_qs,arg_qs ! Soil Saturat. Spec. Humidity real dqs_dT(knonv) ! d(qsatsg)/dTv real Psi( knonv) ! 1st Soil Layer Water Potential real RHuSol(knonv) ! Soil Surface Relative Humidity real etaSol ! Soil Surface Humidity real d__eta ! Soil Surface Humidity Increm. real Elem_A,Elem_C ! Diagonal Coefficients real Diag_A(knonv,-nsol:nsno) ! A Diagonal real Diag_B(knonv,-nsol:nsno) ! B Diagonal real Diag_C(knonv,-nsol:nsno) ! C Diagonal real Term_D(knonv,-nsol:nsno) ! Independant Term real Aux__P(knonv,-nsol:nsno) ! P Auxiliary Variable real Aux__Q(knonv,-nsol:nsno) ! Q Auxiliary Variable real Ts_Min,Ts_Max ! Temperature Limits ! #e1 real Exist0 ! Existing Layer Switch real psat_wat, psat_ice, sp ! computation of qsat integer nt_srf,it_srf,itEuBk ! HL: Surface Scheme parameter(nt_srf=10) ! 10 before real agpsrf,xgpsrf,dt_srf,dt_ver ! real etaBAK(knonv) ! real etaNEW(knonv) ! real etEuBk(knonv) ! real fac_dt(knonv),faceta(knonv) ! real PsiArg(knonv),SHuSol(knonv) ! C +--Internal DATA C + ============= data eps__3 / 1.e-3 / ! Arbitrary Low Number data mu_exp / -0.4343 / ! Soil Thermal Conductivity data mu_min / 0.172 / ! Min Soil Thermal Conductivity data mu_max / 2.000 / ! Max Soil Thermal Conductivity data Ts_Min / 175. / ! Temperature Minimum data Ts_Max / 300. / ! Temperature Acceptable Maximum C + ! including Snow Melt Energy C +-- Initilialisation of local arrays C + ================================ DO ikl=1,knonv mu_sno(ikl)=0. mu__dz(ikl,:)=0. dtC_sv(ikl,:)=0. IRs__D(ikl)=0. dIRsdT(ikl)=0. f_HSHL(ikl)=0. dRidTs(ikl)=0. HS___D(ikl)=0. f___HL(ikl)=0. HL___D(ikl)=0. TSurf0(ikl)=0. qsatsg(ikl)=0. dqs_dT(ikl)=0. Psi(ikl)=0. RHuSol(ikl)=0. Diag_A(ikl,:)=0. Diag_B(ikl,:)=0. Diag_C(ikl,:)=0. Term_D(ikl,:)=0. Aux__P(ikl,:)=0. Aux__Q(ikl,:)=0. etaBAK(ikl)=0. etaNEW(ikl)=0. etEuBk(ikl)=0. fac_dt(ikl)=0. faceta(ikl)=0. PsiArg(ikl)=0. SHuSol(ikl)=0. END DO C +--Heat Conduction Coefficient (zero in the Layers over the highest one) C + =========================== C + ---------------- isl eta_SV, rho C (isl) C + C +--Soil ++++++++++++++++ etaMid, mu (isl) C + ---- C + ---------------- isl-1 eta_SV, rho C (isl-1) isl=-nsol DO ikl=1,knonv mu__dz(ikl,isl) = 0. dtC_sv(ikl,isl) = dtz_SV2(isl) * dt__SV ! dt / (dz X rho C) . /((rocsSV(isotSV(ikl)) ! [s / (m.J/m3/K)] . +rcwdSV*eta_SV(ikl,isl)) ! . *LSdzsv(ikl) ) ! END DO DO isl=-nsol+1,0 DO ikl=1,knonv ist = isotSV(ikl) ! Soil Type ist__s = min(ist, 1) ! 1 => Soil ist__w = 1 - ist__s ! 1 => Water Body etaMid = 0.5*(dz_dSV(isl-1)*eta_SV(ikl,isl-1) ! eta at layers . +dz_dSV(isl) *eta_SV(ikl,isl) ) ! interface . /dzmiSV(isl) ! LSdzsv implicit ! etaMid = max(etaMid,epsi) psiMid = psidSV(ist) . *(etadSV(ist)/etaMid)**bCHdSV(ist) mu_eta = 3.82 *(psiMid)**mu_exp ! Soil Thermal mu_eta = min(max(mu_eta, mu_min), mu_max) ! Conductivity C + ! DR97 eq.3.31 mu_eta = ist__s *mu_eta +ist__w * vK_dSV ! Water Bodies C + ! Correction mu__dz(ikl,isl) = mu_eta/(dzmiSV(isl) ! . *LSdzsv(ikl)) ! dtC_sv(ikl,isl) = dtz_SV2(isl)* dt__SV ! dt / (dz X rho C) . /((rocsSV(isotSV(ikl)) ! . +rcwdSV*eta_SV(ikl,isl)) ! . *LSdzsv(ikl) ) ! END DO END DO C +--Soil/Snow Interface C + ------------------- C +--Soil Contribution C + ^^^^^^^^^^^^^^^^^ isl=1 DO ikl=1,knonv ist = isotSV(ikl) ! Soil Type ist__s = min(ist, 1) ! 1 => Soil ist__w = 1 - ist__s ! 1 => Water Body psiMid = psidSV(ist) ! Snow => Saturation mu_eta = 3.82 *(psiMid)**mu_exp ! Soil Thermal mu_eta = min(max(mu_eta, mu_min), mu_max) ! Conductivity C + ! DR97 eq.3.31 mu_eta = ist__s *mu_eta +ist__w * vK_dSV ! Water Bodies C +--Snow Contribution C + ^^^^^^^^^^^^^^^^^ mu_sno(ikl) = CdidSV ! . *(ro__SV(ikl,isl) /ro_Wat) ** 1.88 ! mu_sno(ikl) = max(epsi,mu_sno(ikl)) ! C +... mu_sno : Snow Heat Conductivity Coefficient [Wm/K] C + (Yen 1981, CRREL Rep., 81-10) C +--Combined Heat Conductivity C + ^^^^^^^^^^^^^^^^^^^^^^^^^^ mu__dz(ikl,isl) = 2./(dzsnSV(ikl,isl ) ! Combined Heat . /mu_sno(ikl) ! Conductivity . +LSdzsv(ikl) ! . *dz_dSV( isl-1)/mu_eta) ! Coefficient C +--Inverted Heat Capacity C + ^^^^^^^^^^^^^^^^^^^^^^ dtC_sv(ikl,isl) = dt__SV/max(epsi, ! dt / (dz X rho C) . dzsnSV(ikl,isl) * ro__SV(ikl,isl) *Cn_dSV) ! END DO C +--Snow C + ---- DO ikl=1,knonv DO isl=1,min(nsno,isnoSV(ikl)+1) ro__SV(ikl,isl) = ! . ro__SV(ikl ,isl) ! . * max(0,min(isnoSV(ikl)-isl+1,1)) ! END DO END DO DO ikl=1,knonv DO isl=1,min(nsno,isnoSV(ikl)+1) C +--Combined Heat Conductivity C + ^^^^^^^^^^^^^^^^^^^^^^^^^^ mu_aux = CdidSV ! . *(ro__SV(ikl,isl) /ro_Wat) ** 1.88 ! mu__dz(ikl,isl) = ! . 2. *mu_aux*mu_sno(ikl) ! Combined Heat . /max(epsi,dzsnSV(ikl,isl )*mu_sno(ikl) ! Conductivity . +dzsnSV(ikl,isl-1)*mu_aux ) ! For upper Layer mu_sno(ikl) = mu_aux ! C +--Inverted Heat Capacity C + ^^^^^^^^^^^^^^^^^^^^^^ dtC_sv(ikl,isl) = dt__SV/max(eps__3, ! dt / (dz X rho C) . dzsnSV(ikl,isl) * ro__SV(ikl,isl) *Cn_dSV) ! END DO END DO C +--Uppermost Effective Layer: NO conduction C + ---------------------------------------- DO ikl=1,knonv mu__dz(ikl,isnoSV(ikl)+1) = 0.0 END DO C +--Energy Budget (IN) C + ================== ! #e1 DO ikl=1,knonv ! #e1 ETSo_0(ikl) = 0. ! #e1 END DO ! #e1 DO isl= -nsol,nsno ! #e1 DO ikl=1,knonv ! #e1 Exist0 = isl - isnoSV(ikl) ! #e1 Exist0 = 1. - max(zero,min(unun,Exist0)) ! #e1 ETSo_0(ikl) = ETSo_0(ikl) ! #e1. +(TsisSV(ikl,isl)-TfSnow)*Exist0 ! #e1. /dtC_sv(ikl,isl) ! #e1 END DO ! #e1 END DO C +--Tridiagonal Elimination: Set Up C + =============================== C +--Soil/Snow Interior C + ^^^^^^^^^^^^^^^^^^ DO ikl=1,knonv DO isl=-nsol+1,min(nsno-1,isnoSV(ikl)+1) Elem_A = dtC_sv(ikl,isl) *mu__dz(ikl,isl) Elem_C = dtC_sv(ikl,isl) *mu__dz(ikl,isl+1) Diag_A(ikl,isl) = -Elem_A *Implic Diag_C(ikl,isl) = -Elem_C *Implic Diag_B(ikl,isl) = 1.0d+0 -Diag_A(ikl,isl)-Diag_C(ikl,isl) Term_D(ikl,isl) = Explic *(Elem_A *TsisSV(ikl,isl-1) . +Elem_C *TsisSV(ikl,isl+1)) . +(1.0d+0 -Explic *(Elem_A+Elem_C))*TsisSV(ikl,isl) . + dtC_sv(ikl,isl) * sol_SV(ikl) *SoSosv(ikl) . *(sEX_sv(ikl,isl+1) . -sEX_sv(ikl,isl )) END DO END DO C +--Soil lowest Layer C + ^^^^^^^^^^^^^^^^^^ isl= -nsol DO ikl=1,knonv Elem_A = 0. Elem_C = dtC_sv(ikl,isl) *mu__dz(ikl,isl+1) Diag_A(ikl,isl) = 0. Diag_C(ikl,isl) = -Elem_C *Implic Diag_B(ikl,isl) = 1.0d+0 -Diag_A(ikl,isl)-Diag_C(ikl,isl) Term_D(ikl,isl) = Explic * Elem_C *TsisSV(ikl,isl+1) . +(1.0d+0 -Explic * Elem_C) *TsisSV(ikl,isl) . + dtC_sv(ikl,isl) * sol_SV(ikl) *SoSosv(ikl) . *(sEX_sv(ikl,isl+1) . -sEX_sv(ikl,isl )) END DO C +--Snow highest Layer (dummy!) C + ^^^^^^^^^^^^^^^^^^^^^^^^^^^ !EV!isl= min(isnoSV(1)+1,nsno) DO ikl=1,knonv ! EV try to calculate isl at the ikl grid point isl= min(isnoSV(ikl)+1,nsno) Elem_A = dtC_sv(ikl,isl) *mu__dz(ikl,isl) Elem_C = 0. Diag_A(ikl,isl) = -Elem_A *Implic Diag_C(ikl,isl) = 0. Diag_B(ikl,isl) = 1.0d+0 -Diag_A(ikl,isl) Term_D(ikl,isl) = Explic * Elem_A *TsisSV(ikl,isl-1) . +(1.0d+0 -Explic * Elem_A) *TsisSV(ikl,isl) . + dtC_sv(ikl,isl) * (sol_SV(ikl) *SoSosv(ikl) . *(sEX_sv(ikl,isl+1) . -sEX_sv(ikl,isl ))) END DO C +--Surface: UPwardIR Heat Flux C + ^^^^^^^^^^^^^^^^^^^^^^^^^^^ DO ikl=1,knonv isl = isnoSV(ikl) dIRsdT(ikl) = Eso_sv(ikl)* StefBo * 4. ! - d(IR)/d(T) . * TsisSV(ikl,isl) ! . * TsisSV(ikl,isl) ! . * TsisSV(ikl,isl) ! IRs__D(ikl) = dIRsdT(ikl)* TsisSV(ikl,isl) * 0.75 ! C +--Surface: Richardson Number: T Derivative C + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ c #RC dRidTs(ikl) =-gravit * za__SV(ikl) c #RC. /(TaT_SV(ikl) * VV__SV(ikl) c #RC. * VV__SV(ikl)) C +--Surface: Turbulent Heat Flux: Factors C + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ f_HSHL(ikl) = rhT_SV(ikl) / rah_sv(ikl) ! to HS, HL f___HL(ikl) = f_HSHL(ikl) * Lx_H2O(ikl) C +--Surface: Sensible Heat Flux: T Derivative C + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ dSdTSV(ikl) = f_HSHL(ikl) * Cp !#- d(HS)/d(T) c #RC. *(1.0 -(TsisSV(ikl,isl) -TaT_SV(ikl)) !#Richardson c #RC. * dRidTs(ikl)*dFh_sv(ikl)/rah_sv(ikl)) ! Nb. Correct. HS___D(ikl) = dSdTSV(ikl) * TaT_SV(ikl) ! C +--Surface: Latent Heat Flux: Saturation Specific Humidity C + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ c den_qs = TsisSV(ikl,isl)- 35.8 ! c arg_qs = 17.27 *(TsisSV(ikl,isl)-273.16) ! c . / den_qs ! c qsatsg(ikl) = .0038 * exp(arg_qs) ! ! sp = (pst_SV(ikl) + ptopSV) * 10. !sp=ps__SV(ikl) ! Etienne: in the formula herebelow sp should be in hPa, not ! in Pa so I divide by 100. sp=ps__SV(ikl)/100. psat_ice = 6.1070 * exp(6150. *(1./273.16 - . 1./TsisSV(ikl,isl))) psat_wat = 6.1078 * exp (5.138*log(273.16 /TsisSV(ikl,isl))) . * exp (6827.*(1. /273.16-1./TsisSV(ikl,isl))) if(TsisSV(ikl,isl)<=273.16) then qsatsg(ikl) = 0.622 * psat_ice / (sp - 0.378 * psat_ice) else qsatsg(ikl) = 0.622 * psat_wat / (sp - 0.378 * psat_wat) endif QsT_SV(ikl)=qsatsg(ikl) c dqs_dT(ikl) = qsatsg(ikl)* 4099.2 /(den_qs *den_qs)! fac_dt(ikl) = f_HSHL(ikl)/(ro_Wat * dz_dSV(0)) ! END DO C +--Surface: Latent Heat Flux: Surface Relative Humidity C + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ xgpsrf = 1.05 ! agpsrf = dt__SV*( 1.0-xgpsrf ) ! . /( 1.0-xgpsrf**nt_srf) ! dt_srf = agpsrf ! dt_ver = 0. DO ikl=1,knonv isl = isnoSV(ikl) ist = max(0,isotSV(ikl)-100*isnoSV(ikl))! 0 if H2O ist__s = min(1,ist) etaBAK(ikl) = max(epsi,eta_SV(ikl ,isl)) ! etaNEW(ikl) = etaBAK(ikl) ! etEuBk(ikl) = etaNEW(ikl) ! END DO if(ist__s==1) then ! to reduce computer time ! DO it_srf=1,nt_srf ! dt_ver = dt_ver +dt_srf ! DO ikl=1,knonv ! faceta(ikl) = fac_dt(ikl)*dt_srf ! c #VX faceta(ikl) = faceta(ikl) ! c #VX. /(1.+faceta(ikl)*dQa_SV(ikl)) ! Limitation ! by Atm.Conten c #??. *max(0,sign(1.,qsatsg(ikl)-QaT_SV(ikl)))) ! NO Limitation ! of Downw.Flux END DO ! DO itEuBk=1,2 ! DO ikl=1,knonv ist = max(0,isotSV(ikl)-100*isnoSV(ikl)) ! 0 if H2O ! Psi(ikl) = ! . psidSV(ist) ! DR97, Eqn 3.34 . *(etadSV(ist) ! . /max(etEuBk(ikl),epsi)) ! . **bCHdSV(ist) ! PsiArg(ikl) = 7.2E-5*Psi(ikl) ! RHuSol(ikl) = exp(-min(0.,PsiArg(ikl))) ! SHuSol(ikl) = qsatsg(ikl) *RHuSol(ikl) ! DR97, Eqn 3.15 etEuBk(ikl) = ! . (etaNEW(ikl) + faceta(ikl)*(QaT_SV(ikl) ! . -SHuSol(ikl) ! . *(1. -bCHdSV(ist) ! . *PsiArg(ikl)) )) ! . /(1. + faceta(ikl)* SHuSol(ikl) ! . *bCHdSV(ist) ! . *PsiArg(ikl) ! . /etaNEW(ikl)) ! etEuBk(ikl) = etEuBk(ikl) ! c . /(Ro_Wat*dz_dSV(0)) ! . * dt_srf /(Ro_Wat*dz_dSV(0)) ! cXF 15/05/2017 BUG END DO ! END DO ! DO ikl=1,knonv ! etaNEW(ikl) = max(etEuBk(ikl),epsi) ! END DO ! dt_srf = dt_srf * xgpsrf ! END DO endif ! C +--Surface: Latent Heat Flux: Soil/Water Surface Contributions C + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ DO ikl=1,knonv ! isl = isnoSV(ikl) ! ist = max(0,isotSV(ikl)-100*isnoSV(ikl)) ! 0 if H2O ist__s= min(1,ist) ! 1 if no H2O ist__w= 1-ist__s ! 1 if H2O d__eta = eta_SV(ikl,isl)-etaNEW(ikl) ! ! latent heat flux computation HL___D(ikl)=( ist__s *ro_Wat *dz_dSV(0) ! Soil Contrib. . *(etaNEW(ikl) -etaBAK(ikl)) / dt__SV ! . +ist__w *f_HSHL(ikl) ! H2O Contrib. . *(QaT_SV(ikl) - qsatsg(ikl)) ) ! . * Lx_H2O(ikl) ! common factor c #DL RHuSol(ikl) =(QaT_SV(ikl) ! c #DL. -HL___D(ikl) / f___HL(ikl)) ! c #DL. / qsatsg(ikl) ! C +--Surface: Latent Heat Flux: T Derivative C + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ dLdTSV(ikl) = 0. c #DL dLdTSV(ikl) = f___HL(ikl) * RHuSol(ikl) *dqs_dT(ikl) ! - d(HL)/d(T) c #DL HL___D(ikl) = HL___D(ikl) ! c #DL. +dLdTSV(ikl) * TsisSV(ikl,isl) ! END DO ! C +--Surface: Tridiagonal Matrix Set Up C + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ DO ikl=1,knonv isl = isnoSV(ikl) TSurf0(ikl) = TsisSV(ikl,isl) Elem_A = dtC_sv(ikl,isl)*mu__dz(ikl,isl) Elem_C = 0. Diag_A(ikl,isl) = -Elem_A *Implic Diag_C(ikl,isl) = 0. Diag_B(ikl,isl) = 1.0d+0 -Diag_A(ikl,isl) Diag_B(ikl,isl) = Diag_B(ikl,isl) . + dtC_sv(ikl,isl) * (dIRsdT(ikl) ! Upw. Sol IR . +dSdTSV(ikl) ! HS/Surf.Contr. . +dLdTSV(ikl)) ! HL/Surf.Contr. Term_D(ikl,isl) = Explic *Elem_A *TsisSV(ikl,isl-1) . +(1.0d+0 -Explic *Elem_A)*TsisSV(ikl,isl) Term_D(ikl,isl) = Term_D(ikl,isl) . + dtC_sv(ikl,isl) * (sol_SV(ikl) *SoSosv(ikl) ! Absorbed . *(sEX_sv(ikl,isl+1) ! Solar . -sEX_sv(ikl,isl ))! . + IRd_SV(ikl)*Eso_sv(ikl) ! Down Atm IR . +IRs__D(ikl) ! Upw. Sol IR . +HS___D(ikl) ! HS/Atmo.Contr. . +HL___D(ikl) )! HL/Atmo.Contr. END DO C +--Tridiagonal Elimination C + ======================= C +--Forward Sweep C + ^^^^^^^^^^^^^^ DO ikl= 1,knonv Aux__P(ikl,-nsol) = Diag_B(ikl,-nsol) Aux__Q(ikl,-nsol) =-Diag_C(ikl,-nsol)/Aux__P(ikl,-nsol) END DO DO ikl= 1,knonv DO isl=-nsol+1,min(nsno,isnoSV(ikl)+1) Aux__P(ikl,isl) = Diag_A(ikl,isl) *Aux__Q(ikl,isl-1) . +Diag_B(ikl,isl) Aux__Q(ikl,isl) =-Diag_C(ikl,isl) /Aux__P(ikl,isl) END DO END DO DO ikl= 1,knonv TsisSV(ikl,-nsol) = Term_D(ikl,-nsol)/Aux__P(ikl,-nsol) END DO DO ikl= 1,knonv DO isl=-nsol+1,min(nsno,isnoSV(ikl)+1) TsisSV(ikl,isl) =(Term_D(ikl,isl) . -Diag_A(ikl,isl) *TsisSV(ikl,isl-1)) . /Aux__P(ikl,isl) END DO END DO C +--Backward Sweep C + ^^^^^^^^^^^^^^ DO ikl= 1,knonv DO isl=min(nsno-1,isnoSV(ikl)+1),-nsol,-1 TsisSV(ikl,isl) = Aux__Q(ikl,isl) *TsisSV(ikl,isl+1) . +TsisSV(ikl,isl) if(isl==0.and.isnoSV(ikl)==0) then TsisSV(ikl,isl) = min(TaT_SV(ikl)+30,TsisSV(ikl,isl)) TsisSV(ikl,isl) = max(TaT_SV(ikl)-30,TsisSV(ikl,isl)) c #EU TsisSV(ikl,isl) = max(TaT_SV(ikl)-15.,TsisSV(ikl,isl)) !XF 18/11/2018 to avoid ST reaching 70�C!! !It is an error compensation but does not work over tundra endif END DO END DO C +--Temperature Limits (avoids problems in case of no Snow Layers) C + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ DO ikl= 1,knonv isl = isnoSV(ikl) dTSurf = TsisSV(ikl,isl) - TSurf0(ikl) TsisSV(ikl,isl) = TSurf0(ikl) + sign(1.,dTSurf) ! 180.0 dgC/hr . * min(abs(dTSurf),5.e-2*dt__SV) ! =0.05 dgC/s END DO DO ikl= 1,knonv DO isl=min(nsno,isnoSV(ikl)+1),1 ,-1 TsisSV(ikl,isl) = max(Ts_Min, TsisSV(ikl,isl)) TsisSV(ikl,isl) = min(Ts_Max, TsisSV(ikl,isl)) END DO END DO C +--Update Surface Fluxes C + ======================== DO ikl= 1,knonv isl = isnoSV(ikl) IRs_SV(ikl) = IRs__D(ikl) ! . - dIRsdT(ikl) * TsisSV(ikl,isl) ! HSs_sv(ikl) = HS___D(ikl) ! Sensible Heat . - dSdTSV(ikl) * TsisSV(ikl,isl) ! Downward > 0 HLs_sv(ikl) = HL___D(ikl) ! Latent Heat . - dLdTSV(ikl) * TsisSV(ikl,isl) ! Downward > 0 END DO return end