SUBROUTINE OLWB & & ( KIDIA, KFDIA, KLON , KLEV & & , PDT0 , PT , PTH & & , PB , PBINT, PBSUIN, PBSUR , PBTOP , PDBSL & & , PGA , PGB , PGASUR, PGBSUR, PGATOP, PGBTOP ) ! !**** *LWB* - COMPUTES BLACK-BODY FUNCTIONS FOR LONGWAVE CALCULATIONS ! ! PURPOSE. ! -------- ! COMPUTES PLANCK FUNCTIONS ! !** INTERFACE. ! ---------- ! ! EXPLICIT ARGUMENTS : ! -------------------- ! ==== INPUTS === ! PDT0 : (KLON) ; SURFACE TEMPERATURE DISCONTINUITY ! PT : (KLON,KLEV) ; TEMPERATURE ! PTH : (KLON,KLEV+1) ; HALF LEVEL TEMPERATURE ! ==== OUTPUTS === ! PB : (KLON,NISP,KLEV+1) ; SPECTRAL HALF LEVEL PLANCK FUNCTION ! PBINT : (KLON,KLEV+1) ; HALF LEVEL PLANCK FUNCTION ! PBSUIN : (KLON) ; SURFACE PLANCK FUNCTION ! PBSUR : (KLON,NISP) ; SURFACE SPECTRAL PLANCK FUNCTION ! PBTOP : (KLON,NISP) ; TOP SPECTRAL PLANCK FUNCTION ! PDBSL : (KLON,NISP,KLEV*2); SUB-LAYER PLANCK FUNCTION GRADIENT ! PGA : (KLON,8,2,KLEV); dB/dT-weighted LAYER PADE APPROXIMANTS ! PGB : (KLON,8,2,KLEV); dB/dT-weighted LAYER PADE APPROXIMANTS ! PGASUR, PGBSUR (KLON,8,2) ; SURFACE PADE APPROXIMANTS ! PGATOP, PGBTOP (KLON,8,2) ; T.O.A. PADE APPROXIMANTS ! ! IMPLICIT ARGUMENTS : NONE ! -------------------- ! ! METHOD. ! ------- ! ! 1. COMPUTES THE PLANCK FUNCTION ON ALL LEVELS AND HALF LEVELS ! FROM A POLYNOMIAL DEVELOPMENT OF PLANCK FUNCTION ! ! EXTERNALS. ! ---------- ! ! NONE ! ! REFERENCE. ! ---------- ! ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS " ! ! AUTHOR. ! ------- ! JEAN-JACQUES MORCRETTE *ECMWF* ! ! MODIFICATIONS. ! -------------- ! ORIGINAL : 89-07-14 ! !----------------------------------------------------------------------- #include "tsmbkind.h" USE YOEOLW , ONLY : MXIXT ,NISP ,NIPD , GA ,& & GB ,TINTP ,TSTAND ,TSTP ,XP IMPLICIT NONE ! DUMMY INTEGER SCALARS INTEGER_M :: KFDIA INTEGER_M :: KIDIA INTEGER_M :: KLEV INTEGER_M :: KLON !----------------------------------------------------------------------- ! !* 0.1 ARGUMENTS ! --------- ! REAL_B :: PDT0(KLON), PT(KLON,KLEV), PTH(KLON,KLEV+1) ! REAL_B :: PB(KLON,NISP,KLEV+1), PBINT(KLON,KLEV+1) & & , PBSUIN(KLON) , PBSUR(KLON,NISP) & & , PBTOP(KLON,NISP) , PDBSL(KLON,NISP,KLEV*2) & & , PGA(KLON,8,2,KLEV) , PGB(KLON,8,2,KLEV) & & , PGASUR(KLON,8,2) , PGBSUR(KLON,8,2) & & , PGATOP(KLON,8,2) , PGBTOP(KLON,8,2) ! !------------------------------------------------------------------------- ! !* 0.2 LOCAL ARRAYS ! ------------ INTEGER_M :: INDB(KLON),INDS(KLON) REAL_B :: ZBLAY(KLON,KLEV),ZBLEV(KLON,KLEV+1) & & , ZRES(KLON),ZRES2(KLON),ZTI(KLON),ZTI2(KLON) REAL_B :: ZDST1, ZDSTO1, ZDSTX, ZDSTOX INTEGER_M :: ILEV2, INDSU, INDT, INDTP, INDTO, INUS, INUE, IXTOX, IXTX & & , JF, JG, JNU, JK, JK1, JK2, JL, IKL ! ! ------------------------------------------------------------------ ! ! !* 1.0 PLANCK FUNCTIONS AND GRADIENTS ! ------------------------------ ! ILEV2=2*KLEV INUS=1 INUE=NISP DO JK = 1 , KLEV+1 DO JL = KIDIA,KFDIA PBINT(JL,JK) = 0. END DO END DO DO JNU=1,NISP DO JL=KIDIA,KFDIA PBSUR(JL,JNU)=0. PBTOP(JL,JNU)=0. END DO DO JK=1,KLEV DO JL=KIDIA,KFDIA PB(JL,JNU,JK)=0. END DO END DO DO JK=1,ILEV2 DO JL=KIDIA,KFDIA PDBSL(JL,JNU,JK)=0. END DO END DO END DO DO JL = KIDIA,KFDIA PBSUIN(JL) = 0. END DO ! DO JNU=INUS,INUE ! ! !* 1.1 LEVELS FROM SURFACE TO KLEV ! ---------------------------- ! TEMPERATURE ENTERED FROM TOP TO BOTTOM ! DO JK = 1 , KLEV IKL=KLEV+1-JK DO JL = KIDIA,KFDIA ZTI(JL)=(PTH(JL,IKL+1)-TSTAND)/TSTAND ZRES(JL) = XP(1,JNU)+ZTI(JL)*(XP(2,JNU)+ZTI(JL)*(XP(3,JNU) & & +ZTI(JL)*(XP(4,JNU)+ZTI(JL)*(XP(5,JNU)+ZTI(JL)*(XP(6,JNU) & & ))))) PBINT(JL,JK)=PBINT(JL,JK)+ZRES(JL) PB(JL,JNU,JK)= ZRES(JL) ZBLEV(JL,JK) = ZRES(JL) ZTI2(JL)=(PT(JL,IKL)-TSTAND)/TSTAND ZRES2(JL)=XP(1,JNU)+ZTI2(JL)*(XP(2,JNU)+ZTI2(JL)*(XP(3,JNU) & & +ZTI2(JL)*(XP(4,JNU)+ZTI2(JL)*(XP(5,JNU)+ZTI2(JL)*(XP(6,JNU) & & ))))) ZBLAY(JL,JK) = ZRES2(JL) END DO END DO ! ! !* 1.2 TOP OF THE ATMOSPHERE AND SURFACE ! --------------------------------- ! TEMPERATURE ENTERED FROM TOP TO BOTTOM ! DO JL = KIDIA,KFDIA ZTI(JL)=(PTH(JL,1)-TSTAND)/TSTAND ZTI2(JL) = (PTH(JL,KLEV+1) + PDT0(JL) - TSTAND) / TSTAND ZRES(JL) = XP(1,JNU)+ZTI(JL)*(XP(2,JNU)+ZTI(JL)*(XP(3,JNU) & & +ZTI(JL)*(XP(4,JNU)+ZTI(JL)*(XP(5,JNU)+ZTI(JL)*(XP(6,JNU) & & ))))) ZRES2(JL) = XP(1,JNU)+ZTI2(JL)*(XP(2,JNU)+ZTI2(JL)*(XP(3,JNU) & & +ZTI2(JL)*(XP(4,JNU)+ZTI2(JL)*(XP(5,JNU)+ZTI2(JL)*(XP(6,JNU) & & ))))) PBINT(JL,KLEV+1) = PBINT(JL,KLEV+1)+ZRES(JL) PB(JL,JNU,KLEV+1)= ZRES(JL) ZBLEV(JL,KLEV+1) = ZRES(JL) PBTOP(JL,JNU) = ZRES(JL) PBSUR(JL,JNU) = ZRES2(JL) PBSUIN(JL) = PBSUIN(JL) + ZRES2(JL) END DO ! ! !* 1.3 GRADIENTS IN SUB-LAYERS ! ----------------------- ! DO JK = 1 , KLEV JK2 = 2 * JK JK1 = JK2 - 1 DO JL = KIDIA,KFDIA PDBSL(JL,JNU,JK1) = ZBLAY(JL,JK ) - ZBLEV(JL,JK) PDBSL(JL,JNU,JK2) = ZBLEV(JL,JK+1) - ZBLAY(JL,JK) END DO END DO ! END DO ! !* 2.0 CHOOSE THE RELEVANT SETS OF PADE APPROXIMANTS ! --------------------------------------------- ! DO JL=KIDIA,KFDIA ZDSTO1 = (PTH(JL,1)-TINTP(1)) / TSTP IXTOX = MAX( 1, MIN( INT(MXIXT), INT( ZDSTO1 + 1. ) ) ) ZDSTOX = (PTH(JL,1)-TINTP(IXTOX))/TSTP IF (ZDSTOX.LT.0.5) THEN INDTO=IXTOX ELSE INDTO=IXTOX+1 END IF INDB(JL)=INDTO ZDST1 = (PTH(JL,KLEV+1)-TINTP(1)) / TSTP IXTX = MAX( 1, MIN( INT(MXIXT), INT( ZDST1 + 1. ) ) ) ZDSTX = (PTH(JL,KLEV+1)-TINTP(IXTX))/TSTP IF (ZDSTX.LT.0.5) THEN INDT=IXTX ELSE INDT=IXTX+1 END IF INDS(JL)=INDT END DO ! DO JF=1,2 DO JG=1, 8 DO JL=KIDIA,KFDIA INDSU=INDS(JL) PGASUR(JL,JG,JF)=GA(INDSU,2*JG-1,JF) PGBSUR(JL,JG,JF)=GB(INDSU,2*JG-1,JF) INDTP=INDB(JL) PGATOP(JL,JG,JF)=GA(INDTP,2*JG-1,JF) PGBTOP(JL,JG,JF)=GB(INDTP,2*JG-1,JF) END DO END DO END DO ! DO JK=1,KLEV IKL=KLEV+1-JK DO JL=KIDIA,KFDIA ZDST1 = (PT(JL,IKL)-TINTP(1)) / TSTP IXTX = MAX( 1, MIN( INT(MXIXT), INT( ZDST1 + 1. ) ) ) ZDSTX = (PT(JL,IKL)-TINTP(IXTX))/TSTP IF (ZDSTX.LT.0.5) THEN INDT=IXTX ELSE INDT=IXTX+1 END IF INDB(JL)=INDT END DO ! DO JF=1,2 DO JG=1, 8 DO JL=KIDIA,KFDIA INDT=INDB(JL) PGA(JL,JG,JF,JK)=GA(INDT,2*JG,JF) PGB(JL,JG,JF,JK)=GB(INDT,2*JG,JF) END DO END DO END DO END DO ! ! ------------------------------------------------------------------ ! RETURN END SUBROUTINE OLWB