! ! $Id: coagulate.F90 3677 2020-05-06 15:18:32Z crisi $ ! SUBROUTINE COAGULATE(pdtcoag,mdw,tr_seri,t_seri,pplay,dens_aer,is_strato) ! ----------------------------------------------------------------------- ! ! Author : Christoph Kleinschmitt (with Olivier Boucher) ! ------ ! ! purpose ! ------- ! ! interface ! --------- ! input ! pdtphys time step duration [sec] ! tr_seri tracer mixing ratios [kg/kg] ! mdw # or mass median diameter [m] ! ! method ! ------ ! ! ----------------------------------------------------------------------- USE dimphy, ONLY : klon,klev USE aerophys USE infotrac_phy USE phys_local_var_mod, ONLY: DENSO4, f_r_wet USE YOMCST IMPLICIT NONE !-------------------------------------------------------- ! transfer variables when calling this routine REAL,INTENT(IN) :: pdtcoag ! Time step in coagulation routine [s] REAL,DIMENSION(nbtr_bin),INTENT(IN) :: mdw ! aerosol particle diameter in each bin [m] REAL,DIMENSION(klon,klev,nbtr),INTENT(INOUT) :: tr_seri ! Concentration Traceur [U/KgA] REAL,DIMENSION(klon,klev),INTENT(IN) :: t_seri ! Temperature REAL,DIMENSION(klon,klev),INTENT(IN) :: pplay ! pression pour le mileu de chaque couche (en Pa) REAL,DIMENSION(klon,klev) :: dens_aer! density of aerosol [kg/m3 aerosol] with default H2SO4 mass LOGICAL,DIMENSION(klon,klev),INTENT(IN) :: is_strato ! local variables in coagulation routine INTEGER :: i,j,k,nb,ilon,ilev REAL, DIMENSION(nbtr_bin) :: radius ! aerosol particle radius in each bin [m] REAL, DIMENSION(klon,klev,nbtr_bin) :: tr_t ! Concentration Traceur at time t [U/KgA] REAL, DIMENSION(klon,klev,nbtr_bin) :: tr_tp1 ! Concentration Traceur at time t+1 [U/KgA] REAL, DIMENSION(nbtr_bin,nbtr_bin,nbtr_bin) :: ff ! Volume fraction of intermediate particles REAL, DIMENSION(nbtr_bin) :: V ! Volume of bins REAL, DIMENSION(nbtr_bin,nbtr_bin) :: Vij ! Volume sum of i and j REAL :: eta ! Dynamic viscosity of air REAL, PARAMETER :: mair=4.8097E-26 ! Average mass of an air molecule [kg] REAL :: zrho ! Density of air REAL :: mnfrpth ! Mean free path of air REAL, DIMENSION(nbtr_bin) :: Kn ! Knudsen number of particle i REAL, DIMENSION(nbtr_bin) :: Di ! Particle diffusion coefficient REAL, DIMENSION(nbtr_bin) :: m_par ! Mass of particle i REAL, DIMENSION(nbtr_bin) :: thvelpar! Thermal velocity of particle i REAL, DIMENSION(nbtr_bin) :: mfppar ! Mean free path of particle i REAL, DIMENSION(nbtr_bin) :: delta! delta of particle i (from equation 21) REAL, DIMENSION(nbtr_bin,nbtr_bin) :: beta ! Coagulation kernel from Brownian diffusion REAL :: beta_const ! Constant coagulation kernel (for comparison) REAL :: num REAL :: numi REAL :: denom ! Additional variables for coagulation enhancement factor due to van der Waals forces ! Taken from Chan and Mozurkewich, Measurement of the coagulation rate constant for sulfuric acid ! particles as a function of particle size using TDMA, Aerosol Science, 32, 321-339, 2001. !--ok_vdw is 0 for no vdW forces, 1 for E(0), 2 for E(infinity) INTEGER, PARAMETER :: ok_vdw = 0 REAL, PARAMETER :: avdW1 = 0.0757 REAL, PARAMETER :: avdW3 = 0.0015 REAL, PARAMETER :: bvdW0 = 0.0151 REAL, PARAMETER :: bvdW1 = -0.186 REAL, PARAMETER :: bvdW3 = -0.0163 REAL, PARAMETER :: AvdW = 6.4e-20 !Hamaker constant in J = 1e7 erg REAL :: AvdWi REAL :: xvdW REAL :: EvdW DO i=1, nbtr_bin radius(i)=mdw(i)/2. V(i)= radius(i)**3. !neglecting factor 4*RPI/3 ENDDO DO j=1, nbtr_bin DO i=1, nbtr_bin Vij(i,j)= V(i)+V(j) ENDDO ENDDO !--pre-compute the f(i,j,k) from Jacobson equation 13 ff=0.0 DO k=1, nbtr_bin DO j=1, nbtr_bin DO i=1, nbtr_bin IF (k.EQ.1) THEN ff(i,j,k)= 0.0 ELSEIF (k.GT.1.AND.V(k-1).LT.Vij(i,j).AND.Vij(i,j).LT.V(k)) THEN ff(i,j,k)= 1.-ff(i,j,k-1) ELSEIF (k.EQ.nbtr_bin) THEN IF (Vij(i,j).GE.v(k)) THEN ff(i,j,k)= 1. ELSE ff(i,j,k)= 0.0 ENDIF ELSEIF (k.LE.(nbtr_bin-1).AND.V(k).LE.Vij(i,j).AND.Vij(i,j).LT.V(k+1)) THEN ff(i,j,k)= V(k)/Vij(i,j)*(V(k+1)-Vij(i,j))/(V(k+1)-V(k)) ENDIF ENDDO ENDDO ENDDO DO ilon=1, klon DO ilev=1, klev !only in the stratosphere IF (is_strato(ilon,ilev)) THEN !compute actual wet particle radius & volume for every grid box DO i=1, nbtr_bin radius(i)=f_r_wet(ilon,ilev)*mdw(i)/2. V(i)= radius(i)**3. !neglecting factor 4*RPI/3 ENDDO !--Calculations for the coagulation kernel--------------------------------------------------------- zrho=pplay(ilon,ilev)/t_seri(ilon,ilev)/RD !--initialize the tracer at time t and convert from [number/KgA] to [number/m3] DO i=1, nbtr_bin tr_t(ilon,ilev,i) = tr_seri(ilon,ilev,i+nbtr_sulgas) * zrho ENDDO ! mean free path of air (Pruppacher and Klett, 2010, p.417) [m] mnfrpth=6.6E-8*(1.01325E+5/pplay(ilon,ilev))*(t_seri(ilon,ilev)/293.15) ! mnfrpth=2.*eta/(zrho*thvelair) ! mean free path of air (Prupp. Klett) in [10^-6 m] ! ZLAIR = 0.066 *(1.01325E+5/PPLAY)*(T_SERI/293.15)*1.E-06 ! dynamic viscosity of air (Pruppacher and Klett, 2010, p.417) [kg/(m*s)] IF (t_seri(ilon,ilev).GE.273.15) THEN eta=(1.718+0.0049*(t_seri(ilon,ilev)-273.15))*1.E-5 ELSE eta=(1.718+0.0049*(t_seri(ilon,ilev)-273.15)-1.2E-5*(t_seri(ilon,ilev)-273.15)**2)*1.E-5 ENDIF !--pre-compute the particle diffusion coefficient Di(i) from equation 18 Di=0.0 DO i=1, nbtr_bin Kn(i)=mnfrpth/radius(i) Di(i)=RKBOL*t_seri(ilon,ilev)/(6.*RPI*radius(i)*eta)*(1.+Kn(i)*(1.249+0.42*exp(-0.87/Kn(i)))) ENDDO !--pre-compute the thermal velocity of a particle thvelpar(i) from equation 20 thvelpar=0.0 DO i=1, nbtr_bin m_par(i)=4./3.*RPI*radius(i)**3.*DENSO4(ilon,ilev)*1000. thvelpar(i)=sqrt(8.*RKBOL*t_seri(ilon,ilev)/(RPI*m_par(i))) ENDDO !--pre-compute the particle mean free path mfppar(i) from equation 22 mfppar=0.0 DO i=1, nbtr_bin mfppar(i)=8.*Di(i)/(RPI*thvelpar(i)) ENDDO !--pre-compute the mean distance delta(i) from the center of a sphere reached by particles !--leaving the surface of the sphere and traveling a distance of particle mfppar(i) from equation 21 delta=0.0 DO i=1, nbtr_bin delta(i)=((2.*radius(i)+mfppar(i))**3.-(4.*radius(i)**2.+mfppar(i)**2.)**1.5)/ & & (6.*radius(i)*mfppar(i))-2.*radius(i) ENDDO !--pre-compute the beta(i,j) from equation 17 in Jacobson num=0.0 DO j=1, nbtr_bin DO i=1, nbtr_bin ! num=4.*RPI*(radius(i)+radius(j))*(Di(i)+Di(j)) denom=(radius(i)+radius(j))/(radius(i)+radius(j)+sqrt(delta(i)**2.+delta(j)**2.))+ & & 4.*(Di(i)+Di(j))/(sqrt(thvelpar(i)**2.+thvelpar(j)**2.)*(radius(i)+radius(j))) beta(i,j)=num/denom ! !--compute enhancement factor due to van der Waals forces IF (ok_vdw .EQ. 0) THEN !--no enhancement factor Evdw=1.0 ELSEIF (ok_vdw .EQ. 1) THEN !--E(0) case AvdWi = AvdW/(RKBOL*t_seri(ilon,ilev))*(4.*radius(i)*radius(j))/(radius(i)+radius(j))**2. xvdW = LOG(1.+AvdWi) EvdW = 1. + avdW1*xvdW + avdW3*xvdW**3 ELSEIF (ok_vdw .EQ. 2) THEN !--E(infinity) case AvdWi = AvdW/(RKBOL*t_seri(ilon,ilev))*(4.*radius(i)*radius(j))/(radius(i)+radius(j))**2. xvdW = LOG(1.+AvdWi) EvdW = 1. + SQRT(AvdWi/3.)/(1.+bvdW0*SQRT(AvdWi)) + bvdW1*xvdW + bvdW3*xvdW**3. ENDIF ! beta(i,j)=beta(i,j)*EvdW ENDDO ENDDO !--external loop for equation 14 DO k=1, nbtr_bin !--calculating denominator sum denom=0.0 DO j=1, nbtr_bin denom=denom+(1.-ff(k,j,k))*beta(k,j)*tr_t(ilon,ilev,j) ENDDO IF (k.EQ.1) THEN !--calculate new concentration of smallest bin tr_tp1(ilon,ilev,k)=tr_t(ilon,ilev,k)/(1.+pdtcoag*denom) ELSE !--calculating double sum terms in numerator of eq 14 num=0.0 DO j=1, k numi=0.0 DO i=1, k-1 numi=numi+ff(i,j,k)*beta(i,j)*V(i)*tr_tp1(ilon,ilev,i)*tr_t(ilon,ilev,j) ENDDO num=num+numi ENDDO !--calculate new concentration of other bins tr_tp1(ilon,ilev,k)=(V(k)*tr_t(ilon,ilev,k)+pdtcoag*num)/(1.+pdtcoag*denom)/V(k) ENDIF ENDDO !--end of loop k !--convert tracer concentration back from [number/m3] to [number/KgA] and write into tr_seri DO i=1, nbtr_bin tr_seri(ilon,ilev,i+nbtr_sulgas) = tr_tp1(ilon,ilev,i) / zrho ENDDO ENDIF ! IF IN STRATOSPHERE ENDDO !--end of loop klev ENDDO !--end of loop klon END SUBROUTINE COAGULATE