subroutine scops(npoints,nlev,ncol,seed,cc,conv, & overlap,frac_out,ncolprint) ! *****************************COPYRIGHT**************************** ! (c) British Crown Copyright 2009, the Met Office. ! All rights reserved. ! $Revision: 23 $, $Date: 2011-03-31 15:41:37 +0200 (jeu. 31 mars 2011) $ ! $URL: http://cfmip-obs-sim.googlecode.com/svn/stable/v1.4.0/icarus-scops-4.1-bsd/scops.f $ ! ! Redistribution and use in source and binary forms, with or without ! modification, are permitted provided that the ! following conditions are met: ! ! * Redistributions of source code must retain the above ! copyright notice, this list of conditions and the following ! disclaimer. ! * Redistributions in binary form must reproduce the above ! copyright notice, this list of conditions and the following ! disclaimer in the documentation and/or other materials ! provided with the distribution. ! * Neither the name of the Met Office nor the names of its ! contributors may be used to endorse or promote products ! derived from this software without specific prior written ! permission. ! ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ! "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT ! LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ! A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT ! OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, ! SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT ! LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ! DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ! THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ! (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ! OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ! ! *****************************COPYRIGHT******************************* ! *****************************COPYRIGHT******************************* ! *****************************COPYRIGHT******************************* implicit none INTEGER npoints ! number of model points in the horizontal INTEGER nlev ! number of model levels in column INTEGER ncol ! number of subcolumns INTEGER overlap ! overlap type ! 1=max ! 2=rand ! 3=max/rand REAL cc(npoints,nlev) ! input cloud cover in each model level (fraction) ! NOTE: This is the HORIZONTAL area of each ! grid box covered by clouds REAL conv(npoints,nlev) ! input convective cloud cover in each model ! level (fraction) ! NOTE: This is the HORIZONTAL area of each ! grid box covered by convective clouds INTEGER i,j,ilev,ibox,ncolprint,ilev2 REAL frac_out(npoints,ncol,nlev) ! boxes gridbox divided up into ! Equivalent of BOX in original version, but ! indexed by column then row, rather than ! by row then column INTEGER seed(npoints) ! seed values for marsaglia random number generator ! It is recommended that the seed is set ! to a different value for each model ! gridbox it is called on, as it is ! possible that the choice of the same ! seed value every time may introduce some ! statistical bias in the results, particularly ! for low values of NCOL. REAL tca(npoints,0:nlev) ! total cloud cover in each model level (fraction) ! with extra layer of zeroes on top ! in this version this just contains the values input ! from cc but with an extra level REAL threshold(npoints,ncol) ! pointer to position in gridbox REAL maxocc(npoints,ncol) ! Flag for max overlapped conv cld REAL maxosc(npoints,ncol) ! Flag for max overlapped strat cld REAL boxpos(npoints,ncol) ! ordered pointer to position in gridbox REAL threshold_min(npoints,ncol) ! minimum value to define range in with new threshold ! is chosen REAL ran(npoints) ! vector of random numbers INTEGER irand,i2_16,huge32,overflow_32 ! variables for RNG PARAMETER(huge32=2147483647) i2_16=65536 do ibox=1,ncol do j=1,npoints boxpos(j,ibox)=(ibox-.5)/ncol enddo enddo ! ---------------------------------------------------! ! Initialise working variables ! ---------------------------------------------------! ! Initialised frac_out to zero do ilev=1,nlev do ibox=1,ncol do j=1,npoints frac_out(j,ibox,ilev)=0.0 enddo enddo enddo ! assign 2d tca array using 1d input array cc do j=1,npoints tca(j,0)=0 enddo do ilev=1,nlev do j=1,npoints tca(j,ilev)=cc(j,ilev) enddo enddo if (ncolprint.ne.0) then write (6,'(a)') 'frac_out_pp_rev:' do j=1,npoints,1000 write(6,'(a10)') 'j=' write(6,'(8I10)') j write (6,'(8f5.2)') & ((frac_out(j,ibox,ilev),ibox=1,ncolprint),ilev=1,nlev) enddo write (6,'(a)') 'ncol:' write (6,'(I3)') ncol endif if (ncolprint.ne.0) then write (6,'(a)') 'last_frac_pp:' do j=1,npoints,1000 write(6,'(a10)') 'j=' write(6,'(8I10)') j write (6,'(8f5.2)') (tca(j,0)) enddo endif ! ---------------------------------------------------! ! ALLOCATE CLOUD INTO BOXES, FOR NCOLUMNS, NLEVELS ! frac_out is the array that contains the information ! where 0 is no cloud, 1 is a stratiform cloud and 2 is a ! convective cloud !loop over vertical levels DO 200 ilev = 1,nlev ! Initialise threshold IF (ilev.eq.1) then ! If max overlap IF (overlap.eq.1) then ! select pixels spread evenly ! across the gridbox DO ibox=1,ncol do j=1,npoints threshold(j,ibox)=boxpos(j,ibox) enddo enddo ELSE DO ibox=1,ncol include 'congvec.h' ! select random pixels from the non-convective ! part the gridbox ( some will be converted into ! convective pixels below ) do j=1,npoints threshold(j,ibox)= & conv(j,ilev)+(1-conv(j,ilev))*ran(j) enddo enddo ENDIF IF (ncolprint.ne.0) then write (6,'(a)') 'threshold_nsf2:' do j=1,npoints,1000 write(6,'(a10)') 'j=' write(6,'(8I10)') j write (6,'(8f5.2)') (threshold(j,ibox),ibox=1,ncolprint) enddo ENDIF ENDIF IF (ncolprint.ne.0) then write (6,'(a)') 'ilev:' write (6,'(I2)') ilev ENDIF DO ibox=1,ncol ! All versions do j=1,npoints if (boxpos(j,ibox).le.conv(j,ilev)) then maxocc(j,ibox) = 1 else maxocc(j,ibox) = 0 end if enddo ! Max overlap if (overlap.eq.1) then do j=1,npoints threshold_min(j,ibox)=conv(j,ilev) maxosc(j,ibox)=1 enddo endif ! Random overlap if (overlap.eq.2) then do j=1,npoints threshold_min(j,ibox)=conv(j,ilev) maxosc(j,ibox)=0 enddo endif ! Max/Random overlap if (overlap.eq.3) then do j=1,npoints threshold_min(j,ibox)=max(conv(j,ilev), & min(tca(j,ilev-1),tca(j,ilev))) if (threshold(j,ibox) & .lt.min(tca(j,ilev-1),tca(j,ilev)) & .and.(threshold(j,ibox).gt.conv(j,ilev))) then maxosc(j,ibox)= 1 else maxosc(j,ibox)= 0 end if enddo endif ! Reset threshold include 'congvec.h' do j=1,npoints threshold(j,ibox)= !if max overlapped conv cloud & maxocc(j,ibox) * ( & boxpos(j,ibox) & ) + !else & (1-maxocc(j,ibox)) * ( !if max overlapped strat cloud & (maxosc(j,ibox)) * ( !threshold=boxpos & threshold(j,ibox) & ) + !else & (1-maxosc(j,ibox)) * ( !threshold_min=random[thrmin,1] & threshold_min(j,ibox)+ & (1-threshold_min(j,ibox))*ran(j) & ) & ) enddo ENDDO ! ibox ! Fill frac_out with 1's where tca is greater than the threshold DO ibox=1,ncol do j=1,npoints if (tca(j,ilev).gt.threshold(j,ibox)) then frac_out(j,ibox,ilev)=1 else frac_out(j,ibox,ilev)=0 end if enddo ENDDO ! Code to partition boxes into startiform and convective parts ! goes here DO ibox=1,ncol do j=1,npoints if (threshold(j,ibox).le.conv(j,ilev)) then ! = 2 IF threshold le conv(j) frac_out(j,ibox,ilev) = 2 else ! = the same IF NOT threshold le conv(j) frac_out(j,ibox,ilev) = frac_out(j,ibox,ilev) end if enddo ENDDO ! Set last_frac to tca at this level, so as to be tca ! from last level next time round if (ncolprint.ne.0) then do j=1,npoints ,1000 write(6,'(a10)') 'j=' write(6,'(8I10)') j write (6,'(a)') 'last_frac:' write (6,'(8f5.2)') (tca(j,ilev-1)) write (6,'(a)') 'conv:' write (6,'(8f5.2)') (conv(j,ilev),ibox=1,ncolprint) write (6,'(a)') 'max_overlap_cc:' write (6,'(8f5.2)') (maxocc(j,ibox),ibox=1,ncolprint) write (6,'(a)') 'max_overlap_sc:' write (6,'(8f5.2)') (maxosc(j,ibox),ibox=1,ncolprint) write (6,'(a)') 'threshold_min_nsf2:' write (6,'(8f5.2)') (threshold_min(j,ibox),ibox=1,ncolprint) write (6,'(a)') 'threshold_nsf2:' write (6,'(8f5.2)') (threshold(j,ibox),ibox=1,ncolprint) write (6,'(a)') 'frac_out_pp_rev:' write (6,'(8f5.2)') & ((frac_out(j,ibox,ilev2),ibox=1,ncolprint),ilev2=1,nlev) enddo endif 200 CONTINUE !loop over nlev end